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Backward transfer entropy: 
Informational measure for 
detecting hidden Markov 
models and its interpretations in 
thermodynamics, gambling and 
causality
Sosuke Ito1,2

The transfer entropy is a well-established measure of information flow, which quantifies directed 
influence between two stochastic time series and has been shown to be useful in a variety fields of 
science. Here we introduce the transfer entropy of the backward time series called the backward 
transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics 
to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer 
entropy in completely different settings of thermodynamics for information processing and the 
gambling with side information. In both settings of thermodynamics and the gambling, the backward 
transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy 
characterizes a possible benefit. Our result implies the deep connection between thermodynamics and 
the gambling in the presence of information flow, and that the backward transfer entropy would be 
useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, 
economics and statistics.

In many scientific problems, we consider directed influence between two component parts of complex system. 
To extract meaningful influence between component parts, the methods of time series analysis have been widely 
used1–3. Especially, time series analysis based on information theory4 provides useful methods for detecting the 
directed influence between component parts. For example, the transfer entropy (TE)5–7 is one of the most influen-
tial informational methods to detect directed influence between two stochastic time series. The main idea behind 
TE is that, by conditioning on the history of one time series, informational measure of correlation between two 
time series represents the information flow that is actually transferred at the present time. Transfer entropy has 
been well adopted in a variety of research areas such as economics8, neural networks9–11, biochemical physics12–14 
and statistical physics15–19. Several efforts to improve the measure of TE have also been done20–22.

In a variety of fields, a similar concept of TE has been discussed for a long time. In economics, the statistical 
hypothesis test called as the Granger causality (GC) has been used to detect the causal relationship between two 
time series23,24. Indeed, for Gaussian variables, the statement of GC is equivalent to TE25. In information theory, 
nearly the same informational measure of information flow called the directed information (DI)26,27 has been 
discussed as a fundamental bound of the noisy channel coding under causal feedback loop. As in the case of GC, 
DI can be applied to an economic situation28,29, that is the gambling with side information4,30.

In recent studies of a thermodynamic model implementing the Maxwell’s demon31,32, which reduces the 
entropy change in a small subsystem by using information, TE has attracted much attention13–15,18,33–38. In this 
context, TE from a small subsystem to other systems generally gives a lower bound of the entropy change in a 
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subsystem15,18,33. As a tighter bound of the entropy change for Markov jump process, another directed informa-
tional measure called the dynamic information flow (DIF)34 has also been discussed33–43.

In this article, we provide the unified perspective on different measures of information flow, i.e., TE, DI, and 
DIF. To introduce TE for backward time series13,38, called backward transfer entropy (BTE), we clarify the relation-
ship between these informational measures. By considering BTE, we also obtain a tighter bound of the entropy 
change in a small subsystem even for non Markov process. In the context of time series analysis, this BTE has 
a proper meaning: an informational measure for detecting a hidden Markov model. From the view point of the 
statistical hypothesis test, BTE quantifies an anti-causal prediction. These fact implies that BTE would be a useful 
directed measure of information flow as well as TE.

Furthermore, we also discuss the analogy between thermodynamics for a small system32,44,45 and the gambling 
with side information4,30. To considering its analogy, we found that TE and BTE play similar roles in both settings 
of thermodynamics and gambling: BTE quantifies a loss of some benefit while TE quantifies some benefit. Our 
result reveals the deep connection between two different fields of science, thermodynamics and gambling.

Results
Setting. We consider stochastic dynamics of interacting systems   and  , which are not necessarily Markov 
processes. We consider a discrete time k (= 1, … , N), and write the state of   () at time k as xk (yk). Let 
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where p(A =  a|B =  b):=  p(A =  a, B =  b)/p(B =  b) is the conditional probability of a under the condition of b.

