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INTRODUCTION

ABSTRACT

Aims/Introduction: The incidence of type 2 diabetes is increasing worldwide. Hepatic
insulin resistance and liver lipid accumulation contributes to type 2 diabetes development.
The aim of the present study was to investigate the key gene pathways and co-expres-
sion networks in the livers of type 2 diabetes patients.

Materials and Methods: Dataset GSE15653 containing nine healthy individuals and
nine type 2 diabetes patients was downloaded from the National Center for Biotechnol-
ogy Information Gene Expression Omnibus database. Differentially expressed genes were
obtained from the livers of type 2 diabetes patients, annotated pathway enrichment and
protein—protein interaction network analysis. Next, functional modules and transcription
factor networks were constructed. Gene co-expression networks were analyzed by
weighted correlation network analysis to identify key modules related to clinical traits, and
the candidate key genes were validated in hepatic insulin resistance models in vitro.
Results: A total of 778 differentially expressed genes were filtered in the livers of type 2
diabetes patients, pathway enrichment analysis identified key pathways, such as the mito-
gen-activated protein kinase signaling pathway, Hippo signaling pathway and hypoxia-
inducible factor-1 signaling pathway, that were associated with type 2 diabetes. Several
transcription factors of three functional modules identified from protein—protein interaction
networks are likely to be implicated in type 2 diabetes. Furthermore, weighted correlation
network analysis identified five modules that were shown to be highly correlated with
type 2 diabetes and other clinical traits. Functional annotation showed that these modules
were mainly enriched in pathways such as metabolic pathways, phosphoinositide 3-
kinase-protein kinase B signaling pathway and natural killer cell-mediated cytotoxicity.
UBE2M and GPER were upregulated in L0O2 and HepG2 models, whereas P2RY11 only
upregulated in LO2 model, and UBE2N only downregulated in HepG2 model at a signifi-
cant level.

Conclusions: These results would offer new insights into hepatic insulin resistance,
type 2 diabetes pathogenesis, development and drug discovery.

Therefore, elucidating the underlying mechanisms in type 2

In recent years, the incidence of diabetes has been increasing
worldwide, and the first World Health Organization Global
Report on  Diabetes  showed  that  approximately
422 million people worldwide had diabetes in 2014'. Type 2
diabetes accounts for approximately 90% of all diabetes, and
the prevalence of type 2 diabetes has risen dramatically
in the past three decades (https://www.who.int/diabetes/en/).
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diabetes is urgently required for disease progression and
treatment.

Although the pathogenesis for type 2 diabetes is still contro-
versial, it is well known that insulin resistance in various tissues,
such as the liver and muscle, contributes to the generation and
development of type 2 diabetes®. Lipid accumulation in tissues
leads to organ-specific insulin resistance’. Research has shown
that fat in the liver rather than muscle is associated with fea-
tures of the metabolic syndrome and occurs close to the time
of type 2 diabetes development2’4’5. Furthermore, non-alcoholic
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fatty liver disease has recently been reported to be a major pre-
disposing factor for type 2 diabetes®”. The liver produces glu-
cose during fasting and takes a central role in glucose
homeostasis. Insulin normally inhibits the hepatic gluconeogen-
esis and promotes hepatic glycogen synthesis. Under the condi-
tion of type 2 diabetes, insulin resistance increases glucose
production from the liver, and reduces glucose uptake by target
tissues, which leads to hyperglycemia®. Despite the critical role
of the liver in type 2 diabetes, the underlying molecular genes
and pathways in the livers of type 2 diabetes patients are still
incompletely elucidated.

Gene expression profile analysis has been widely applied in
disease diagnosis, pathological mechanism exploration and
treatment” "', Several studies using microarray analysis have
focused on the liver molecular genetics of type 2 diabetes
pathogenesis®'>">. However, the differentially expressed genes
(DEGs), the underlying functional pathways, and the co-expres-
sion networks between the livers of type 2 diabetes patients
and non-diabetic individuals remain to be clarified.

