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Abstract
Background: The Trypanosoma brucei cell cycle is regulated by combinations of cyclin/CRKs (cdc2
related kinases). Recently, two additional cyclins (CYC10, CYC11) and six new CRK (CRK7-12)
homologues were identified in the T. brucei genome database [1,2].

Results: Individual RNAi knockdowns of these new proteins in the procyclic form of T. brucei
showed no apparent phenotype except for the CRK9 depletion, which enriched the cells in G2/M
phase. But a similar CRK9 knockdown in the bloodstream form caused no apparent phenotype.
CRK9 lacks the typical PSTAIRE motif for cyclin binding and the phenylalanine "gatekeeper" but
binds to cyclin B2 in vitro and localizes to the nucleus in both forms of T. brucei. CRK9-depleted
procyclic-form generated no detectable anucleate cells, suggesting an inhibition of cytokinesis by
CRK9 depletion as well. The knockdown enriched cells with one nucleus, one kinetoplast and two
closely associated basal bodies with an average distance of 1.08 mm in between, which was shorter
than the control value of 1.36 m, and the cells became morphologically deformed and rounded
with time.

Conclusion: CRK9 may play a role in mediating the segregation between the two kinetoplast/basal
body pairs prior to cytokinetic initiation. Since such a segregation over a relatively significant
distance is essential for cytokinetic initiation only in the procyclic but may not be in the
bloodstream form, CRK9 could be specifically involved in regulating cytokinetic initiation in the
procyclic form of T. brucei.

Background
Regulation of eukaryotic cell cycle is mediated primarily
by signaling cascades orchestrated by the activities of pro-
tein kinases. The most extensively studied class of protein
kinases is the cyclin-dependent kinases (Cdks) such as the
prototypic Cdc28 regulating the cell cycle in budding
yeast [3-10]. Cdk activity requires binding to a specific
cyclin and thus is regulated by the periodic synthesis and
degradation of cyclins [3,11,12].

Trypanosoma brucei is a parasitic protozoan and the causa-
tive agent of sleeping sickness, a devastating disease
responsible for considerable morbidity and mortality in
sub-Saharan Africa. It is also considered a deeply
branched eukaryote with many unique biological features
[13,14]. Individual T. brucei cells possess a single mito-
chondrion whose genome is arranged in a disc-like struc-
ture, the kinetoplast, which is associated with a basal body
across mitochondrial membrane [15-17]. The basal body
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serves as a microtubule organizing center, the origin of
flagellum, and provides the driving force for kinetoplast
segregation prior to cytokinesis [16,18]. T. brucei cells
transit through several stages in its life cycle to three major
replicative phases: the procyclic stage growing in the tsetse
fly midgut, and the bloodstream form proliferating in the
mammalian host bloodstream [19,20]. Both of these
stages can be cultivated in vitro. A third replicative stage in
the epimastigote form in the salivary gland of tsetse fly has
not yet been adapted to in vitro cultivation and is thus rel-
atively un-explored. There are many crucial differences
between the procyclic and bloodstream forms, the most
obvious one being the position of the kinetoplast/basal
body complex; it is midway between the posterior end of
the cell and the nucleus in procyclic cells, whereas, in
bloodstream form cells, it is localized at the posterior end
[16,18,21]. Upon the replication of kinetoplast/basal
body and nucleus in the procyclic form, the newly formed
kinetoplast/basal body migrates to the posterior end of
the cell, whereas the newly formed nucleus is moved in
between the two segregated kinetplasts/basal bodies prior
to the initiation of cytokinesis [22]. But in the blood-
stream form, the two kinetoplasts/basal bodies remain at
the posterior end after replication and are separated by
less than 2.5 m (Tyler et al., 2001), whereas the two
nuclei stay in the mid-portion of the cell. There is thus no
apparent need for migration of these organelles over sig-
nificant distances to signal the beginning of cytokinesis in
bloodstream form [16,20,22]. It is not clear whether even
the short distance of less than 2.5 m between the two
kinetoplast/basal body pairs is needed for initiating cyto-
kinesis in the bloodstream form.

T. brucei has several conserved homologues of cyclins and
cyclin-dependent kinases termed cdc2-related kinases
(CRKs) [23-27] some of which function analogously to
those in other eukaryotes [24,26,27]. Recent studies have
identified the complex of cyclin E1 and CRK1 in regulat-
ing G1/S transition and the complexes of cyclin E1 and
CRK3 as well as cyclin B2 and CRK3 in controlling the
passage of G2/M boundary during the cell cycle progres-
sion [25,27,28]. CRK2 was found to complex with cyclin
E1 in controlling the cellular morphogenesis during G1/S
transition in the procyclic form but not in the blood-
stream form [26,28], whereas cyclins E2, E3, E4, B1 and
B3 as well as CRKs 2, 4 and 6 have not yet been identified
with an apparent function as their knockdowns by RNA
interference (RNAi) showed no apparent phenotype in
the procyclic form of T. brucei [24,26-28]. Recently, sev-
eral new homologues of cyclins (10 and 11) and CRKs
(CRK7-12) were identified in the T. brucei genomic data-
base using a bioinformatics approach [1,2], but there has
not yet been any function assigned to these newly identi-
fied proteins.