Transfer entropy. Here, we introduce conventional TE as a measure of directed information flow, which is 
defined as the conditional mutual information4 between two time series under the condition of the one’s past. The 
mutual information characterizes the static correlation between two systems. The mutual information between X 
and Y at time k is defined as

∑= = =
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This mutual information is nonnegative quantity, and vanishes if and only if xk and yk are statistically inde-
pendent (i.e., p(Xk =  xk, Yk =  yk) =  p(Xk =  xk)p(Yk =  yk))4. This mutual information quantifies how much the state 
of yk includes the information about xk, or equivalently the state of xk includes the information about yk. In a same 
way, the mutual information between two paths xk
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While the mutual information is very useful in a variety fields of science4, it only represents statistical corre-
lation between two systems in a symmetric way. In order to characterize the directed information flow from X to 
Y, Schreiber5 introduced TE defined as
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that is newly obtained by the path of the system   from time k′  to k′  +  1. Thus, TE → ′+
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a directed information flow from   to   at time k′ . This TE can be rewritten as the conditional mutual informa-
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which implies that TE is nonnegative quantity, and vanishes if and only if the transition probability in    
from ′

′yk
l( ) to yk′+1 does not depend on the time series xk
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Backward transfer entropy. Here, we introduce BTE as a novel usage of TE for the backward paths. We 
first consider the backward path of the system   (); = …− + − +

†x x x: { , , }k
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which is the time-reversed trajectories of the system   () from time N −  k +  l to N −  k +  1. We now introduce 
the concept of BTE defined as TE for the backward paths
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with m =  N −  k, m′  =  N −  k′  and k ≤  k′ . In this sense, BTE may represent “the time-reversed directed information 
flow from the future to the past.” However BTE is well defined as the conditional mutual information, it is non-
trivial if such a concept makes any sense information-theoretically or physically where stochastic dynamics of 
composite system itself do not necessarily have the time-reversal symmetry.

To clarify the proper meaning of BTE, we compare BTE → +
† †T X Yk k

(1)
1

(2) with TE → +
T X Yk k
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(2)  [see Fig. 1]. Transfer 
entropy quantifies the dependence of Xk in the transition from time Yk to Yk+1 [see Fig. 1(a)]. In the same way, BTE 
quantifies the dependence of Ym in the correlation between Xm+1 and Ym+1 [see Fig. 1(b)]. Thus, BTE implies how 
Xm+1 depends on Ym+1 without the dependence of the past state Ym. In other words, BTE → +

† †T X Yk k
(1)

1
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by a hidden Markov model. In general, BTE → ′
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exists. Therefore, BTE from   to   quantifies how far it is from composite dynamics of   and   to a hidden 
Markov model in  .

Thermodynamics of information. We next discuss a thermodynamic meaning of BTE. To clarify the 
interpretation of BTE in nonequilibrium stochastic thermodynamics, we consider the following non-Markovian 
interacting dynamics
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where a nonnegative integer n represents the time delay between   and  . The stochastic entropy change in heat 
bath  attached to the system   from time 1 to N in the presence of 15 is defined as

Figure 1. Schematics of TE and BTE. Two graphs (a) and (b) are the Bayesian networks corresponding to the  
joint probabilities p(Xk =  xk, Yk =  yk, Yk+1 =  yk+1) =  p(Xk =  xk)p(Yk =  yk|Xk =  xk)p(Yk+1 =  yk+1|Xk =  xk, Yk =  yk) and 
p(Xm+1 =  xm+1, Ym =  ym, Yk+1 =  yk+1) =  p(Ym =  ym)p(Ym+1 =  ym+1|Ym =  ym)p(Xm+1 =  xm+1|Ym+1 =  ym+1, Ym =  ym), 
respectively (see also refs 15, 37 and 60). (a) Transfer entropy → +

T X Yk k
(1)

1
(2)  corresponds to the edge from Xk to  

Yk+1 on the Bayesian network. If TE → +
T X Yk k

(1)
1

(2)  is zero, the edge from Xk to Yk+1 vanishes, i.e., p(Xk =  xk, Yk =  yk, 
Yk+1 =  yk+1) =  p(Xk =  xk)p(Yk =  yk|Xk =  xk)p(Yk+1 =  yk+1|Yk =  yk). (b) Backward transfer entropy → +

† †T X Yk k
(1)

