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Abstract
Background  Triple-negative breast cancer (TNBC) is aggressive and has limited therapeutic options due to the 
absence of targeted therapies, highlighting the urgent need for prognostic biomarkers linked to cancer stemness and 
chemoresistance. Aldehyde dehydrogenase 1 (ALDH1), a key regulator of stem cell properties, remains incompletely 
characterized in TNBC clinical cohorts.

Methods  ALDH1 mRNA expression levels were analyzed using the GEO2R online database, and its prognostic 
significance was assessed via the Kaplan‒Meier plotter tool. Immunohistochemical (IHC) staining was performed on 
a tissue microarray comprising 96 TNBC samples and paired adjacent normal tissues from patients treated at Binzhou 
People’s Hospital between 2016 and 2022. The associations between ALDH1 expression and clinicopathological 
parameters were evaluated using the chi-square test.

Results  Bioinformatics analysis revealed significantly higher ALDH1 mRNA expression in TNBC tissues compared 
to adjacent benign tissues. Kaplan‒Meier survival analysis demonstrated that elevated ALDH1 mRNA expression was 
associated with poor prognosis in TNBC patients. IHC staining further confirmed elevated ALDH1 protein expression in 
TNBC tissues compared with normal adjacent tissues. However, there was no significant correlation between ALDH1 
expression and conventional clinicopathological parameters, including age, menopausal status, tumor size, TNM 
stage, histological grade, histological subtype, axillary lymph node metastasis and the Ki-67 index (p > 0.05). High 
ALDH1 expression was significantly associated with poorer overall survival ( χ2 = 16.836, p < 0.001).

Conclusion  Our data demonstrate that ALDH1 expression is not significantly associated with conventional 
clinicopathological parameters (such as age, TNM stage, or histological grade). Instead, it is associated with poorer 
survival on univariate analysis in TNBC patients. Its lack of association with clinicopathological factors suggests its 
potential utility as a supplementary prognostic indicator.
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Introduction
Breast cancer is the most common cancer in women 
worldwide. According to 2022 global estimates, approx-
imately 2.3 million new cases of breast cancer were 
diagnosed worldwide, resulting in 670,000 breast can-
cer-related deaths [1, 2]. Triple-negative breast cancer 
(TNBC), defined by the absence of estrogen receptor 
(ER), progesterone receptor (PR), and human epidermal 
growth factor receptor 2 (HER2) expression [1], accounts 
for 15–20% of all breast cancer cases and demonstrates 
distinct molecular heterogeneity and aggressive clinical 
behavior [3, 4]. TNBC patients face a 40% higher risk of 
distant recurrence within the first 3  years compared to 
hormone receptor-positive subtypes [4, 5]. The lack of 
targeted therapies leaves platinum-based chemotherapy 
as the primary treatment, yet 30–50% of patients develop 
resistance, leading to inevitable progression [6, 7]. This 
unmet clinical need underscores the urgency of identi-
fying novel therapeutic vulnerabilities rooted in TNBC 
biology.

A key contributor to TNBC aggressiveness and thera-
peutic resistance is the presence of cancer stem cells 
(CSCs), a subpopulation of tumor cells with self-renewal 
capacity and differentiation potential. CSCs are impli-
cated in tumor initiation, metastasis, and relapse due to 
their resistance to conventional therapies [8]. Breast can-
cer CSCs exhibit dynamic phenotypic plasticity, enabling 
bidirectional transitions among quiescent, invasive, mes-
enchymal, and highly proliferative epithelial-like states 
[9, 10]. In TNBC, unique molecular pathways and tumor 
microenvironment components collaboratively sustain 
the CSCs phenotype. TNBC-CSCs can maintain their 
survival via multiple mechanisms, including the synthe-
sis of drug resistance-associated proteins, the activation 
of DNA damage repair pathways, the suppression of 
apoptotic signaling cascades, and the induction of pro-
tective autophagy [11]. CSCs exhibit self-renewal capac-
ity through Wnt/β-catenin and Notch pathway activation 
[12]. Lu et al. reported that epithelial‒mesenchymal 
transition (EMT) in CSCs upregulates CD90 expres-
sion, which subsequently activates the Src and nuclear 
factor-κB (NF-κB) signaling pathways in tumor cells [13]. 
This activation induces CSCs secretion of cytokines, 
including interleukin-6 (IL-6) and interleukin-8 (IL-8), 
which reinforce stemness maintenance and functional 
enhancement of CSCs [12].

