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INTRODUCTION

Significant advances have been made in the realm of medical image analysis in the past few
decades, aimed at improving our understanding of the disease—how it develops, behaves, and
responds to treatment. Advanced imaging strategies using magnetic resonance imaging (MRI) and
positron emission tomography (PET) provide structural and functional phenotypic biomarkers
that correlate with key disease processes. Radiomics-based biomarkers provide a deeper analysis
of pathophysiologic processes and insights to better diagnose, classify, stratify, and prognosticate
brain tumors, and to assess their response to therapy.

Radiomics in Neuro-Oncology
Radiomics is an imaging analysis methodology that involves the extraction of quantifiable features,
which serve as biomarkers for structural changes as well as pathophysiological processes in disease
entities. Applying radiomics yields a numerical dataset that can be parsed, processed, and analyzed
using machine learning methods (1). Radiomics-based biomarkers can provide key insights in
the diagnosis, classification, and therapeutic management of various solid tumors. It is also
beginning to have an impact in themanagement of neuro-oncological diseases, including low-grade
gliomas, glioblastoma multiforme (GBM), and brain metastases (2). There is a wide spectrum of
radiomics applications in this field, ranging from accurate classification of brain lesions (gliomas
vs metastases, IDH-wild type vs. -mutant tumors), therapy planning (radiation therapy response
prediction), and immunotherapy response assessment.

Methodology
Radiomics analysis may be performed on computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET), and single-photon emission computed
tomography (SPECT). Lesion identification and image segmentation are performed as the first
steps and can be a manual or automated process, followed by 3D reconstruction performed on
these regions of interest.

The next step is that of feature extraction and classification (FE/FC). These features are
categorized as shape features (morphology-based), first-order statistics (histogram-based), and
second-order statistics (texture analysis) features (3). Furthermore, higher-order statistics may
also be extracted using mathematical transforms (such as Minkowski functionals, Laplace features,
wavelet transforms, etc.) (4). Feature extraction produces several numerical values (depending on
the imaging modality and the library used for extraction), which are then analyzed using advanced
statistical or machine learning (ML) approaches, which may be supervised or unsupervised, and
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include cluster analysis, support vector machine (SVM), random
forest, convolutional neural network (CNN), and deep learning
neural network (DLNN) (see Figure 1) (5). The main purpose
is to train a model to identify radiomics features that can
serve as imaging biomarkers for disease processes. This is
followed by model validation and includes methods such as
k-fold cross-validation to test the skill of the ML model.
More recent works in neuro-oncology involving DLNN have
revolved around automated tumor segmentation, quantification
of disease burden, pseudoprogression assessment, multi-omics-
based disease characterization, and prognostication.

DISCUSSION

The Current Imaging Biomarker Landscape
in Neuro-Oncology
A noninvasive imaging biomarker may be described as a
characteristic feature identifiable on an imaging study that
indicates a key disease process. The key step is to establish these
new biomarkers through correlation with ground truths, which
could be the previously imaging-based “gold standards,” clinical
outcomes, or pathologic evidence. There is an increasing fund
of quantitative imaging biomarkers (QIB) that are catalyzing the
practice of precision medicine (6). In clinical trials, the QIBs
are being used as surrogate endpoints, which can significantly
reduce the time and incurred costs (7). QIBs are being explored
as predictive classifiers for clinical trials, which can be used for
patient selection/recruitment and in the timely determination of
responders vs. nonresponders.

Brain lesions are structurally and functionally complex, and
there is a growing focus on noninvasive methods to study
this complexity to assess the disease status. Gliomas are a
heterogeneous set of tumors, based on their issue, cellular, and
molecular characteristics. The role of nonimaging biomarkers
in gliomas and GBMs is well known, i.e., IDH1 mutation (8)
and methylguanine-DNA methyltransferase (MGMT) promoter
methylation (9). However, the role of imaging biomarkers
in disease stratification or management guidance of GBM is
less established.

Multiple imaging biomarkers have been identified for brain
metastasis from various primary tumors. Multiparametric
MRI, which includes apparent diffusion coefficient (ADC)
and perfusion-weighted sequences, is used extensively in the
clinical management of brain tumors. Perfusion-weighted and
permeability MRI have been used for detection, delineation,
and therapy response assessment of malignant brain lesions
(10). Dynamic susceptibility contrast-enhancedMRI (DSC-MRI)
deriving relative cerebral blood volume (rCBV) and cerebral
blood flow (rCBF) values have led the quantifiable image
biomarker discovery (11). Higher rCBV in the peritumoral
edema, which may contain infiltrating angiogenic tumor cells,
is indicative of primary intrinsic tumor as opposed to pure
vasogenic edema seen in metastatic disease (12). However,
the evidence for ADC to do the same is weak. Also,
rCBV measurement from the solid tumoral region is another

established discriminative biomarker for distinguishing GBM
from the other tumor types (13).