1
(2) 

corresponds to the edge from Ym to Xm+1 on the Bayesian network. If BTE → +
† †T X Yk k

(1)
1

(2) is zero, the edge from Ym to 
Xm+1 vanishes, i.e., p(Xm+1 =  xm+1, Ym =  ym, Ym+1 =  ym+1) =  p(Ym =  ym)p(Ym+1 =  ym+1|Ym =  ym)p(Xm+1 =  xm+1|Ym+1 =  ym+1).
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is the transition probability of backward dynamics, which satisfies the normalization of the probability 
∑ =+Q 1x k

X
1k

. For example, if the system   and   does not include any odd variable that changes its sign with the 
time-reversal transformation, the backward probability is given by pB(Xk =  xk|Xk+1 =  xk+1, Yk−n =  yk−n) =  p(Xk+1 
=  xk|Xk =  xk+1, Yk−n =  yk−n) with k ≥  n +  1 (pB(Xk =  xk|Xk+1 =  xk+1, Y1 =  y1) =  p(Xk+1 =  xk|Xk =  xk+1, Y1 =  y1) with 
k ≤  n). This definition of the entropy change in the heat bath Eq. (9) is well known as the local detailed balance or 
the detailed fluctuation theorem45. We define the entropy change in   and heat bath as
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For the non-Markovian interacting dynamics Eq. (8), we have the following inequality (see Method);
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(n =  0).
These results [Eqs (12) and (13)] can be interpreted as a generalized second law of thermodynamics for the 

subsystem   in the presence of information flow from   to  . If there is no interaction between   and  , infor-
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indicates the nonnegativity of the entropy change in   and bath45. If there is some interaction between   and  , 

∆S B can be negative, and its lower bound is given by the sum of TE from X to Y and mutual information between 
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known as DI from   to 27. Intuitively speaking, −∆S B  quantifies a kind of thermodynamic benefit because its 
negativity is related to the work extraction in   in the presence of 32. Thus, a weaker bound (13) implies that the 
sum of TE quantifies a possible thermodynamic benefit of   in the presence of  .
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which is given by the sum of BTE and the mutual information between   and   at final time. A tighter bound 
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We here consider the case of Markovian interacting dynamics (n =  0). For Markovian interacting dynamics, 
we have the following additivity for a tighter bound [see Supplementary information (SI)]
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† †I X Y I X Y I O t( ) ( ) ( ) (18)k k N k N k low

k0 (2)
1

(2) 0
1

(2)
1

(2)
f

2

Thus a bound by TE and BTE is equivalent to a bound by DIF for such systems in the continuous limit, i.e., 
−∆ ≤ → − → = ∑ + ∆=

−† †S I X Y I X Y I O t( ) ( ) ( )B N
N

N
N

N
N

N
N

k
N0 ( ) ( ) 0 ( ) ( )

1
1

flow
k .

Gambling with side information. In classical information theory, the formalism of the gambling with side 
information has been well known as another perspective of information theory based on the data compression 
over a noisy communication channel4,30. In the gambling with side information, the mutual information between 
the result in the gambling and the side information gives a bound of the gambler’s benefit.

This formalism of gambling is similar to the above-mentioned result in thermodynamics of information. In 
thermodynamics, thermodynamic benefit (e.g., the work extraction) can be obtained by using information. On 
the other hand, the gambler obtain the benefit by using side information. We here clarify the analogy between 
gambling and thermodynamics in the presence of information flow. To clarify the analogy between thermody-
namics and gambling, BTE plays a crucial role as well as TE.