Aldehyde dehydrogenase 1 (ALDH1) has emerged as a 
critical functional biomarker and metabolic regulator in 
TNBC-CSCs, serving as a nexus between stemness main-
tenance and therapeutic resistance. High ALDH1 activ-
ity is strongly associated with CSCs properties, including 
enhanced tumorigenicity and metastatic potential [14–
18]. ALDH1 synergistically sustains self-renewal capacity 
through epigenetic modulation of pluripotency factors 

[19, 20]. ALDH1 catalyzes retinoic acid synthesis and 
detoxifies reactive aldehydes, thereby maintaining stem-
ness via ROS reduction and DNA damage repair [20]. 
ALDH1 catalyzes the oxidation of intracellular aldehydes, 
thereby protecting cells from oxidative stress and confer-
ring chemoresistance [21]. Marcato et al. demonstrated 
that elevated ALDH1A3 expression in breast cancer 
patient tumors and cell lines is correlated with poorer 
prognosis and TNBC subtypes, driving tumor progres-
sion through the activation of retinoic acid (RA) signaling 
pathways [22]. ALDH1 reinforces a stem-like phenotype 
in TNBC by forming a positive feedback loop with core 
stemness pathways and by directly driving the EMT [22–
24]. Despite these findings, the molecular mechanisms by 
which ALDH1 regulates TNBC stemness and progres-
sion remain incompletely understood.

This study investigated the expression levels of ALDH1 
in TNBC through RNA bioinformatics analysis and sub-
sequent validation via immunohistochemical (IHC) 
analysis in a clinically annotated TNBC cohort (n = 96). 
We systematically evaluated the associations between 
ALDH1 expression and clinical outcomes to explore its 
potential as a prognostic biomarker and therapeutic 
target.

Materials and methods
Bioinformatics analysis
Transcriptome data from the GEO database (www.
ncbi.nlm.nih.gov/geo, GSE38959 and GSE52194) were 
analyzed to compare ALDH1 mRNA expression levels 
between TNBC tissues and adjacent normal tissues. The 
prognostic value of ALDH1 mRNA expression in TNBC 
was subsequently assessed using the Kaplan‒Meier plot-
ter tool (www.kmplot.com). Patients were stratified into 
'high' and 'low' expression groups based on the best-per-
forming threshold automatically calculated by the tool's 
algorithm [25].

Patients and samples
This study utilized a well-characterized cohort (n = 96) 
of TNBC patients who underwent treatment at Binzhou 
People's Hospital between 2016 and 2022 (see Additional 
file 1). All participants were treatment-naive and had not 
received neoadjuvant radiotherapy, chemotherapy, or 
biological immunotherapy prior to surgical intervention. 
Clinicopathological parameters and prognostic data were 
retrospectively collected from patients’ medical records. 
Tissue microarrays (TMA) were constructed containing 
archival, formalin-fixed and paraffin-embedded (FFPE) 
materials from surgically resected breast cancer speci-
mens. Each TMA core (2  mm in diameter) contained 
paired samples of malignant lesions with immediately 
adjacent normal tissue. The tumor tissues were histo-
logically diagnosed and classified using the World Health 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.kmplot.com
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Organization (WHO) classification of breast tumors. 
Written informed consent was obtained from all partici-
pants prior to their participation in the study.

Immunohistochemistry (IHC) of tissue microarray assay
Formalin-fixed and paraffin-embedded TMA sections 
were deparaffinized and rehydrated using xylene and a 
graded alcohol series. Antigen retrieval was performed 
via heat-induced epitope retrieval (HIER) at 97  °C for 
30  min using EDTA buffer (pH 9.0) in a temperature-
controlled water bath (DAKO, Denmark). Endogenous 
peroxidase was blocked with 0.3% hydrogen peroxide for 
10  min. The sections were incubated with anti-ALDH1 
primary antibody (1:200 dilution, BD Biosciences, Cat# 
611195) for 1  h at room temperature. Antibody bind-
ing was visualized using a commercial DAB detection 
kit (ZSGB-BIO, Beijing, China; Cat# ZLI-9018). Digital 
images of all the stained sections were acquired using a 
high-resolution whole slide scanner (KFBIO, Ningbo, 
China).