In the present study, we used RNAi to investigate the
potential functions of these newly identified homologues
in the procyclic form of T. brucei and found them playing
no significant role in regulating cell proliferation except
for CRK9, which was found essential for cell growth in the
procyclic-form but not in the bloodstream-form cells.
Depletion of CRK9 enriches the procyclic cells in G2/M
phase with two kinetoplast/basal body pairs incapable of
sufficient separation from each other for cytokinetic initi-
ation [29]. An accompanying drastic morphological alter-
ation turns the cells into a round shape. CRK9 is
apparently playing a critical role in regulating both mito-
sis and cytokinesis in the procyclic cells.

Methods
DNA constructs
Cloning of DNA fragments used standard methods [30]
and constructs were verified by DNA sequencing. For
RNAi constructs, 300-500 nucleotide fragments of target
genes were amplified by PCR, using primers that incorpo-
rated XhoI and HindIII sites at opposite ends of the DNA
fragment. Fragments thus digested with XhoI/HindIII
were inserted into the pZJM vector, linearized with NotI
and introduced into T. brucei for homologous recombina-
tion in the rRNA intergenic regions for RNAi of the tar-
geted mRNA. For expression of recombinant proteins in
transformed Escherichia coli, a full-length gene was
inserted as a BamHI/SalI fragment into the pGEX6P3 vec-
tor (GE Healthcare). For expressing tagged protein at the
endogenous level in T. brucei, the encoding gene was
inserted as a HindIII/SalI fragment into the HindIII/XhoI
sites of pLew-3HA vector to create an open reading frame
of C-terminally 3xHA (hemagluttinin) tagged protein. An
ApaI/EcoRI fragment of the DNA containing part of the
CRK9 gene fused with a 3xHA tag, was then inserted into
the pC-PTP-BLA vector, linearized with XhoI and trans-
fected into T. brucei for homologous recombination [31]
and endogenous level expression of the C-terminally
tagged protein.

Transfection of cells and RNAi
Procyclic-form (29-13) and bloodstream-form (90-13) T.
brucei cells were transfected with linearized plasmid as
described previously [24]. Cells were selected with either
2.5 g/ml phleomycin for pZJM transfectants or 10 g/ml
blasticidin for pC-PTP-BLA transfected cells.

Stable cell lines carrying the pZJM vectors were cloned by
plating on an agarose plate, followed by outgrowth of
individual colonies, as described previously [26]. RNAi
was induced by tetracycline to a final concentration of 1.0
g/ml and cell growth monitored daily using a hemocy-
tometer with a microscope. Semi-quantitative RT-PCR
was performed as described previously [28]. Briefly, RNA
samples were extracted from T. brucei cells using Trizol
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(Invitrogen) and amplified using the One-Step Taq RT-
PCR system (Invitrogen). Samples of the PCR reactions
were analyzed after each cycle from #20 to #24 by gel elec-
trophoresis. For quantitative real time RT-PCR analysis,
samples of total RNA were treated with Express DNase I
(Ambion) at 37°C for 30 min to remove traces of genomic
DNA, then heated to 75°C for 15 minutes. RNA was then
converted to cDNA using Superscript III (Invitrogen) with
an oligo d(T) as primer. New primers for CRK9 and -
tubulin were designed to amplify a 100 bp region in each
gene. Duplicate reactions were amplified using the SYBR
green master mix kit (Roche) in transparent 0.2 ml strip
tubes (USA Scientific) and loaded into an MX3005P qPCR
thermal cycler (Stratagene). Samples were amplified
through 40 cycles and fluorescence of the SYBR green dye
was used to monitor the amount of double-stranded
DNA. Ct or threshold values were determined automati-
cally using the thermal cycler software and used to calcu-
late differences in Ct values between un-induced and
induced RNAi samples. Ct differences were converted into
fold differences by raising 2 to the power of the Ct differ-
ence. Fold differences were converted to percentages of
mRNA levels by multiplying the reciprocals of fold differ-
ences by 100%. To verify that the fluorescence was not
due to non-specific amplification, a dissociation curve
was performed at the end of the 40 cycle PCR. Specific
amplification was defined by the appearance of a single
peak.

Flow cytometry and karyotype analysis
To analyze the cellular DNA content, cells were harvested,
washed with PBS and fixed in 70% ethanol, 10% glycerol
overnight at 4°C. They were then rinsed with PBS and
stained with propidium iodide (PI) as described previ-
ously [24]. Approximately 25,000 stained cells were ana-
lyzed by flow cytometry using a FacsCalibur machine (BD
biosciences). The resulting histograms were further ana-
lyzed using the ModFit software (ModFit) to determine
proportions of cells in G1, S and G2/M phase.

The stained cells were also examined visually using a flu-
orescence microscope (Olympus). Cells were categorized
into 1N1K, 1N2K or 2N2K by the numbers of nuclei and
kinetoplasts counted in each cell (N, nuclei; K, kineto-
plasts).