In the present study, we obtained the dataset GSE15653 from
the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) database. We filtered the
DEGs from the livers of type 2 diabetes patients, annotated
functional pathway enrichment and protein—protein interaction
(PPI) network analyses for DEGs. The correlated modules and
transcription factor networks were also constructed. The co-
expression network of GSE15653 was then analyzed to identify
the key gene modules related to clinical traits. Furthermore, key
genes identified in this work were further validated in hepatic
insulin resistance models in vitro. These results would offer
new insights into type 2 diabetes pathogenesis, development
and drug discovery.

METHODS

Microarray data collection

Dataset GSE15653 contributed by Pihlajamaki et al. was down-
loaded from NCBI GEO (https://www.ncbinlm.nih.gov/geo/
query/acc.cgi?acc=GSE15653)'%. The dataset contained 18 liver
samples, including five lean samples, four obese without type 2
diabetes samples and nine obese with type 2 diabetes samples.
We defined the five lean and four obese without type 2 dia-
betes samples as the non-diabetes group, whereas nine obese
with type 2 diabetes samples were defined as the type 2 dia-
betes group. The dataset was based on platform GPL96, and
the microarray was carried out using Affymetrix Human Gen-
ome U133A Array. As the dataset was obtained from a public
database, the present study did not involve any human or ani-
mal experiments, so ethics approval was unnecessary for our
study.

DEGs screening

The raw data of GSE15653 were analyzed by the interactive
web tool, GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/).
The GEO2R tool carried out comparisons using the limma R

http://wileyonlinelibrary.com/journal/jdi

packages from the Bioconductor project. Statistically significant
DEGs were defined with P < 0.05 and [logyfold change (FC)|
>1 as the cut-off criteria.

Go and KEGG pathway enrichment analysis

GO analysis and KEGG pathway were analyzed using the
DAVID online tool (https://david.ncifcrf.gov/) at the functional
level. P < 0.05 was set as the cut-off criterion. The top 10
enriched pathways were listed by the GO enrichment plot using
a web online tool (http://www.ehbio.com/ImageGP/).

PPI and module analysis

The PPI network of DEGs was analyzed by the STRING data-
base (http://string-db.org). A confidence score >0.9 was set as
significant. The PPI network was then visualized by Cytoscape
software (version 3.6.1; The Cytoscape Consortium, New York
City, NY, USA). The modules of the PPI network were ana-
lyzed by the Molecular Complex Detection (MCODE) plugin
of Cytoscape. MCODE plugin detects densely connected mod-
ules in PPI networks that might represent molecular com-
plexes'. Significant modules were screened using the following
plugin cut-off criteria: degree cut off: 5; node score cut off: 0.2;
k-core: 2; and max. depth: 100. Resulting modules from the
algorithm are scored and ranked. The top three significant
modules were ranked and obtained by scores. A gene with the
highest weighted vertex was defined as a seed gene by
MCODE.

Transcription factor analysis

Transcription factors of identified modules were analyzed by
the iRegulon plugin of Cytoscape'. The iRegulon plugin was
set as the default. Transcription factors with normalized enrich-
ment score (NES) >5 were identified as predicted transcription
factors. The top three transcription factors of each module with
higher NES were listed.

Construction of WGCNA

Weighted gene correlation network analysis (WGCNA) is
applied to reveal the correlation patterns among genes in
microarray samples as previous described'®”. We used the
WGCNA package in R software (https://www.r-project.org/) to
carry out weighted correlation network analysis of all genes in
GSE15653. We selected the power of B = 14 to ensure a scale-
free network. Gene modules differing by colors were summa-
rized by a hierarchical clustering dendrogram, and module
structure was visualized by a heatmap and topological overlap
matrix plot. Furthermore, the relationships between each mod-
ule and clinical traits were analyzed to identify the highly corre-
lated modules. Finally, highly correlated modules with clinical
traits were then analyzed using the DAVID online tool
(https://david.ncifcrf.gov/) for Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment. P < 0.05 was set as
the cut-off criterion. The top five enriched pathways were
listed.
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Establishment of human hepatic insulin resistance models
Human liver L02 cells'® and HepG2 cells'® were stimulated
with palmitic acid (PA) to mimic hepatic insulin resistance
models in vitro. L02 cells and HepG2 cells were cultured in
Dulbecco’s Modified Eagle’s Medium (Sigma, St Louis, MO,
USA) and Minimum Essential Medium (Gibco, Carlsbad, CA,
USA) containing 10% fetal bovine serum (Gibco). PA (Sigma)
was added to a 10% fatty acid-free bovine serum albumin and
dissolved by shaking gently overnight at 37°C to yield an
8 mmol/L solution®®. L02 cells were treated with 250 pmol/L
PA for 24 h. HepG2 cells were treated with 300 pumol/L PA
for 24 h. Control cells were treated with bovine serum albumin
alone. Cells then were collected for key gene validation.