Immunostostaing analysis
All slides were independently evaluated by two senior 
pathologists who were blind to the patients’ clinical data, 
and the final staining score was calculated based on the 
intensity and percentage of positive cancer cells and nor-
mal glandular cells. The staining intensity was classified 
into 4 levels: 0 (no staining), 1 + (mild staining), 2 + (mod-
erate staining), and 3 + (intense staining). For ALDH1, 
the percentage of positive cells and the H-score were 
obtained (0–300) [26]. The optimal cutoff value of the 
H-score was set as 95 using X-tile software (version: 3.6.1, 
Yale University) based on the patients’ 5-year survival 

time [27]. Cases with scores from 0 to 95 were considered 
as low cytoplasmic expression, and scores from 96 to 300 
considered positive/high cytoplasmic expression.

Statistical analysis
The associations between ALDH1 expression and clini-
copathological characteristics were assessed using Pear-
son's chi-square test. Survival outcomes were analyzed 
via Kaplan‒Meier curves with log-rank tests for group 
comparisons. All the statistical tests were two-sided, with 
a p value < 0.05 considered statistically significant. All 
analyses were performed via GraphPad Prism software 
(version 10.0, USA).

Results
Elevated ALDH1 mRNA expression and its prognostic 
significance in TNBC
Bioinformatic analysis of transcriptome data from the 
GEO database revealed significantly elevated ALDH1 
mRNA expression levels in TNBC tissues compared with 
adjacent benign tissues (Fig.  1). Kaplan‒Meier survival 
analysis further demonstrated that high ALDH1 mRNA 
expression was associated with poorer overall survival in 
TNBC patients (HR = 2.91, 95% CI: 1.21–6.96, p = 0.012) 
(Fig. 2).

IHC Validation of ALDH1 expression
Initial immunohistochemical analysis encompassed a 
cohort of 96 TNBC samples with paired adjacent normal 
tissues. Following rigorous histological quality control, 
44 cases (45.8%) were excluded from paired compara-
tive analysis due to: (i) procedural loss of tissue sections 
during microtomy processing (n = 20), predominantly 

Fig. 1  Upregulation of ALDH1 mRNA in TNBC tissues revealed by GEO transcriptome analysis. A Analysis of the GSE38959 dataset revealed significantly 
higher ALDH1L2 mRNA expression in TNBC tissues than in adjacent normal tissues. B Analysis of the GSE52194 dataset revealed significantly higher 
ALDH1L2 mRNA expression in TNBC tissues than in adjacent normal tissues. C Analysis of the GSE52194 dataset revealed significantly higher ALDH1B1 
mRNA expression in TNBC tissues than in adjacent normal tissues
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affecting adipose-replaced stromal compartments in 
adjacent tissues, and (ii) insufficient glandular content 
in histologically defined "normal" adjacent tissues (< 10% 
lobular epithelium, n = 24). The final evaluable cohort 
comprised 52 matched TNBC-normal tissue pairs. 
Despite these isolated imbalances, the overall cohort 
remained well-balanced. However, we acknowledge these 
imbalances as a limitation of the paired analysis and 
considered them in the interpretation of the outcomes 
(see Additional file 2). Subsequent survival analysis and 

clinicopathological parameter assessments were based 
on the complete cohort of 96 samples. IHC analysis of 52 
TNBC samples revealed differential spatial expression of 
ALDH1. Among the TNBC samples, high ALDH1 immu-
noreactivity was detected in 30 cases (Fig. 3D), whereas 
low expression was observed in 22 cases (Fig.  3C). In 
contrast, adjacent normal tissues exhibited low ALDH1 
expression in 43 cases (Fig. 3A), with only 9 cases dem-
onstrating high immunoreactivity (Fig. 3B). Correspond-
ing hematoxylin and eosin (H&E) staining confirmed 
the histological integrity of all representative tissues 
(Fig. 3E–H). A quantitative H-score assessment revealed 
a greater proportion of ALDH1-high samples in TNBC 
tissues (30/52, 57.7%) than in paired adjacent normal 
tissues (9/52, 17.3%) (McNemar’s χ2 = 17.64, p < 0.001; 
Table 1).