Magnetic resonance spectroscopy (MRS) allows us to
assess tissue metabolites noninvasively and has yielded several
biomarkers of interest, such as choline (Cho)/creatinine (Cr)
ratio, which is, for example, lower in cerebral metastases than
in GBMs (14). Similarly, the peritumoral Cho/NAA ratio has
also been shown to be useful to that effect (15). Furthermore,
decreased creatine/phosphocreatine (Cr) values in patients with
low-grade gliomas (WHO grade II) have been shown to correlate
with better prognosis in terms of longer progression-free times
and later malignant transformation (16). High levels of glycine
have been reported in biopsies of patients with GBM (17). These,
among other metabolites such as lactate, have been implicated as
important MRS-based biomarkers for brain tumors.

18F-Fluorodeoxyglucose (FDG) PET/CT and more recently
PET/MR has traditionally had a limited role in the management
of primary brain tumors, primarily due to FDG biodistribution
in the brain, hence there is an increasing role for amino-
acid PET tracers in neuro-oncology. 18F-Fluoro-ethyl-tyrosine
(FET) has been shown to detect recurrence in previously treated
glioblastomas and is influenced byMGMTpromotermethylation
status (18). FET-PET-based biological tumor volume in newly
diagnosed GBM has been shown to be a prognostic imaging
biomarker for survival, independent of MGMT promoter
methylation (19). However, it is important to note that the
role of this biomarker for survival outcomes modeling has not
been established. High tumoral amino-acid uptake using 11C-
methionine (MET) PET is another well-studied biomarker for
malignant gliomas and is independently associated with poor
prognosis (20). α-[11C]Methyl-L-tryptophan PET has also been
shown to predict longer overall survival (21).

Radiomics-Based Imaging Biomarkers in
Neuro-Oncology: A Novel Paradigm
Radiomic signatures are providing the next-generation imaging
biomarkers that have implications in the management of brain
tumors. These signatures are based on combinations of first-
order histogram-based features (Haralik features, kurtosis, and
entropy) and second-order texture analysis features (such as
gray-scale run lengths). Key areas in neuro-oncology where
radiomics has been initially applied are the following:

• Precision diagnostics and disease stratification/classification:

Since primary and metastatic brain tumors are histologically
and genetically heterogeneous, and it is important to
understand the role tumor heterogeneity plays in the
natural history of cancer, its response to therapy, and
prognosis/outcomes (22–24). The extracted radiomics features
provide a numerical value for the heterogeneous tumor
microenvironment changes (25). GBM is a notoriously
aggressive cancer, given its therapeutic resistance and high
recurrence rate, both of which have underpinnings in its
molecular heterogeneity (26). Radiomics has provided insights
into the tissue and molecular heterogeneity and correlated
with the underlying genetic alterations (27–29). Furthermore,
molecular heterogeneity of GBM at the transcriptomic level
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FIGURE 1 | Radiomics features used in this study were distributed in three different techniques focused primarily on statistical approaches: (A) first-order statistics,

(B) second-order statistics through the GLCM, and (C) higher-order statistics through the GLRLM. ADC, apparent diffusion coefficient; FLAIR, fluid-attenuated

inversion recovery; GLCM, gray-level co-occurrence matrix; GLCMT, gray-level co-occurrence matrix transpose; GLRLM, gray-level run-length matrix; L, length of

homogeneous runs for each gray level; ROI, region of interest; T1W, T1-weighted precontrast; T1W+C, T1-weighted postcontrast; T2W, T2-weighted. (Reused from

Florez E, Nichols T, E Parker E, T Lirette S, Howard CM, Fatemi A. Multiparametric magnetic resonance imaging in the assessment of primary brain tumors through

radiomic features: a metric for guided radiation treatment planning. Cureus. (2018) 10:e3426. doi: 10.7759/cureus.3426, under the CC-BY license).
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can be assessed using radiomics and may provide a framework
to classify/stratify GBMs (30). Shofty et al. (31) demonstrated
the ability of radiomics analysis of multiparametric MRI to
stage 1p/19q co-deleted low-grade gliomas with sensitivity,
specificity, and accuracy of 92, 83, and 87%, respectively
(31). There is an interest in reclassifying many cancer
types from the conventional histological basis to that based
on radiogenomic signatures shedding light into various
tissue heterogeneity patterns as they are better aligned with
therapeutic responsiveness (32, 33).