Validation of key genes with quantitative reverse transcription
polymerase chain reaction

Key gene validation using quantitative reverse transcription
polymerase chain reaction. Total ribonucleic acids were
extracted by RNAsimple Total RNA Kit (Tian Gen, Beijing,
China). Complementary deoxyribonucleic acids (DNAs) were
then synthesized using PrimeScript™ RT reagent Kit (Takara
Bio, Shiga, Japan). A quantitative reverse transcription poly-
merase chain reaction procedure using TB Green™ Premix
Ex Taq™ II (TaKaRa Bio) was applied for amplifications.
Each measurement was normalized to Gapdh for each sam-
ple. All primer pairs are listed in Table S1. The relative gene
expression was presented by the comparative Cp method.
Statistical analysis was carried out by the Student’s f-test
when two groups were compared. P < 0.05 was considered
to be significant.

RESULTS

DEGs identification in the livers of type 2 diabetes patients
Dataset GSE15653 contained 18 liver samples, including five
lean samples, four obese without type 2 diabetes samples and
nine obese with type 2 diabetes samples. In order to lessen the
influence of the difference between lean and obese individuals
without type 2 diabetes, we combined the five lean and four
obese without type 2 diabetes samples as the non-diabetes
group and compared the DEGs in nine obese individuals with
type 2 diabetes to the normal group. A false discovery rate
<0.05 is always used to filter DEGs from gene expression pro-
files. However, in the present study, we found that only one
DEG met the criterion using the GEO2R web tool. In order to
obtain more useful DEGs, we applied a nominal P < 0.05 and
fold change >2 criteria for DEG identification. As a result, a
total of 778 DEGs including 136 upregulated DEGs and 642
downregulated DEGs were filtered by GEO2R (Table S2). The
expressions of the top 10 upregulated and downregulated DEGs
were displayed in a heatmap (Figure 1). The top 10 upregulated
DEGs were TRBCI, ILI7RC, CDHR5, ALDOA, CLDNS3,
IGKV1OR2-108, CHI3L1, EMILINI, SCD and JUND. The top
10 downregulated DEGs were MYOT, BTRC, PDE4DIP, GART,
RPGRIPIL, EEAI, GRIK2, TLX3, IGF2BP3 and GTSEIL.
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KEGG pathway enrichment and GO analysis in DEGs of type 2
diabetes

All DEGs were uploaded to the DAVID online tool pathway
enrichment analysis. For KEGG pathway enrichment (Fig-
ure 2a), the DEGs mainly enriched in pathways in cancer,
mitogen-activated protein kinase signaling pathway, Hippo
signaling pathway, prostate cancer, hypoxia-inducible factor-1
signaling pathway, bacterial invasion of epithelial cells, regula-
tion of actin cytoskeleton, phosphoinositide 3-kinase-protein
kinase B (PI3K-Akt) signaling pathway, insulin resistance
and transcriptional misregulation in cancer. For the GO term
biological process analysis (Figure 2b), the DEGs enriched in
positive regulation of cell proliferation, positive regulation of
cell migration, positive regulation of ERK1 and ERK2 cas-
cade, cell-cell signaling, cellular response to hormone stimu-
lus, cell division, positive regulation of DNA biosynthetic
process, lens fiber cell differentiation, cell adhesion and
ossification.