Clinicopathological correlation analysis
Univariate assessment revealed no statistically significant 
associations between ALDH1 protein expression (high 
vs. low) and conventional clinicopathological parameters, 
including patient demographics (age, menopausal status), 
tumor characteristics (TNM stage, histological grade/

Table 1  Comparison of ALDH1 expression between TNBC 
tissues and paired adjacent normal tissues (N = 52)

Normal: 
ALDH1 high 
n (%)

Normal: 
ALDH1 low 
n (%)

Total N 
(%)

TNBC: ALDH1 high n (%) 7 (13.5%) 23 (44.2%) 30 (57.7%)
TNBC: ALDH1 low n (%) 2 (3.8%) 20 (38.5%) 22 (42.3%)
Total N (%) 9 (17.3%) 43 (82.7%) 52 (100%)
McNemar's χ2 test: χ2 = 17.64, p < 0.001

Fig. 3  ALDH1 expression in TNBC and paired adjacent normal tissues. A Adjacent normal tissue with low ALDH1 immunoreactivity. B Adjacent normal 
tissue with high ALDH1 immunoreactivity. C TNBC tissue with low ALDH1 immunoreactivity. D TNBC tissue with high ALDH1 immunoreactivity. E H&E 
staining of the adjacent normal tissue region shown in panel A, confirming normal histological architecture. F H&E staining of the adjacent normal tissue 
region shown in panel B, confirming normal histological architecture. G H&E staining of the TNBC region shown in panel C, confirming malignant histol-
ogy. H H&E staining of the TNBC region shown in panel D, confirming malignant histology. Scale bars: 200 μm (applicable to all panels)

 

Fig. 2  Kaplan‒Meier survival analysis of TNBC patients based on ALDH1 
mRNA expression (p = 0.012). Kaplan–Meier analysis shows significantly 
reduced overall survival in TNBC patients with high ALDH1 mRNA expres-
sion compared to low expression counterparts (HR = 2.91, 95% CI: 1.21–
6.96; log-rank P = 0.012)
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size/subtype), or proliferation indices (Ki-67). All com-
parisons yielded p > 0.05 (Table 2).

ALDH1 overexpression predicts adverse survival outcomes
ALDH1 expression was significantly associated with mor-
tality in univariate analysis. Patients with high ALDH1 
expression (H-score ≥ 95; n = 31) exhibited a higher mor-
tality rate (15/31, 48.4%). In contrast, patients with low 
ALDH1 expression (H-score < 95; n = 65) showed signifi-
cantly lower mortality (7/65, 10.8%; χ2 = 16.836, p < 0.001). 
The survival analysis further demonstrated that high 
ALDH1 expression was associated with poorer overall 
survival in clinical TNBC patients (HR = 4.11, 95% CI: 
1.70–9.91, p < 0.001) (Table 2, Fig. 4).

Discussion
TNBC manifests profound molecular heterogeneity and 
clinical aggressiveness given the paucity of effective tar-
geted therapies. Against this backdrop, identifying vali-
dated biomarkers is critical for risk stratification and 
therapeutic development. Our integrated GEO analy-
sis revealed significantly elevated ALDH1 mRNA in 
TNBC versus paired normal tissues (p < 0.010). Using 
clinical specimens, IHC validation substantiated marked 
ALDH1 overexpression in tumor lesions (H-score ≥ 95), 
which was associated with reduced survival (McNemar 
test, p < 0.001). This mortality risk pattern paralleled the 
Kaplan‒Meier plotter data, where ALDH1-high patients 
exhibited substantially increased mortality (HR = 2.91, 
95% CI: 1.21–6.96). The limited sample size likely con-
tributed to the wide confidence interval. In our institu-
tional cohort, ALDH1 overexpression correlated with 
reduced survival in TNBC patients. As a cancer stem 
cell marker, ALDH1 may reflect the intrinsic aggressive-
ness rather than the anatomical progression of a tumor, 
which accounts for its dissociation from conventional 
staging parameters. Its lack of association with conven-
tional clinicopathological parameters in univariate anal-
ysis, combined with its prognostic value, suggests that 
ALDH1 may serve as a complementary biomarker to 
refine existing risk stratification frameworks.. Although 
inconsistencies exist in the literature regarding the prog-
nostic value of ALDH1 in TNBC, potentially due to 
isoform-specific biological differences, methodological 
variations, and cohort heterogeneity [28–32]. We used an 
ALDH1A1 antibody. This could partially explain why our 
protein-level IHC results differ from some mRNA-based 
studies [31]. Some studies used a binary scoring system 
(positive/negative), whereas our study employed a more 
granular, continuous H-score method with a data-driven 
cut-off [32]. This methodological difference alone can 
greatly influence the patient stratification and subsequent 
statistical associations. Differences in cohort size, ethnic 
background, treatment regimens, and length of follow-up 