GST pull down assay
Full length genes were cloned into the pGEX6P3 vector
and the resulting plasmid transferred into E. coli
BL21(DE3) cells, which were grown to an optical density
(600 nm) of 0.3. Gene expression was induced with 0.1
mM isopropyl--thiogalactoside (IPTG) at 30°C for three
hours. Cells were harvested and suspended in lysis buffer
(50 mM Tris-Cl pH 7.5, 0.3 M NaCl, 0.1% Tween-20),
supplemented with a complete cocktail of protease inhib-

itors (Roche), and lysed by sonication at 4°C (Fisher Sci-
entific) with 8 to 10 30-second pulses and 1-minute
intervals in between. Cell debris was removed by centrifu-
gation at 12,000 × g for 10 min and the cleared lysate
loaded onto a glutathione Sepharose 4B column (GE
Healthcare). Unbound proteins were removed by washing
with lysis buffer and the bound proteins were eluted with
50 mM Tris-Cl pH 8 and 10 mM reduced glutathione. The
yield was generally 50-100 g of purified protein per liter
of culture. The purified protein was incubated with in vitro
transcribed/translated HA-tagged cyclins, loaded onto
glutathione Sepharose 4B beads and washed three times
with lysis buffer. The beads were then boiled in sample
buffer and the freed proteins fractionated in SDS-PAGE
followed by Coomassie blue staining. Anti-HA Western
blotting was performed with the HA-7 anti-HA antibody
(Sigma) at a 1:5,000 dilution followed by staining with
secondary HRP-linked anti-mouse antibody (Promega) at
a 1:10,000 dilution. Bands were then visualized using ECL
(GE Healthcare), and exposed to X-ray film (LabSource).

Immunofluorescence assays
For immunofluorescence experiments, cells were adhered
onto poly-L-lysine (Sigma) coated cover slips, fixed with
4% paraformaldehyde at 4°C for 20 min and permeabi-
lized with PBS and 0.2% Triton-X100 for 5 min. The cover
slips were blocked for 1 hour at room temperature with
PBS and 5% BSA, incubated with primary antibody for 1
hour, washed three times with PBS, and then incubated
with a FITC-conjugated secondary antibody. The cover
slips were washed in PBS three more times and mounted
in mounting media plus DAPI (Vectashield laboratories)
onto slides and sealed with wax. Slides were then exam-
ined using an inverted fluorescence microscope (Olym-
pus). Image analysis and merging was performed using
the image J software (NIH). The primary antibodies used
included HA7 mouse monoclonal anti-HA antibody
(1:1,000 dilution) and rat YL1/2 antibody for the basal
bodies in T. brucei (Chemicon) (1:500 dilution). Second-
ary antibodies used were: FITC-conjugated anti-mouse
IgG antibody (Sigma) and FITC-conjugated anti-Rat anti-
body (Chemicon).

Results
RNAi mediated ablation of cyclin and CRK homologues in 
procyclic form T. brucei
The expression of newly identified homologues of cyclins
(CYC9-10 accession Tb08.11J15.340, and
Tb08.11J15.300) and CRKs (CRK7-12, accession
Tb07.43M14.340, Tb11.02.5010, Tb927.2.4510,
Tb03.48K5.160, Tb06.5F5.880, and Tb11.01.4130,
respectively) [1,2] were each silenced in RNAi experi-
ments for potential effect on cell cycle progression in pro-
cyclic-form T. brucei. Significant reduction in each of the
mRNA levels was verified with semi-quantitative RT-PCR
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2 days after induction of RNAi (Additional File 1, insets),
and cell growth was monitored daily during the knock-
down experiments and shown to be unaffected in most
cases (Additional File 1) except for the CRK9 knockdown,
which resulted in total growth arrest after four days (Addi-
tional File 1). The same RNAi experiment on CRK9 was
repeated and resulted in the same outcome (Figure 1A).
The level of CRK9 mRNA before and after 2 days of RNAi
were further examined by real time quantitative RT-PCR.
The result showed a significant reduction of CRK9 mRNA
down to 20% of the original level after a two-day RNAi
(Figure 1A inset). We thus concluded that CRK9 could be
essential for procyclic cell cycle regulation whereas the
other novel cyclin and CRK homologues may not be. Sub-
sequent investigation had since been focused on CRK9.

CRK9 depletion enriches the procyclic-form cells in G2/M 
phase
Timed cell samples depleted of CRK9 were stained with PI
and analyzed in flow cytometry. During the 5 days of
RNAi, the proportion of cells in G2/M phase (4C)
increased gradually from 17% to 44% whereas the G1
cells (2C) decreased from 55% to 31% and the S-phase
cells reduced from 32% to 22%. (Figure 1B). Cells without
RNAi did not appreciably change the distribution of their
DNA content over the same course of experiment (data
not shown). This result suggests that cells depleted of
CRK9 are enriched in G2/M phase.

To find out if kinetoplast replication still proceeded in the
RNAi cells arrested in G2/M phase, the PI-stained cells
were examined with a fluorescence microscope for the
numbers of nuclei (N) and kinetoplasts (K) in each cell.
The kinetoplast is known to begin replicating at about the
same time as nuclear DNA but the kinetoplast segregation
is completed prior to the onset of mitosis. Thus, cells
stopped prior to mitosis are known to become enriched in
1N2K cells and generate large numbers of anucleate prog-
enies (zoids) due to the apparent capability of replicated
kinetoplast/basal body in initiating cytokinesis without
mitotic completion in the procyclic form [16,21]. Those
stopped after completion of mitosis but prior to cytokine-
sis initiation are enriched with 2N2K and XNXK cells
[24,27,32,33]. The CRK9 depleted cells did not indicate
any detectable increase in 1N2K, 2N2K or XNXK cells, but,
instead, showed a slight increase (from 72% to 80%) in
1N1K cells and a corresponding decrease (10% to 3%) in
2N2K cells (Figure 1C) without any zoid formation.
Together, the results suggest an inhibited mitosis and a
blocked kinetoplast/basal body replication/segregation
with an anticipated inhibition of cytokinesis. These mul-
tiple blocks have been supported by the observed enrich-
ment of CRK9 knockdown cells in G2/M phase (see Figure
1B). The 8% increase in 1N1K cells could be provided by
the 2N2K cells already present before RNAi induction.