PPl and module analysis of livers of type 2 diabetes patients

To explore the functional connection of all DEGs, we con-
structed the PPI network by the STRING database. A total of
778 DEGs were analyzed and then visualized by Cytoscape. As
a result, there were 315 nodes and 670 edges in the PPI net-
work, which represented proteins and functional interactions
(Figure 3a). Furthermore, functional modules were verified
from the PPI network by the MCODE plugin. The plugin
detected 19 significant modules that meet the cut-off criteria,
and the top three significant modules ranked by score were
listed. Module 1 (score: 12) consisted of 12 nodes and 66 edges,
and the seed gene was TRIM36 (Figure 3b). Module 2 (score:
10) consisted of 10 nodes and 45 edges, and the seed gene was
P2RY11 (Figure 3c). Module 3 (score: 8) consisted of eight
nodes and 28 edges, and the seed gene was GPER (Figure 3d).

Transcription factor networks construction of modules
Transcription factors bind to a specific DNA sequence to regu-
late gene expression and function. Here, we predicted the tran-
scription factors in the three modules using iRegulon plugin,
respectively. Predicted transcription factors with NES >5 are
shown in Table S3. The top three transcription factors with the
highest NES are shown in Figure 4. In module 1, we predicted
that IRX6 would regulate SMURFI, UBE2N, TRIM36 and
NEDD4L; RUNXI would regulate NEDD4L and RNFI126; and
NFATC3 would regulate SMURFI, UBE2N, TRIM36, NEDD4L,
ANAPCI0 and KLHL22 (Figure 4a). In module 2, we predicted
that SIXI would regulate PLCBI1, HRHI, GHSR, HIR2C and
EDNRA; SIX6 would regulate PLCBI, HRHI, PIK3R3, GHSR
and HTR2C; and STAT5A would regulate PLCBI, HRHI,
PIK3R3, EDNRA and HTR2C (Figure 4b). In module 3, we
predicted that BDP! would regulate GPER, GABBR2 and
GRM3; ESRI would regulate GPER, GRMS8, PNOC, CCR3,
CXCLI1, and GRM3; and GATA2 would regulate GABBR2 and
PNOC (Figure 4c).
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Figure 1 | Heatmap of the top 10 upregulated and downregulated differentially expressed genes in GSE15653 Red, upregulation; blue,

downregulation. T2D, type 2 diabetes.

Co-expression network analyzed by WGCNA of the livers of
type 2 diabetes patients

Here, WGCNA was used to reveal the highly correlated genes
and co-expression networks of type 2 diabetes patients. Alto-
gether, six types of clinical data including body mass index
(BMI), hemoglobin Alc (HbAlc), fasting glucose, fasting insu-
lin, obese and type 2 diabetes were found in all samples of
dataset GSE15653 (Figure 5a). Gene modules were analyzed;
the grey module represents genes that cannot be clustered into
other modules. In total, the hierarchical clustering dendrogram
based on gene expressions identified 10 distinct gene modules
(Figure 5b). Genes in different modules are listed in Table S4.
Then, we generated the topological overlap matrix plot of a
gene network with the corresponding hierarchical clustering
dendrograms and the resulting modules (Figure 5c). Eigengene
adjacency heatmap was carried out for the identification of
module correlation (Figure 5d). Furthermore, in order to show
the relationships between modules and clinical traits, we carried
out a correlation analysis of the moduletrait relationships (Fig-
ure 6). We found that BMI and obese traits were positively
associated with the turquoise module, and negatively associated
with the blue module. The HbAlc trait was positively related
with the red module, and negatively related with the blue and
brown modules. Fasting glucose and fasting insulin were posi-
tively associated with the magenta module, but negatively asso-
ciated with the brown or blue module, respectively. Finally, the
type 2 diabetes trait was found to be positively related to the
turquoise module, and negatively related to the blue trait.

Functional annotation of highly correlated modules
Finally, the highly correlated modules with BMI, HbAlc, fasting
glucose, fasting insulin, obese and type 2 diabetes were selected

for functional annotation, respectively (Figure 7). The genes in
the magenta module mainly enriched in focal adhesion, extra-
cellular matrix-receptor interaction, protein digestion and
absorption, amoebiasis, and the PI3K—Akt signaling pathway.
The genes in the red module mainly enriched in metabolic
pathways; valine, leucine and isoleucine degradation; butanoate
metabolism; complement and coagulation cascades; and bile
secretion, whereas the genes in the turquoise module mainly
enriched in metabolic pathways, oxidative phosphorylation, car-
bon metabolism, non-alcoholic fatty liver disease and Parkin-
son’s disease. Just four pathways met the criterion of P < 0.05.
The genes in the blue module mainly enriched in ubiquitin-
mediated proteolysis, folate biosynthesis, spliceosome and meta-
bolic pathways, whereas the genes in the brown module mainly
enriched in Alzheimer’s disease, tuberculosis, vascular smooth
muscle contraction, natural killer cell mediated cytotoxicity and
measles.