We introduce the basic concept of the gambling with side information given by the horse race4,30. Let yk be the 
horse that won the k-th horse race. Let fk ≥  0 and ok ≥  0 be the bet fraction and the odds on the k-th race, respec-
tively. Let mk be the gambler’s wealth before the k-th race. Let sk be the side information at time k. We consider the 
set of side information xk−1 =  {s1, … , sk−1}, which the gambler can access before the k-th race. The bet fraction fk 
is given by the function −

−
−f y y x( , )k k k

k
k1

( 1)
1  with k ≥  2, and f1(y1|x1). The conditional dependence −

−
−y x{ , }k

k
k1

( 1)
1  

({x1}) of −
−

−f y y x( , )k k k
k

k1
( 1)

1  (f(y1|x1)) implies that the gambler can decide the bet fraction fk (f1) by considering the 
past information −

−
−y x{ , }k

k
k1

( 1)
1  ({x1}). We assume normalizations of the bet fractions ∑ | =−

−
−f y y x( , ) 1y k k k

k
k1

( 1)
1k

 
and ∑ | =f y x( ) 1y 1 1 11

, which mean that the gambler bets all one’s money in every race. We also assume that 
∑ =o y1/ ( ) 1y k kk

. This condition satisfies if the odds in every race are fair, i.e., 1/ok(yk) is given by a probability of 
Yk.

The stochastic gambler’s wealth growth rate at k-th race is given by

= =+
−
−

−g
m
m

f y y x o y: ln ln[ ( , ) ( )],
(19)k

k

k
k k k

k
k k k

1
1

( 1)
1

with k ≥  2 [ = =g m m f y x o y: ln( / ) ( ) ( )1 2 1 1 1 1 1 1 ], which implies that the gambler’s wealth stochastically changes 
due to the bet fraction and odds. The information theory of the gambling with side information indicates that the 
ensemble average of total wealth growth = ∑ = = ∑ =G p X x Y y g: ( , )[ ]x y N

N
N

N
N

N
N

N
k
N

k,
( ) ( ) ( ) ( )

1N
N

N
N( ) ( )  is bounded by the 

sum of TE (or DI) from X to Y28,29 (see Method);

∑≤ − + →
=

G o S Y I X Yln ( ) ( )
(20)k

N

k N
N

N
N

N
N

1

( ) 0 ( ) ( )

≤ →I X Y( ), (21)N
N

N
N0 ( ) ( )

where = ∑ = = p X x Y y( , )x y N
N

N
N

N
N

N
N

,
( ) ( ) ( ) ( )

N
N

N
N( ) ( )  indicates the ensemble average, and =S Y( ):N

N( )

− =p Y yln ( )N
N

N
N( ) ( )  is the Shannon entropy of YN

N( ). This result (21) implies that the sum of TE can be inter-
preted as a possible benefit of the gambler.

We discuss the analogy between thermodynamics of information and the gambling with side information. A 
weaker bound in the gambling with side information (21) is similar to a weaker bound in thermodynamics of 
information (16), where the negative entropy change −∆S B  corresponds to the total wealth growth G. On the 
other hand, a tighter bound in the gambling with side information (20) is rather different from a tighter bound by 
the sum of BTE in thermodynamics of information (16). We show that a tighter bound in the gambling is also 
given by the sum of BTE if we consider the special case that the bookmaker who decides the odds ok cheats in the 



www.nature.com/scientificreports/

6Scientific RepoRts | 6:36831 | DOI: 10.1038/srep36831

horse race; The odds ok can be decided by the unaccessible side information xk+1 and information of the future 
races −yN

N k( ) [see also Fig. 2]. In this special case, the fair odds of the k-th race ok can be the conditional probability 
of the future information = = = =− −

+ +o y p Y y Y y X x1/ ( ) ( , )k k k k N
N k

N
N k

k k
( ) ( )

1 1  with k  ≤   N  −   1, and 
1/oN(yN) =  p(YN =  yN|XN =  xN). The inequality (20) can be rewritten as

≤ → − → ≤ → .† †G I X Y I X Y I X Y( ) ( ) ( ) (22)N
N

N
N

N
N

N
N

N
N

N
N0 ( ) ( ) 0 ( ) ( ) 0 ( ) ( )

which implies that the sum of BTE → − →† †I X Y I X Y( ) (N
N

N
N

N
N

N
N0 ( ) ( ) 0 ( ) ( )) represents a loss of the gambler’s 

benefit because of the cheating by the bookmaker who can access the future information with anti-causality. We 
stress that Eq. (22) has a same form of the thermodynamic inequality (16) for Markovian interacting dynamics 
(n =  0). This fact implies that thermodynamics of information can be interpreted as the special case of the gam-
bling with side information; The gambler uses the past information and the bookmaker uses the future informa-
tion. If we regard thermodynamic dynamics as the gambling, anti-causal effect should be considered.