They dropped by 7% thereafter, suggesting a normal pro-
ceeding of cytokinesis among them. CRK9 thus may not
play a direct role in controlling the progression of cytoki-
nesis but could regulate its initiation by controlling the
kinetoplast/basal body replication/segregation. The
apparent G2/M arrest in CRK9-depleted cells could be an
indirect consequence from an inhibited cell division from
a blocked kinetoplast/basal body replication/segregation.
These probabilities will be further addressed in the exper-
iments described below.

Depletion of CRK9 causes a drastic morphological change
An additional observation made on the CRK9-depleted
cells was that, after RNAi induction, the cells gradually
lost the original morphology and turned into a round
shape (Figure 2A). The normal and rounded cells were
defined by the ratio between the major and the minor axis
lengths. For ratios higher than 5:1, the cells were defined
as normal, whereas for ratios less than 3:1, the cells were
defined as rounded. The change took place slowly with
20% of the round-shaped cells appearing on day 2, 24%
on day 3, 87% on day 4 and 91% on day 5 (Figure 2B),
whereas 97% of the control cells retained the normal mor-
phology throughout the entire time course. When the cells
were stained with L8C4 antibody against the paraflagellar
rod protein in flagellum, the flagellum and the associated
basal body were attached to one side of the cell as in the
wild type, even though the shape of the cells has changed
drastically (Additional File 2). The morphological change
has thus apparently not caused a defective flagellar bio-
genesis. The procyclic form cells are known to undergo an
active microtubule corset extension toward the posterior
end during the G1 to S-phase transition that does not
occur in the bloodstream form (Tu and Wang, 2005). It is
thus possible that a normal progression of microtubule
extension during G1/S transition coupled with a blocked
kinetoplast/basal body replication/segregation in the
CRK9 depleted cells could have caused the morphological
change (see below).

Kinetoplast and basal body segregation is impaired in 
CRK9 depleted cells
A specific segregation between the two basal body/kineto-
plast pairs is essential for initiating cytokinesis in procy-
clic T. brucei [34,35]. It involves extension of the corset of
microtubules and migration of the newly formed basal
body/kinetoplast pair toward the posterior end of the cell
[16]. We hypothesized that if a CRK9 knockdown would
result in a retarded segregation between the two basal
body/kinetoplast pairs while the microtubule extension
proceeds normally from the basal bodies, the microtubule
organizing center, it could block cytokinesis and cause
distorted cell morphology as well. To test this hypothesis,
we further classified the CRK9 depleted cells into
1N1K1BB (one nucleus, one kinetoplast, one basal body),
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Figure 1 (see legend on next page)
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1N1K2BB, 1N2K2BB, and 2N2K2BB cells (examples of
which are shown in Figure 3B) with a pair of still joined
basal bodies counted as one basal body. With the tabula-
tion conducted in this manner, we found no evidence of
any 1N2K1BB or 2N2K1BB cells, agreeing with the previ-
ous observation that kinetoplast segregation depends on
basal body segregation (Robinson et al., 1995). It also
suggests that a failed segregation between two basal body/
kinetoplast pairs could be caused by an inhibited kineto-
plast replication/segregation while the two replicated
basal bodies are trying to separate.

Strikingly, the CRK9 depleted cells, after 4 days of RNAi
induction, showed an increase from 14% to 28% in
1N1K2BB cells (Figure 3, panel A). At the same time, how-
ever, the 1N1K1BB and 2N2K2BB cells decreased by 8%
and 7%, respectively, while 1N2K2BB cells remained rela-
tively constant. A simple explanation for this population
shift could be that 1N1K1BB cells were converted to
1N1K2BB whereas 2N2K2BB were divided to produce
1N1K1BB, which then proceeded to 1N1K2BB without
being further converted to 1N2K2BB or 2N2K2BB while
CRK9 was depleted. This scheme suggests no defect in
converting 1N1K1BB to 1N1K2BB (thus no difficulty in
basal body replication/segregation), but difficulty in fur-
ther changing 1N1K2BB to 1N2K2BB and beyond. It is
thus likely that while basal body replication appears
undisturbed, nuclear division and kinetoplast replication/
segregation could be blocked by a CRK9 knockdown,
which may lead indirectly to blocked segregation between
two replicated basal bodies.

To investigate if this interpretation could be correct, we
measured the distance between the two basal bodies in
1N1K2BB cells from the control and the 5-day CRK9 RNAi
cells. There was a significant decrease in the mean distance
from 1.36 m (standard deviation ± 0.08) in the control
to 1.08 m (standard deviation ± 0.12) in the CRK9-
depleted 1N1K2BB cells (Figure 3C). It is thus possible
that this retarded segregation between the two basal bod-
ies, caused probably by the failure in kinetoplast replica-
tion/segregation, could lead to inhibition of cytokinetic

initiation and morphological distortion. An examination
of the distances between two basal bodies in 1N2K2BB
and 2N2K2BB cells showed no apparent difference from
the control (data not shown). Thus, apparently, when the
two kinetoplasts have already been formed, basal body
segregation proceeds normally. CRK9 depletion thus