can all impact survival analysis outcomes. Our single-
institution cohort (n = 96) may have different characteris-
tics compared to other studies. Further validation should 
use isoform-specific assays and prospectively defined 
scoring criteria is needed to clarify the clinical utility of 
ALDH1 as a prognostic biomarker.

Extensive studies have established that high ALDH1 
expression is both more prevalent and more robustly asso-
ciated with poor prognosis in basal-like/TNBC subtypes 
than in hormone receptor-positive breast cancer [24, 33, 
34]. Pharmacological studies utilizing TNBC xenograft 
models by Bousquet et al. revealed that chemotherapy-
induced hypoxic conditions promote CSCs autophagy, 

Clinicopathological 
Characteristic

Total N 
(%)

ALDH1 Expression χ2 p -value

High (H-
score ≥ 95) 
n = 31(%)

Low (H-
score < 95) 
n = 65(%)

Age (years)

  ≤ 50 29 (30.2) 9 (29.0) 20 (30.8) 0.028 0.867

  > 50 67 (69.8) 22 (71.0) 45 (69.2)

Menopausal Status

  Postmenopausal 67 (69.8) 23 (74.2) 44 (67.7) 0.436 0.509

  Premenopausal 29 (30.2) 8 (25.8) 21 (32.3)

TNM Stage

  I 29 (30.2) 7 (22.6) 22 (33.8) 1.271 0.530

  II 48 (50.0) 17 (54.8) 31 (47.7)

  III + IV 19 (19.8) 7 (22.6) 12 (18.5)

Histological Grade

  Low-grade (G1/G2) 17 (17.7) 6 (19.4) 11 (16.9) 0.085 0.771

  High-grade (G3) 79 (82.3) 25 (80.6) 54 (83.1)

Tumor Size (cm)

≤ 2 39 (40.6) 14 (45.2) 25 (38.5) 0.061 0.805

> 2 57 (59.4) 17 (54.8) 40 (61.5)

Axillary Lymph Node Metastasis

  Positive 39 (40.6) 14 (45.2) 25 (38.5) 0.393 0.531

  Negative 57 (59.4) 17 (54.8) 40 (61.5)

Histological Type

  NOS 66 (68.8) 21 (67.7) 45 (69.2) 0.021 0.884

  Special Types 30 (31.2) 10 (32.3) 20 (30.8)

Ki-67 Index (%)

≤ 20% 13 (13.5) 5 (16.1) 8 (12.3) 0.260 0.610

> 20% 83 (86.5) 26 (83.9) 57 (87.7)

Survival Status

  Alive 74 (77.1) 16 (51.6) 58 (89.2) 16.836  < 0.001

  Deceased 22 (22.9) 15 (48.4) 7 (10.8)
aThe percentages in the 'ALDH1 expression' columns (high and low) 
represent the proportion of each ALDH1 expression group (i.e., n = 31 for 
high, n = 65 for low)
bThe percentages in the 'Total n (%)' column represent the proportion of 
the entire cohort (n = 96)
cPearson’s chi-square χ2 test was used to assess associations between 
ALDH1 expression (categorical) and clinicopathological parameters 
(categorical). For TNM stage (ordinal variable with > 2 groups), the χ2 test 
compared distributions across all stages
dNOS: Not Otherwise Specified