Validation of key genes correlated with the livers of type 2
diabetes patients

Here, we screened the possible key genes based on type 2 dia-
betes highly-correlated modules (turquoise and blue; Figure 6),
and three functional modules from PPI networks (Figure 3b—
d). One gene, UBE2M, was included in the functional modules
and the turquoise module, and two genes, ANAPCI3 and
UBE2N, were included in the functional modules and the blue
modules (Figure 8a). In addition, three seed genes in three
functional modules, including GPER, P2RYIl and TRIM36
(Figure 3b—d), were also regarded as key genes. As shown in
Table S2, ANAPCI13, UBE2N and TRIM36 were downregulated,
and UBE2M, GPER and P2RY1I were upregulated in dataset
GSE15653. In order to further confirm the role of six key genes
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Figure 2 | Enrichment analyses for (a) Kyoto Encyclopedia of Genes and Genomes pathways and (b) GO terms of differentially expressed genes in
liver samples of type 2 diabetes patients. DNA, deoxyribonucleic acid; HIF-1, hypoxia-inducible factor; MAPK, mitogen-activated protein kinase; PI3K—

Akt, phosphoinositide 3-kinase-protein kinase B.

in the livers of type 2 diabetes patients, we next detected the
key gene expressions in hepatic insulin resistance models
in vitro. PA, a saturated fatty acid, is reported to be closely
associated with the development of insulin resistance’!. Here,
we established two hepatic insulin resistance models using
human liver L02 cells and HepG2 cells under the stimulation
of PA in vitro'®'"®. As a result, UBE2M and GPER were upreg-
ulated in both L02 and HepG2 cell models, whereas P2RY11
only upregulated in L02 model, and UBE2N only downregu-
lated in the HepG2 model at a significant level (Figure 8b,c).

DISCUSSION

The liver plays a key role in glucose homeostasis, and fatty liver
is a major predisposition for insulin resistance contributing to
type 2 diabetes. Several gene profiles of the livers of type 2

diabetes patients have been uploaded to NCBI GEO public
databases, such as GSE15653'%, GSE23343° and GSE64998".
Here, we attempted to explore the molecular functional path-
ways and co-expression networks instead of individual gene
function in the livers of type 2 diabetes patients. As the dataset
GSE15653 provided more patient features, such as BMI,
HbAlc, fasting glucose and fasting insulin, we believed that
analyzing the gene profile of GSE15653 would help us to reveal
the relationships between genes and clinical traits. As a conse-
quence, we screened 778 DEGs, including 136 upregulated
DEGs and 642 downregulated DEGs, between the type 2 dia-
betes and non-diabetic group from GSE15653. Among the top
10 upregulated DEGs, CHI3L1, also known as YKL40, has been
shown to be increased in the serum of type 2 diabetes
patients”>*. Similarly, SCD is positively associated with type 2

© 2018 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd
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Figure 3 | Protein—protein interaction network and module analysis of differentially expressed genes (DEGs) in GSE15653. (a) Protein—protein
interaction network based on 778 DEGs constructed by Cytoscape. Red indicated the upregulated DEGs, and blue indicated the downregulated
DEGs. (b) The top three modules identified from the protein—protein interaction network.