RNAi of CRK9Figure 1 (see previous page)
RNAi of CRK9. Procyclic form (29-13) cells were transfected with a pZJM vector carrying a short (300 bp) fragment of 
CRK9. Transfected cell lines were selected using phleomycin and cloned. (A) RNAi was induced by addition of tetracycline 
(1.0 g/ml) and cell growth monitored daily using a hemocytometer. Daily dilution of cell cultures with fresh medium was per-
formed when the cells grew at a linear rate. Insets show mRNA levels of CRK9 and tubulin determined by real time quantita-
tive RT-PCR; levels are shown relative to those of un-induced cells. (B) Cells were harvested daily, fixed and stained with PI, 
followed by DNA content analysis using flow cytometry. The proportion of cells in each phase of the cell cycle was determined 
using the ModFit software and the proportions of G1, S and G2/M phase cells were plotted each day. (C) Cell sorting histo-
grams of cell distribution by DNA contents. The small peaks next to the y-axis represent cell debris. (D) The PI-stained cells 
were also examined visually using fluorescence microscopy and the numbers of 1N1K, 1N2K and 2N2K cells determined as 
percentages of a total population of ~200 cells after 5 days of CRK9 RNAi (N, nucleus; K, kinetoplast).

Morphology of CRK9 depleted cellsFigure 2
Morphology of CRK9 depleted cells. The control cells 
(without RNAi induction) and the cells depleted of CRK9 by 
RNAi from the same set of experiments in Figure 1 were 
fixed and examined by light microscopy 1-5 days after induc-
tion of RNAi (as indicated in the top panel, 2A). The cells 
were classified as normal when the ratio of lengths between 
the major and minor axis was greater than 5:1but as morpho-
logically rounded when the ratio was below 3:1. The fre-
quency of cells appearing in normal and rounded morphology 
was tabulated from ~200 cells in each sample (bottom panel, 
2B).
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Analysis of basal body replication and segregation in CRK9 depleted cellsFigure 3
Analysis of basal body replication and segregation in CRK9 depleted cells. Cells induced for CRK9 RNAi for 5 days 
were fixed and stained with YL1/2 antibody to show the basal bodies. DAPI was used to stain the nuclei and kinetoplasts. Cells 
were classified as 1N1K1BB (N, nuclei, K, kinetoplast, BB, basal body), 1N1K2BB, 1N2K2BB or 2N2K2BB cells and tabulated 
from a population of ~200 cells in each sample (A). Phase and DAPI-stained images of three different types of cells, 1N1K1BB, 
1N1K2BB and 1N2K2BB are shown in panel (B). The distances between the two basal bodies in ~200 1N1K2BB cells were 
measured using the ImageJ software and compared between the control and CRK9 depleted cells (C).
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gation is affected.

CRK9 was found to interact with cyclin B2 in vitro
The apparent inhibition of kinetoplast replication/segre-
gation in CRK9-ablated cells raises the question on
whether CRK9 acts also as a genuine cyclin-dependent
kinase in procyclic-form T. brucei. Comparing with the
other CRKs from T. brucei (Additional File 3), CRK9 has
several extra insertions upstream, downstream and within
the Ser/Thr kinase domain and a PSSGLLR motif instead

of the well-conserved PSTAIRE motif required for cyclin
binding. A structural modeling of CRK9 with the EasyPred
3D server generated a predicted structure most closely
matching that of T. brucei CRK1 (Additional File 4, top
panels). The invariant Lys, the Asp-Phe-Gly motif and the
Gly rich box all locate to the predicted active site and their
positions are super-imposable with those from the pre-
dicted structure of CRK1, the kinase playing an essential
role in regulating G1/S passage in T. brucei. The PSSGLLR
motif in CRK9 is predicted to be unstructured (Additional
File 4, bottom panel), whereas the PSTAIRE motifs are
Page 7 of 13
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CRK9 interacts with cyclin B2Figure 4
CRK9 interacts with cyclin B2. Recombinant GST-CRK9 was purified from transformed E. coli and incubated with the in 
vitro transcribed/translated HA-tagged cyclins E1 and B2, respectively. The GST protein complexes were bound to glutathione 
agarose, washed extensively, and analyzed by SDS PAGE followed by anti-HA Western blotting (top and central panels, as indi-
cated) or total protein staining as loading controls (bottom panel). GST and glutathione beads without fused proteins attached 
served as negative controls.
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known to generally assume a helical structure [36]. Since
CRK1 is known to bind the G1 cyclin E1 in controlling
G1/S passage and the mitotic cyclin B2 in regulating G2/
M transition in T. brucei [24,26,28], a possible involve-
ment of CRK9 in binding to cyclin E1 or cyclin B2 and a
role in nuclear cycle regulation cannot be ruled out in
view of its predicted structure.

GST-CRK9 was expressed in E. coli, purified and tested for
its bindings to cyclin E1 and cyclin B2, the only two func-
tional cyclins in T. brucei, in an in vitro pull down assay.
Neither of the two cyclins bound either glutathione beads
or GST (Figure 4, beads only and GST lanes). GST-CRK9
did not have an apparent interaction with cyclin E1 (Fig-
ure 4, middle row) as less than 0.1% of the amount of cyc-
lin E1 input could be found associated with GST-CRK9.
However, GST-CRK9 did bind to cyclin B2 as 21% of the
cyclin B2 input was recovered from the bound GST-CRK9
(Figure 4, top row). This apparent binding between CRK9
and the mitotic cyclin B2 agrees well with the enrichment
of G2/M cells when CRK9 is depleted. CRK9 could be thus
a cyclin B2-dependent kinase involved in regulating G2/M
passage in the procyclic cells.