Causality. We here show that BTE itself is related to anti-causality without considering the gambling. From 
the view point of the statistical hypothesis test, TE is equivalent to GC for Gaussian variables25. Therefore, it is 
naturally expected that BTE can be interpreted as a kind of the causality test.

Suppose that we consider two linear regression models

α= + ⊕ ⋅ +′+ ′
′y y x A( ) , (23)k k

l
k

l
1

(1) ( ) ( )

α= ′ + ⋅ ′ + ′′+ ′
′y y A( ) , (24)k k

l
1

(1) ( ) 

where α (α′ ) is a constant term, A (A′ ) is the vector of regression coefficients, ⊕  denotes concatenation of vectors, 
and  ( ′ ) is an error term. The Granger causality of   to   quantifies how the past time series of   in the first 
model reduces the prediction error of 

′+yk 1
(1)  compared to the error in the second model. Performing ordinary 

mean squares to find the regression coefficients A (A′ ) and α (α′ ) that minimize the variance of  (′), the standard 
measure of GC is given by

F ε
ε

=
′

→ ′+
′+ : ln var( )

var( )
,

(25)X Yk
l

k
l( )

1
( 1)

where var() denotes the variance of . Here we assume that the joint probability = =′+
′+

′+
′+p X x Y y( , )k

l
k

l
k

l
k

l( ) ( )
1

( 1)
1

( 1)  
is Gaussian. Under Gaussian assumption, TE and GC are equivalent up to a factor of 2,

= .→ →′+
′+

′+
′+T2 (26)X Y X Yk

l
k

l
k

l
k

l( )
1

( 1) ( )
1

( 1)

In the same way, we discuss BTE from the view point of GC. Here we assume that the joint probability 
= =+ + ′+ ′

′+ ′
′+ ′
′+p X x Y y( , )m l

l
m l

l
m l

m l
m l

l( ) ( ) ( ) ( 1)  is Gaussian. Suppose that two linear regression models

α= + ⊕ ⋅ +′+ ′
′† † † † † †y y x A( ) , (27)k k

l
k

l
1

(1) ( ) ( )

Figure 2. Schematic of the special case of the horse race. The gambler can only access the past side information xk−1 
and the past races = …−

−
−y y y{ , , }k

k
k1

( 1)
1 1 , and decides the bet fraction fk on the k-th race. The bookmaker makes 

some cheating which can access the future side information xk+1 and the future races = …−
+y y y{ , , }N

N k
k N

( )
1 , and 

decides the odds on the k-th race.
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α= ′ + ⋅ ′ +′+ ′
′† † † † †y y A( ) , (28)k k

l
1

(1) ( )

where α† (α′ †) is a constant term, A† (A′ †) is the vector of regression coefficients and †  (′†) is an error term. These 
linear regression models give a prediction of the past state of   using the future time series of   and  . Intuitively 
speaking, we consider GC of   to   for the rewind playback video of composite dynamics   and  . We call this 
causality test the Granger anti-causality of   to  . Performing ordinary mean squares to find A† (A′ †) and α†  
(α′ †) that minimize var(†) (var( ′† )), we define a measure of the Granger anti-causality of   to   as 

=→ ′+
′+

† †
† † : ln [var( )/var( )]X Yk

l
k

l( )
1

( 1)F ε ε . The backward transfer entropy is equivalent to the Granger anti-causality 
up to factor 2,

= .→ →′+
′+

′+
′+† † † †T2 (29)X Y X Yk

l
k

l
k

l
k

l( )
1

( 1) ( )
1

( 1)

This fact implies that BTE can be interpreted as a kind of anti-causality test. We stress that composite dynam-
ics of   and   are not necessarily driven with anti-causality even if a measure of the Granger anti-causality 
 → ′+

′+† †X Yk
l

k
l( )

1
( 1) has nonzero value. As GC just finds only the predictive causality23,24, the Granger anti-causality also 

finds only the predictive causality for the backward time series.