Figure 4 | Transcription factor target networks of the three modules. Green octagon nodes represent the predicted transcription factor. Pink oval
nodes represent transcription factor regulated genes.
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Figure 5 | Samples clustering and module detection. (a) Sample dendrogram and trait indicator. In the obese row and type 2 diabetes (T2D) row,
the red color represents obese and type 2 diabetes samples. In other rows, the red color intensity is proportional to higher body mass index (BMI),
fasting glucose, fasting insulin and hemoglobin Alc (HbA1c). The gray color represents no data in clinical traits. (b) Cluster dendrogram based on
1-topological overlap matrix. Gene dendrogram acquired by average linkage hierarchical clustering. The color row under the gene dendrogram
represents the module assignment determined by the dynamic tree cut. Each colored branch indicates a module of highly connected genes. (c)
Network heatmap plot of genes in GSE15653. The gene dendrogram and module assignment are shown along the left and top. The heatmap
colors in the matrix present the degree of topological overlap. (d) Eigengene adjacency heatmap indicates the correlation between modules. Red

represents positive correlation and blue represents negative correlation. The color intensity is proportional to a higher association.

diabetes”**”. Among the top 10 downregulated DEGs, BTRC is
significantly associated with type 2 diabetes in a Chinese Han
population®®. RPGRIPIL is one of the type 2 diabetes loci ana-
lyzed by the genome-wide association study”’. The EEAI gene
mutation is found in the Japanese population with type 2 dia-
betes”. GRIK2 is associated with diabetic retinopathy™. How-
ever, little is known about their expression levels in the livers of
type 2 diabetes patients. Except for the genes mentioned above,
the remaining 14 novel genes have not been specifically impli-
cated in type 2 diabetes, and might be involved in hepatic insu-
lin resistance.

For functional annotation, KEGG pathway enrichment and
GO analysis were carried out to elucidate the underlying path-
ways in upregulated and downregulated DEGs. We found that

DEGs mainly enriched in mitogen-activated protein kinase sig-
naling pathway, Hippo signaling pathway, hypoxia-inducible
factor-1 signaling pathway, regulation of actin cytoskeleton,
PI3K-Akt signaling pathway, insulin resistance, positive regula-
tion of cell proliferation, positive regulation of cell migration,
positive regulation of the ERKI and ERK2 cascade, cellular
response to hormone stimulus, cell division, positive regulation
of DNA biosynthetic process, and cell adhesion (Figure 2).
Insulin resistance is well known as the major feature and cause
of type 2 diabetes. Meanwhile, this is consistent with the
knowledge that mitogen-activated protein kinase/ERK signaling
pathway activation is involved in hepatic insulin resistance and
type 2 diabetes development™ 2>, Several diabetes-related path-
ways were associated with Hippo signaling®. Hippo was

© 2018 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd
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reported as a modulator of metabolism in the liver, disruption
of the Hippo pathway might be associated with development of
type 2 diabetes™. Hypoxia-inducible factor-1 signaling pathway
contributed to insulin resistance’®”’, and might be involved in
hepatic insulin sensitivity in HepG2 cells®®. Activation of the
PI3K-Akt pathway would attenuate hepatic insulin resis-
tance™*, and reduce gluconeogenesis in type 2 diabetes mice*'.
Actin cytoskeleton participates in muscle insulin resistance of
type 2 diabetes™, but the role in the livers of type 2 diabetes
patients remains unclear. The role of the remaining enriched
pathways in the livers of type 2 diabetes patients still requires
further exploration.

Furthermore, we constructed the PPI network by all DEGs
for functional interactions (Figure 3a). The most significant
three functional modules were filtered (Figure 3b—d). We found
the seed gene of these three modules was TRIM36, P2RY1I1
and GPER, respectively, and we validated these three seed
genes expressions in hepatic insulin resistance models in vitro.
GPER has been shown to be involved in obesity, insulin resis-
tance and type 2 diabetes”**. Consistently, the present results
showed that GPER was upregulated in both L02 cells and
HepG2 cells stimulated by PA (Figure 8b,). Borno et al*’
found that both type 2 diabetes patients and healthy controls
showed similar distribution of P2RY11 in skeletal muscles. We
found that P2RY1I was upregulated in PA-treated L02 cells
(Figure 8b), but not in HepG2 cells (Figure 8c).Little is known
about the relationship between TRIM36 and type 2 diabetes,
and we did not observe a significant alteration in TRIM36
expression in hepatic insulin resistance models. The present
results showed that GPER is probably associated with type 2
diabetes insulin resistance in the liver, and P2RY11 might have
a potential role in the development of type 2 diabetes, and the
interactions between these seed genes and type 2 diabetes