Localization of CRK9
CRK9 tagged with 3xHA at the C-terminus was expressed
in procyclic cells to the putative endogenous level by
replacing one allele of the encoding gene with a linearized
construct of 3xHA tagged CRK9 through homologous
recombination. Western blot analysis of the transfected
cell lysate using an anti-HA antibody showed that a single
band at approximately 105 kDa, corresponding to the pre-
dicted molecular weight of CRK9, was identified (Figure
5A). The same blot was stained with anti--tubulin anti-
body as a sampling control (Figure 5A). Similar experi-
ments were performed on the bloodstream form of T.
brucei. The result from Western blot showed also a 105
kDa protein by anti-HA antibody (Additional File 5A).

Using the same anti-HA antibody to determine the locali-
zation of CRK9-3HA by immunofluorescence, the endog-
enously expressed CRK9-3HA was found to localize in the
nucleus in 1N1K, 1N2K and 2N2K cells (Figure 5B). In a
similar immunofluorescence assay of the bloodstream
form 1N1K and 1N2K cells, the endogenously expressed
CRK9-3HA was also localized in the nucleus (Additional
File 6). However, an extensive examination of CRK9 local-
ization throughout the entire cell cycle has not yet been
Page 8 of 13
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Localization of CRK9 in procyclic cellsFigure 5
Localization of CRK9 in procyclic cells. CRK9 fused to the 3xHA tag was inserted into the pc-BLA-PTP vector. After lin-
earization, transfection into T. brucei, and selection using blasticidin (10 g/ml), cells expressing CRK9-3HA at the endogenous 
level were obtained. Transfected and control cells were analyzed by Western blotting for the HA tag as indicated (A). The blot 
was also probed with anti -tubulin to verify equal sample loading. Localization of CRK9 was determined by fixing the trans-
fected cells and staining them with a FITC-conjugated anti-HA antibody (B). DAPI was used to visualize the nucleus and kineto-
plast and merged images were created using the imageJ software.
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conducted to rule out the possibility that CRK9 might
trans-localize out of the nucleus in late mitotic phase to
participate in cytokinetic initiation as does the Aurora B
kinase in T. brucei [37].

Depletion of CRK9 has no apparent effect on the growth 
of bloodstream form cells
The retarded basal body/kinetoplast segregation caused
by CRK9 depletion in the procyclic-form cells could con-
stitute the mechanism of inhibited cell division [16,34].
But since a similar kinetoplast/basal body segregation
does not occur in the bloodstream form [38] a similar
inhibitory effect of cytokinetic initiation may not happen
in the bloodstream form when CRK9 is ablated. The
bloodstream-form cells (90-13) were transfected with the
pZJM-CRK9 plasmid, selected with phleomycin, and
cloned. RNAi induced by tetracycline for 2 days resulted in
an effective reduction of the mRNA for CRK9 down to
30% of the original level when monitored by real time
quantitative RT-PCR (Additional File 5, inset). This deple-
tion of CRK9 did not, however, result in a detectable effect
on cell growth, as the cells induced for RNAi grew at about
the same rate as the un-induced control (Additional File
5). This missing inhibitory effect from CRK9 depletion in
the bloodstream form could be attributed to an apparent
lack of required kinetoplast/basal body segregation for
cytokinetic initiation. The inhibited mitosis from
depleted CRK9 in procyclic form could be attributed to
potentially distinctive mechanisms controlling mitosis in
the two forms (see Discussion), or, the blocked cytokine-
sis in procyclic form may exert an inhibitory effect on
mitosis. Alternatively, the possibility that the 30% of
CRK9 remaining after RNAi induction in the bloodstream
cells could be sufficient in maintaining the cells in the
wild type phenotype has not yet been totally ruled out at
present.

Discussion
In the present study, we concluded a preliminary func-
tional analysis of all the structural homologues of cyclin
and CRK identified in T. brucei [1,2]. From the previous
investigations, CycE1/CRK1 is known to regulate the G1/
S passage [24-26,28], CycE1/CRK2 controls the posterior
extension in the procyclic form during G1/S transition
[28,39], whereas CycE1/CRK3 and CycB2/CRK3 are
involved in regulating the passage from the G2 phase to
the mitotic phase [24,26-28]. The new experimental data
from the current study covered the rest of the homologues
that have not yet been analyzed. They added one more
protein kinase CRK9 that plays an essential role in pro-
moting the growth of procyclic form but apparently not
the bloodstream form of trypanosome. For the rest of the
newly as well as the previously identified homologues of
cyclins and CRKs, their knockdowns showed little appar-
ent effect on trypanosome cell growth. Among those

CRK's whose knockdowns in the present study did not
register any phenotype, their sequences indicate that they
either lack or have mutated certain residues in the glycine-
rich box or the conserved glutamate residue immediately
downstream of the gatekeeper that are known to be a part
of the kinase active site (see Additional File 3). They could
be thus either pseudogenes or their protein products may
not possess any kinase activity. If they still play any role at
all in cell cycle regulation, they might perform either an
auxiliary or redundant function.