Table 2  Association between ALDH1 protein expression and 
clinicopathological parameters (N = 96)
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thereby reducing therapeutic vulnerability to cytotoxic 
agents [35]. Experimental evidence indicates that targeted 
inhibition of these molecular mediators or microenviron-
mental modulation significantly decreases CSCs popula-
tions in TNBC, effectively reversing chemoresistance and 
suppressing metastatic progression [35, 36]. Furthermore, 
ALDH1 + TNBC cells exhibit increased resistance to che-
motherapy and radiation, suggesting its role in maintain-
ing CSC populations and driving treatment failure [37]. 
Ding et al. highlighted the unique immunosuppressive 
microenvironment of TNBC, characterized by enriched 
regulatory T cells (Tregs) and exhausted CD8 + T cells, 
which may interact with ALDH1 + CSCs to fosterpromote 
immune evasion [38]. Nevertheless, its functional signifi-
cance within the CSC-enriched, treatment-resistant TNBC 
microenvironment remains poorly defined [37]. Although 
ALDH1 correlates with EMT progression and oxidative 
stress responses [37, 39], our findings raise a fundamen-
tal mechanistic question: whether ALDH1 overexpres-
sion actively drives TNBC pathogenesis or simply marks 
pre-existing CSC reservoirs. Paradoxically, emerging evi-
dence suggests that ALDH1 may exert context-dependent 
tumor-suppressive roles, necessitating TNBC-specific vali-
dation via patient-derived organoids or relevant models.

Several study limitations warrant acknowledgment. 
The immunohistochemical cohort, while statistically 
robust, derives from a single institution, necessitating 
external validation through multi-center studies to con-
firm generalizability. Although bioinformatic analyses 
leveraged publicly available datasets, mechanistic valida-
tion of ALDH1-associated pathways—including retinoic 
acid metabolism and reactive oxygen species detoxifica-
tion—remains to be established. Our immunohistochem-
ical analysis utilized an antibody specific for ALDH1A1, 
whereas our mRNA data focused on the expression 
of ALDH1L2 and ALDH1B1. While all belong to the 
ALDH1 family, these isoforms exhibit distinct subcellular 

localizations and potentially different biological func-
tions. Therefore, the protein and transcript readouts are 
not directly comparable as they measure different targets. 
Future studies are warranted to validate these findings at 
the protein level using antibodies specifically validated 
for ALDH1L2 and ALDH1B1. This would provide a more 
comprehensive understanding of the role of these mito-
chondrial isoforms in TNBC pathogenesis and stemness. 
The exclusion of 44 cases due to the absence of adjacent 
benign tissue may have biased our cohort toward patients 
with less advanced disease. Its limit the generalizability of 
our survival findings. This study demonstrates that ele-
vated ALDH1 expression in TNBC tissues correlates with 
reduced overall survival (p < 0.001) and higher mortality 
risk, without significant associations to conventional clin-
icopathological parameters. While these findings support 
ALDH1 as a potential prognostic biomarker, its clinical 
utility requires further validation in multivariate-adjusted 
analyses. Future research should implement integrated 
experimental frameworks combining patient-derived 
organoids with genetically engineered mouse models to 
delineate two fundamental aspects of ALDH1 biology: (i) 
its regulatory crosstalk with immune checkpoint machin-
ery and core stemness transcription factors (e.g., OCT4, 
SOX2, NANOG); (ii) the development of standardized 
immunohistochemical scoring criteria to facilitate clini-
cal translation of ALDH1 as a prognostic biomarker.

Conclusion
This study establishes ALDH1 as a potential biomarker 
in TNBC, with elevated expression in malignant versus 
normal tissues (mRNA: p < 0.01; protein: H-score ≥ 95, 
McNemar p < 0.001) robustly correlating with reduced 
overall survival (HR = 4.11, 95% CI: 1.70–9.91). The inte-
gration of ALDH1 assessment into clinical stratification 
frameworks may enhance prognostication and guide tar-
geted therapeutic strategies for high-risk TNBC patients.

Fig. 4  Overall survival curves for patients with ALDH1 expression (p < 0.001). Analysis of clinical outcomes revealed that high ALDH1 expression (H-
score ≥ 95, n = 31) was significantly associated with poorer survival compared to low ALDH1 expression (H-score < 95, n = 65) in TNBC patients (HR = 4.11, 
95% CI: 1.70–9.91, log-rank P < 0.001)
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