hepatic insulin resistance still require further investigation. Our
transcription factor analysis identified that several transcription
factors are likely to be implicated in type 2 diabetes (Figure 4;
Table S2). A recent study showed that mineralocorticoid recep-
tor directly regulated ESRI in macrophages, and then was
implicated to play important roles in non-alcoholic fatty liver
disease and type 2 diabetes™, but the role of ESRI in the liver
is unknown. Meanwhile, the association between other tran-
scription factors and type 2 diabetes, especially hepatic insulin
resistance, still needs to be fully elucidated.

WGCNA was applied to identify the significantly enriched
gene co-expression network of the livers of type 2 diabetes
patients. A total of 10 gene modules were identified in
GSE15653 (Figure 5). We investigated the highly correlated
gene modules with six types of clinical characteristics, including
BMI, HbAlc, fasting glucose, fasting insulin, obese and type 2
diabetes. As a result, we found that the turquoise module,
magenta module and red module were positively correlated
with the clinical traits, whereas the blue module and brown
module were negatively associated with the clinical traits (Fig-
ure 6). The red module, turquoise module and blue module
were all involved in metabolic pathways. The red and blue
modules were associated with HbAlc, namely the key marker
of type 2 diabetes, whereas the turquoise and blue module were
associated with type 2 diabetes and obesity. Type 2 diabetes
involves the complex interplay of multiple metabolic pathways,
and the metabolites contributed to the hepatic insulin resis-
tance”. We inferred the metabolic pathway played a critical
role in the livers of type 2 diabetes patients and liver lipid accu-
mulation. Metabolomics has been used to predict potential and
novel treatment for type 2 diabetes®, but the role of many
metabolites in hepatic insulin resistance and type 2 diabetes is
still known. In addition, the magenta module, which is
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associated with fasting glucose and insulin, was also involved in
the PI3K—Akt signaling pathway in accord with Figure 2a. The
PI3K—Akt pathway activation by a long non-coding ribonucleic
acid suppressor has been proven to regulate the hepatic gluco-
neogenesis and lipogenesis, and might be a potential strategy
for type 2 diabetes treatment*®. The brown module was associ-
ated with fasting glucose and HbAlc, and was involved in nat-
ural killer cell-mediated cytotoxicity. Natural killer cell-mediated
cytotoxicity was reported to be related to gestational diabetes
mellitus by microarray analysis®. Therefore, we confer the
pathway might be an important role in the development of
diabetes.

For further investigation, we validated the expressions of
three key genes, ANAPCI3, UBE2M, UBE2N, obtained from
functional modules of the PPI network and highly correlated
modules of WGCNA (Figure 8a). Little is known about the
effects of ANAPCI3 in type 2 diabetes, and ANAPCI3 did not
change in either hepatic insulin resistance model (Figure 8b,c).
UBE2M and UBE2N are ubiquitin-conjugating enzymes; the
modification of proteins with ubiquitin is an important cellular
mechanism for targeting abnormal or short-lived proteins for
degradation. The ubiquitin-proteasome system was reported to
have a role in type 2 diabetes’ >’. UBE2M antibody had a
higher signal in type 2 diabetes patients’ plasma with the lower
insulin-secretion human leukocyte antigen background™. We
observed that UBE2M was increased in two hepatic insulin
resistance models, indicating that UBE2M possibly plays a key
role in type 2 diabetes hepatic insulin resistance. UBE2N hap-
loinsufficiency in female mice protected against high-fat diet-
induced obesity, hepatic steatosis and insulin resistance’. In
contrast, UBE2N was decreased in type 2 diabetes samples of
GSE15653 and PA-induced HepG2 cells, further study is
required to elucidate the role of UBE2N in the livers of type 2
diabetes patients.

In our present work, the results offer potential genes and
underlying pathways in the livers of type 2 diabetes patients.
The results provide new strategies for type 2 diabetes pathogen-
esis, development and drug discovery. However, further and
deep experiments are still required for the candidate gene and
pathway in type 2 diabetes.
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