Discussion
We proposed that directed measure of information called BTE, which is possibly useful to detect a hidden Markov 
model (7) and predictive anti-causality (29). In the both setting of thermodynamics and the gambling, the meas-
urement of BTE has a profitable meaning; the detection of a loss of a possible benefit in the inequalities (16) and 
(22).

The concept of BTE can provide a clear perspective in the studies of the biochemical sensor and thermody-
namics of information, because the difference between TE and DIF has attracted attention recently in these 
fields14,35. In ref. 14, Hartich et al. have proposed the novel informational measure for the biochemical sensor 
called sensory capacity. The sensory capacity is defined as the ratio between TE and DIF = − → +

C I T: / X Yflow
k

k k
(1)

1
(2) . 

Because DIF can be rewritten by TE and BTE [Eq. (18)] for Markovian interacting dynamics, we have the follow-
ing expression for the sensory capacity in a stationary state,

= −
→

→

− − +

+

† †

C
T

T
1 ,

(30)

X Y

X Y

N k N k

k k

(1)
1

(2)

(1)
1

(2)

where we used I(Xk+1; Yk+1) =  I(Xk; Yk) in a stationary state. This fact indicates that the ratio between TE and BTE 
could be useful to quantify the performance of the biochemical sensor. By using this expression (29), we show 
that the maximum value of the sensory capacity C =  1 can be achieved if a Markov chain of a hidden Markov 
model Yk →  Yk+1 →  Xk+1 exists. In ref. 35, Horowitz and Sandberg have shown a comparison between two ther-
modynamic bound by TE and DIF for two dimensional Langevin dynamics. For the Kalman-Bucy filter which 
is the optimal controller, they have found the fact that DIF is equivalent to TE in a stationary state. This idea can 
be clarified by the concept of BTE. Because the Kalman-Bucy filter can be interpreted as a hidden Markov model, 
BTE should be zero, and DIF is equivalent to TE in a stationary state.

Our results can be interpreted as a generalization of previous works in thermodynamics of information46–48. In 
refs 46 and 47, S. Still et al. discuss the prediction in thermodynamics for Markovian interacting dynamics. In our 
results, we show the connection between thermodynamics of information and the predictive causality from the 
view point of GC. Thus, our results give a new insight into these works of the prediction in thermodynamics. In 
ref. 48, G. Diana and M. Esposito have introduced the time-reversed mutual information for Markovian interact-
ing dynamics. In our results, we introduce BTE, which is TE in the time-reversed way. Thus, our result provides 
a similar description of thermodynamics by introducing BTE, even for non-Markovian interacting dynamics.

We point out the time symmetry in the generalized second law (12). For Markovian interacting dynamics, the 
equality in Eq. (12) holds if dynamics of   has a local reversibility (see SI). Here we consider a time reversed 
transformation  → − +k N k: 1, and assume a local reversibility such that the backward probability 
pB(A =  a|B =  b) equals to the original probability p(A =  a|B =  b) for any random variables A and B. In a time 
reversed transformation, we have T X X∆ → − ∆S S: B B, → → →† †I X Y I X Y: ( ) ( )n

N
N

N
N n

N
N

N
N( ) ( ) ( ) ( )  and 

→ → →† †I X Y I X Y: ( ) ( )n
N

N
N

N n
N

N
N

N( ) ( ) ( ) ( ) .  The generalized second law Eq.  (12) changes the sign  
i n  a  t i m e  re v e r s e d  t r a n s f o r m at i o n ,  T X∆≤ + → − → →† †S I X Y I X Y: [0 ( ) ( )]B

n
N

N
N

N n
N

N
N

N( ) ( ) ( ) ( )

≤ − ∆ + → − →† †S I X Y I X Y[0 ( ( ) ( ))]B
n

N
N

N
N n

N
N

N
N( ) ( ) ( ) ( )

 . Thus, the generalized second law (12) has the same 
time symmetry in the conventional second law, i.e.,  ≤ ∆ → ≤ − ∆S S:[0 ] [0 ]tot tot  even for non-Markovian 
interacting dynamics, where Δ Stot is the entropy change in total systems. In other words, the generalized second 
law (12) provides the arrow of time as the conventional second law. This fact may indicate that BTE is useful as 
well as TE in physical situations where the time symmetry plays a crucial role in physical laws.