• Disease prognostication and prediction modeling: There are
multiple prognostic determinants for brain tumors, including
the histologic subtype, specific genetic mutations, degree
of anaplasia, degree of necrosis of fibrosis, degree of de-
differentiation, local infiltration, vasculogenesis and resulting
vascular scavenging, and hypoxia. For most of these processes,
radiomics analysis can provide some degree of quantification,
such as wavelet transforms for the degree of vascularity or
Minkowski functionals for the degree of necrosis (34). Zhang
et al. (35) demonstrated the use of Minkowski features among
others to help differentiate radiation necrosis from tumor
progression in patients with brain metastases undergoing
gamma-knife surgery. MR-based radiomics analysis has been
shown to predict overall survival and progression-free survival
in GBM (36). Radiomics signatures correlate with and predict
the expression of key molecular biomarkers in brain tumors,
such as Ki-67 expression in low-grade gliomas or IDH
mutation in GBM (37, 38). These early predictive models
may provide bases of re-classifying cancers based on their
progression and prognosis, allowing indolent cancers to be
managed more conservatively while reserving more aggressive
therapeutic approaches for more aggressive cancers. This is
exemplified by a study by Davatzikos et al. where they showed
that molecular features depicted by radiomics provided better
risk stratification of GBM beyond theWHO classification (39).
Furthermore, radiomics can help in the assessment of medical
complications associated with brain tumors, such as epilepsy
in patients with low-grade gliomas, which facilitates better
disease management (40).

• Therapy response assessment and monitoring: Radiomics-
based phenotype assessment of cancer lesions is an effective
tool in the sensitivity profiling against therapeutic options
(such as quantifying hypoxia to determine chemosensitivity),
as well as an early assessment of therapy response (41–
43). The standard visual assessment of radiological images
for this purpose has been plagued by the confounding
pseudoprogression. Current MRI techniques and human-
based interpretation are tedious and prone to high
interpersonal variability for accurate classification and
prognostication of gliomas (44). The current Response
Assessment in Neuro-oncology (RANO) criteria are
used for GBM and the immunotherapy RANO (iRANO)
criteria have been introduced to address the issue of
pseudoresponse/pseudoprogression for both conventional
chemoradiation and immunotherapies (45). Novel approaches
using multiparametric MR and/or PET imaging combined

with radiomics-based texture analysis can help evaluate
subtle microstructural as well as functional changes at
earlier time points than standard imaging (46). These can be
quantifiable harbingers of true therapy response assessment
and debunking pseudo-progression more accurately and
earlier than conventional approaches. A multicenter study
performed by Elshafeey et al. (47) using MR-based radiomics
analysis for immunotherapy response assessment in GBM
yielded an accuracy, specificity, and sensitivity of 91, 91, and
88%, respectively.

Radiomic tumor signatures can be incorporated into
a multidimensional, multi- “omics” model, which uses
genetic/molecular determinants to create a holistic genotype–
phenotype the landscape of cancer and have the potential for
informing the prognosis and accurately predicting/assessing
therapy response (48). New approaches, such as using
Multi Assay Experiment (MAE) as the container for multi-
omics analysis, facilitates the process of data compilation
and integration required for such complex analyses (49).
Furthermore, quantitative scoring scales based on such ML-
based analytical models have applications in clinical management
as well as “go/no-go” decision-making in clinical trials (50, 51).

Generally speaking, there are factors that hinder the full-scale
application and widespread acceptance of radiomics in the field
of neuro-oncology. This includes the lack of user-friendly, FDA-
approved software programs that perform radiomic analysis, the
lack of a generalizable model to use for predictions, and the lack
of a prospective study to show the added value of radiomics
compared with the conventional ROI and histogram analysis.

Specific to its clinical application in neuro-oncologic
management, there are certain gaps where radiomics
has yet to make an impact. These include providing
biomarkers for the precision guidance of the therapeutic
management of brain tumors, particularly GBM. Genetic
markers that are implicated in the prognostication and
therapy guidance of GBM include gene amplification of
epidermal growth factor receptor (EGFR), TP53, and PTEN
mutation, among others (52, 53). Developing radiomic
signatures that correlate with these genetic markers
can help develop noninvasive imaging biomarkers for
risk/severity stratification, survival outcomes, and therapy
response prediction and assessment for these patients.
Furthermore, having such radiomic biomarkers can catalyze the
development of novel therapeutics using these genetic markers
as targets.

The scope of radiomics applications is growing.
When vetted through robust statistical analyses
and real-world applications, it can augment the
shift toward personalized, precision-based practices
in neuro-oncology.
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