In other eukaryotic organisms, certain cyclin/Cdk pairs are
dispensable, because they are known to play an auxiliary
role. For example, cyclin D/Cdk4 in mammalian cells pro-
motes exit from G0 into G1 by countering the activity of
anti-proliferating agent such as Rb and p21 [40-42]. These
auxiliary cyclin/Cdk pairs are generally required for stress
responses and adaptive conditions [6,43-45]. Thus,
CycE2, E3, E4, B1, B3 and 10-11, CRK4, 6-8,10-12, found
without an apparent function in cell growth in the previ-
ous and present studies, could be the auxiliary proteins
dispensable for cell cycle regulation in T. brucei. Given
that the latest bioinformatics analysis of the T. brucei
kinome appears complete, this work may have completed
the identification of all the primary cell cycle regulators in
trypanosome.

Further analysis of CRK9 indicated that the procyclic form
is enriched in the G2/M phase upon the depletion of
CRK9. The protein is localized to the nucleus and binds to
CycB2 in vitro. These indications suggest that CRK9 may
form complex with CycB2 and play an essential role in
regulating the G2/M passage in procyclic-form T. brucei.

The arrested mitosis in procyclic cells depleted of CRK9,
however, does not lead to appreciable formation of anu-
cleated cells as observed previously from depleting the
mitotic kinase CRK3 [26]. This is attributed to the fact that
CRK9 plays also another role in regulating cytokinesis by
controlling kinetoplast replication/segregation in the pro-
cyclic trypanosome. Thus, in addition to a mitotic arrest,
CRK9 ablation leads also to a failure in kinetoplast repli-
cation/segregation, which causes a block of basal body
segregation and cytokinetic initiation in the procyclic
form. This blockade is apparently also responsible for a
drastic morphological change of cells to a round shape,
which has not yet been observed previously when cytoki-
nesis was inhibited in the procyclic form of T. brucei by
other means [32,33,35,46]. Thus, CRK9 may be involved
in cytokinetic regulation with a mechanism completely
different from that of the phosphatases PP1 or PP2A, tar-
gets of okadeic acid inhibition, (Das et al., 1994),
TbAUK1 [32,46] and TbPLK [33]. These enzymes are
known to control cytokinesis, but their depletion does not
cause a morphological change of the procyclic cells. Oka-
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daic acid, the inhibitor of PP1 and PP2A, is known to
arrest the cytokinesis of procyclic cells resulting in a single
kinetoplast, a single basal body, a single flagellum but
multiple nuclei in each cell. Thus, cytokinesis is blocked at
a very early phase prior to kinetoplast/basal body replica-
tion by this inhibitor. A depletion of TbAUK1, however,
results in cytokinesis-arrested procyclic cells with two
widely segregated kinetoplast/basal body pairs, indicating
that TbAUK1 acts downstream from CRK9. A TbPLK
depletion leads to cytokinesis-arrested cells with multiple
nuclei, kinetoplasts, basal bodies, flagella, and is known
to play a role downstream from that of TbAUK1 in regu-
lating cytokinesis [33,46]. Thus in a series of regulators of
cytokinetic initiation, their order of actions is most likely;
the phospatasesCRK9TbAUK1TbPLK. Further-
more, an active extension of microtubule corset toward
the posterior end is known to take place only during the
G1/S transition in the procyclic form [16,28,39,47]. It was
postulated that this extension is coupled with the segrega-
tion between the two kinetoplast/basal body pairs.
Assuming that the microtubule extension might continue
while the kinetoplast segregation is inhibited by a deple-
tion of CRK9, a distortion of cellular morphology could
result from such a lack of coordination. As for the ques-
tion on how a nuclear protein CRK9 plays a role in con-
trolling basal body/kinetoplast replication/segregation,
we don't have a ready answer yet. But we could hypothe-
size that CRK9 is a part of a signaling network coordinat-
ing basal body replication/segregation with nuclear
duplication. It may phosphorylate a yet un-identified pro-
tein(s) that promotes basal body replication/segregation
in procyclic cells. A pursuit of the mechanism of CRK9
regulation of cytokinesis will be thus a major interest in
our future investigations.

CRK9 thus distinguishes itself from the other CRKs in T.
brucei by playing essential roles in controlling both mito-
sis and cytokinesis in the procyclic trypanosome. There is
only one other protein kinase in T. brucei known to play
essential roles in both mitosis and cytokinesis. It is an
orthologue of Aurora B, TbAUK1, which does not belong
to the CRK family [32,46]. Considerable knowledge has
been accumulated on this protein kinase in recent years. It
is a component of the unique chromosomal passenger
complex that is confined in the nucleus during mitosis,
but migrates out of the nucleus and trans-localize to the
potential cleavage furrow on the dorsal side of the cell in
telophase to initiate cytokinesis [37]. CRK9 could have a
similar pattern of trans-localization like that of TbAUK1
toward the end of mitosis, i.e., to move out of the nucleus
and become associated with the organelles involved with
cytokinetic initiation. Only a detailed further analysis of
CRK9 localization in a synchronized cell population
would shed some light on this interesting possibility.

A depletion of TbAUK1 leads to an elimination of the
spindle structure in the nucleus, mitotic arrest and cytoki-
netic block with two kinetoplast/basal body pairs in the
procyclic cells, which are similar, albeit not identical, to
that observed from CRK9 depletion. The multiple func-
tions of TbAUK1 can be, however, observed in both pro-
cyclic and bloodstream forms of trypanosome [32,46]. A
depletion of TbAUK1 from the bloodstream form resulted
in multiple kinetoplasts/basal bodies/flagella, reflecting a
dissociation between organelle multiplication and cytoki-
netic initiation in bloodstream form. The lack of a role of
CRK9 in controlling cytokinesis in the bloodstream form
could be also attributed to such a dissociation, i.e., cytoki-
nesis could still proceed while the kinetoplast replication/
segregation has failed.