We also point out that this paper clarifies the analogy between thermodynamics of information and the gam-
bling. The analogy between the gambling and thermodynamics has been proposed in ref. 49, however, the anal-
ogy between Eqs (16) and (22) are different from one in ref. 49. In ref. 49, D. A. Vinkler et al. discuss the particular 
case of the work extraction in Szilard engine, and consider the work extraction in Szilard engine as the gambling. 
On the other hand, our result provides the analogy between the general law of thermodynamics of informa-
tion and the gambling. To clarify this analogy, we may apply the theory of gambling, for example the portfolio  
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theory50,51, to thermodynamic situations in general. We also stress that the gambling with side information 
directly connects with the data compression in information theory4. Therefore, the generalized second law of 
thermodynamics may directly connect with the data compression in information theory. To consider such appli-
cations, BTE would play a tricky role in the theory of the gambling where the odds should be decided with 
anti-causality.

Finally, we discuss the usage of BTE in time series analysis. In principle, we prepare the backward time series 
data from the original time series data, and do a calculation of BTE as TE. To calculate BTE, we can estimate how 
far it is from dynamics of two time series to a hidden Markov model, or detect the predictive causality for the 
backward time series. In physical situations, we also can detect thermodynamic performance by comparing BTE 
with TE. If the sum of BTE from the target system to the other systems is larger than the sum of TE from the target 
system to the other systems, the target system could seem to violate the second law of thermodynamics because 
of the inequality (16), where the other systems play a similar role of Maxwell’s demon. Therefore, BTE could 
be useful to detect phenomena of Maxwell’s demon in several settings such as Brownian particles52,53, electric 
devices54,55, and biochemical networks13,56–60.

Method
The outline of the derivation of inequality (12). We here show the outline of the derivation of the gen-
era l ized  s econd law (12)  [ s ee  a l s o  SI  for  detai l s ] .  In  SI ,  we  show that  the  quant ity 
∆ + → − →† †S I X Y I X Y( ) ( )B

n
N

N
N

N n
N

N
N

N( ) ( ) ( ) ( )
 , can be rewritten as the Kullbuck-Leiber divergence 
ρ ρ ρ ρρ = ∑�� �D x y x y x y( ): ( , )ln[ ( , )/ ( , )]x y N
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N
N

N
N

N
N

N
N
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N( ) ( ) . Due to the nonnegativity of the Kullbuck-Leiber diver-

gence, we obtain the inequality (12), i.e., ∆ + → − → ≥† †S I X Y I X Y( ) ( ) 0B
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N

N
N n

N
N

N
N( ) ( ) ( ) ( )

 . We add that the 
integrated f luctuat ion theorem corresponding to the inequal ity  (12)  is  a lso va l id,  i .e . , 
ρ ρ ρ∑ − =


x y x y x y( , )exp( ln[ ( , )/ ( , )]) 1N
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The outline of the derivation of inequality (20). We here show the outline of the derivation of the gam-
bling inequality (20) [see also SI for details]. The quantity − + ∑ − + →=G o S Y I X Yln ( ) ( )k

N
k N

N
N

N
N

N
1

( ) 0 ( ) ( )  
can be rewritten as the Kullbuck-Leiber divergence DKL(ρ || π), where  ρ = = =x y p X x Y y( , ): ( , )N
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N
N

N
,

( ) ( )
N
N

N
N( ) ( )  and π∑ =x y( , ) 1x y N

N
N

N
,

( ) ( )
N
N

N
N( ) ( ) . 

Due to the nonnegativity of the Kullbuck-Leiber divergence, we have the inequality (20), i.e., 
− + ∑ − + → ≥=G o S Y I X Yln ( ) ( ) 0k

N
k N

N
N

N
N

N
1

( ) 0 ( ) ( ) .
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