The absence of any effect on the mitosis in bloodstream
form from knocking down CRK9 is a little more difficult
to comprehend at the present time. But one did observe
different phenotypes between the two forms when mitotic
cyclin B2 or mitotic protein kinase CRK3 was knocked
down in the previous studies [24,26,27]. Mitosis in the
procyclic form was stopped with a nucleus approximately
twice the size of that in the G1 phase. But the same knock-
downs in bloodstream form resulted in an extremely large
aggregate of apparently un-segregated nuclei, suggesting
that, without a mitotic exit, the cells can still enter a new
G1 phase repeatedly. A check point on mitosis could be
thus absent from the bloodstream form though it may be
still present and functioning in the procyclic form. Assum-
ing that the role of CRK9 in regulating G2/M passage may
depend on its interaction with some of the yet unidenti-
fied check point proteins, it could explain why CRK9 func-
tions in one but not the other form.

Conclusion
In summary, we have investigated the role of CRK9 in
trypanosome cell cycle regulation, and found it function-
ing only in the procyclic form in controlling mitosis as
well as kinetoplast replication/segregation. It is the second
protein kinase in T. brucei next to TbAUK1 showing a dual
role in controlling both mitosis and cytokinesis except
that it functions only in one of the two forms. CRK9 will
be thus a useful tool for future study on the coordination
between mitosis and cytokinesis and the distinctive mech-
anisms in this coordination between procyclic and blood-
stream forms.
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RNAi of the newly identified cyclin and CRK homologues. The data 
shows the effect of RNAi on each individual novel cyclin and CRK. Pro-
cyclic form (29-13) cells were transfected with pZJM vectors carrying 
short (300-500 bp) fragments of the newly identified cyclin and CRK 
genes as indicated. Cell lines were selected using phleomycin and cloned. 
RNAi was induced by addition of tetracycline (10 g/ml) and cell growth 
monitored daily using a hemocytometer. Insets show mRNA levels after 
RNAi for 2 days estimated by semi-quantitative RT-PCR. -Tubulin was 
included as a loading control.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-10-68-S1.PDF]

Additional file 2
Morphology of CRK9 depleted cells. The data shows additional staining 
and morphology of CRK9 depleted cells to highlight the microtubules and 
the flagellum. Control and cells depleted of CRK9 by RNAi were fixed, 
stained with anti-tyrosylated tubulin (marker for basal bodies) YL1/2 and 
anti-paraflagellar rod antibody (L8C4) and examined by fluorescence 
microscopy.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-10-68-S2.PDF]

Additional file 3
Sequence alignment among the newly identified CRK homologues. 
The figure shows an alignment of the newly identified CRK homologues 
with the three CRKs 1, 2 and 3 whose functions have been demonstrated 
in previous studies, using the MacVector software. Residues important for 
catalysis, binding or the putative active site are indicated. A cartoon 
depicting the various domain structures of CRK9 compared with the well 
characterized CRK1-3 is shown in the top panel.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-10-68-S3.PDF]

Additional file 4
Predicted structure of CRK9. The figure shows the predicted structure of 
CRK9, obtained by submitting the sequence of CRK9 to the EasyPred 3D 
structure prediction server, http://www.fundp.ac.be/sciences/biologie/
urbm/bioinfo/esypred. The predicted structure of CRK1 is shown alongside 
that of CRK9 (top panel). Some of the important residues are highlighted 
in colors (red, catalytic aspartic acid, blue, catalytic lysine, dark green, 
GxGxxG motif required for ATP binding, brown, PSTAIRE motif required 
for cyclin binding). The structures of the two proteins were also overlaid 
(bottom panel) and crucial residues highlighted.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-10-68-S4.PDF]

Additional file 5
CRK9 RNAi in bloodstream form cells. The data presented here shows 
that CRK9 depletion has no effect on bloodstream form cells. The pZJM-
CRK9 vector was transfected into 90-13 bloodstream form T. brucei cells, 
selected with phleomycin and followed by single cell cloning. RNAi was 
induced as previously described and cell number monitored daily. Real 
time quantitative RT-PCR was used to monitor the depletion of CRK9 
after 2 days of RNAi (insets); with -tubulin serving as the loading con-
trol.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-10-68-S5.PDF]

Additional file 6
Localization of CRK9 in bloodstream form cells. The data shows that 
CRK9 localizes to the nuclei of bloodstream form cells. The pc-CRK9-
3HA-BLA plasmid was linearized, transfected into 90-13 bloodstream 
form T. brucei cells, and stable cell lines were selected using blasticidin 
(10 g/ml) and cloned to express CRK9-3HA at the endogenous level. 
Transfected and control cells were analyzed by Western blotting for the 
HA tag as indicated (A). The blot were stripped and probed with anti--
tubulin antibody to verify equal sample loading. Localization of CRK9 was 
determined by fixing and staining the transfected cells with a FITC-con-
jugated anti-HA antibody (B). DAPI was used to visualize the nucleus 
and kinetoplast and merged images were created using the imageJ soft-
ware.
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