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Abstract

Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess
of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the
contrary, limiting glucose (i.e., calorie restriction) slows aging and age-related diseases in most species. Understanding the
mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related
diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span
by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as
reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also
increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-
signaling pathways in life span regulation. In agreement, constitutive activation of the Ga subunit acting downstream of
Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was
documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive
glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen
species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie
restriction and the Dgit3 mutation was accompanied by increased respiration and lower reactive oxygen species production.
Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe
life span.
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Introduction

Glucose is the major carbon source entering the metabolic

pathways. Glucose ultimately generates ATP to supply the energy

necessary for the cell biosynthetic and functional demands.

Substantial evidences support the idea that excess glucose acts as

a pro-aging and pathogenic factor [1,2]. Consistently, lowering

glucose intake in a calorie restriction diet increases life span in

many species, from yeasts to mammals [3,4].

Research carried out in Saccharomyces cerevisiae has been fruitful to

unravel the role of nutrient sensing in longevity. Mutations

blocking the action of genes controlling nutrient- signaling

pathways increase replicative life span (RLS), defined as the

number of times a mother yeast cell produces a daughter cell [5–

10]. For instance, genetic deletion of PKA signaling via Gpr1 or

Gpa2 genes resulted in the extension of RLS [11]. Likewise,

nutrient-signaling shortens chronological life span (CLS), the time

a yeast population remains viable in stationary phase [12–15]. In

other words, nutrient-signaling pathways have a pro-aging effect in

budding yeast. So far, mutations found to increase life span in S.

cerevisiae map to genes that respond to multiple nutrients, such as

the PKA, Sch9 and Tor pathways [16]. Glucose is the major

source of calories for yeast. Experimentally, calorie restriction (CR)

is achieved by reducing the concentration of glucose in S. cerevisiae

cultures. Under these conditions, yeast cells exhibit an increase in

both their replicative life span, and their CLS. It is therefore

possible that nutrients, and more particularly the glucose-signaling

pathway, are major regulators of the effects of calorie restriction

on aging.

In yeast, the connection between nutrient sensing and

mitochondrial activity has been depicted in different contexts.

This regulation of mitochondria allows yeast to adapt its energy

metabolism to the available nutrients, and is crucial for the control

of longevity [16]. Several genetic studies demonstrate that forcing

S. cerevisiae to use respiration instead of fermentation induces a gain

in both chronological and replicative life span [17–20]. To

summarize, the activity of nutrient-signaling pathways seem to

promote aging by inhibiting both stress resistance and respiration.

However, the predominance and the interdependence of each of

these two functions, metabolic changes and signaling in the control

of longevity are still nebulous.

Our laboratory introduced Schizosaccharomyces pombe as a model

organism for the study of chronological aging [21]. The use of this

particular yeast is justified by the differences existing with budding
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yeast in traits that can potentially affect longevity. Both have been

referred as Crabtree-positive yeast because of their capability to

repress mitochondrial respiration in favour of glycolysis when

glucose is abundantly available [22]. Nevertheless in fission yeast,

the Crabtree effect is less pronounced than in S. cerevisiae since the

inhibition of oxygen consumption by glucose is smaller; in other

words S. pombe maintains a higher respiration rate in the presence

of glucose [22]. Consistently, it is hard to isolate respiratory-

deficient cells (petite) in S. pombe [23,24], while these mutants occur

spontaneously in S. cerevisiae. Furthermore, S. pombe differs from S.

cerevisiae because of its lack of glyoxylate cycle that makes it

inefficient in ethanol consumption as carbon source [25,26].

Finally, fission yeast is also distinguishable in its mitochondrial

inheritance which is mediated by microtubules like in higher

eukaryotes [27].

In the present study, we wished to determine whether glucose

metabolism or extracellular glucose signaling is responsible for the

regulation of life span. We found that environmental glucose

decreases CLS in S. pombe in a dose-dependent manner, and this

effect is mimicked in cells lacking the glucose receptor Git3p, a G

protein-coupled receptor (GPCR) which signals the presence of

glucose in the medium through a cAMP/PKA pathway [28,29].

Consistently, the constitutive activation of the Ga subunit of the G

protein-coupled to the glucose receptor significantly decreases

CLS. Deletion in the Git3/PKA signaling is characterized by

higher oxidative stress defense, respiration and mitochondrial

membrane potential; the same features observed in CR.

Interestingly, CR has no effect either on stress defense or longevity

in the strain constitutively activated for Git3/PKA (by mutational

activation of the Ga subunit), although it still enhances respiration.

Knockout of S. pombe hexokinase genes (hxk1 and hxk2), which are

required to channel extracellular glucose into glycolysis, does not

extend CLS in S. pombe. On the contrary, these mutant yeast

strains accumulated glucose in the medium, exhibited increased

glucose signaling and accelerated aging. Reduction of extracellular

glucose or mutation of the glucose receptor Git3p rescued their

aging phenotype. Altogether, our data suggest that glucose

signaling constitutes the main pathway in the pro-aging effect of

glucose in fission yeast.

Results

Growth on Glucose Decreases Chronological Life Span in
Fission Yeast

To study the effects of glucose concentration on CLS, wild-type

S. pombe cells were cultured in rich medium with different

concentrations of glucose. Survival was assessed by counting

colony forming units (CFU) as a function of time, after cells

entered stationary phase [21]. Decreasing the concentration of

glucose from 2% to 0.05% resulted in a dose-dependent extension

of chronological life span (Figure 1A). Cultures with higher glucose

concentration exhibited a premature appearance of aged-cell

phenotype upon entering the stationary phase. This phenotype is

characterized by a shrunken shape and oversized vacuoles

(Figure 1B). DNA content analysis by flow cytometry revealed

that cells cultured in glucose 2% and 0.2% displayed a typical G2

cell-cycle arrest in stationary phase (data not shown). Moreover, the

cells had similar doubling times at different glucose concentrations

during the exponential growth phase of the culture (Figure S1).

Aging in yeast results in part from cellular damage due to the

accumulation of reactive oxygen species (ROS) [30]. In agree-

ment, cells cultured in higher glucose concentrations accumulated

more ROS than cells grown at lower glucose concentrations, as

shown by staining with dihydrorhodamine 123 and dihydroethi-

dium (Figure 1C and 1D and Figure S2). On the other hand,

culturing cells in SMC medium lacking glucose and containing

glycerol as carbon source increased chronological longevity up to

tenfold longer than in 2% glucose (Figure 1E). Glycerol as sole

carbon source forces the cell metabolism toward mitochondrial

respiration, as evidenced by the diminished growth rate and the

rise in oxygen consumption [31]. Altogether, these results confirm

that the relationship between nutrition and longevity in S. pombe is

similar to that observed in other model organisms.

A GPCR-Initiated Signaling Pathway Mediates Pro-Aging
Effects of Glucose in S. pombe

A number of mechanisms could account for the pro-aging

effects of glucose in S. pombe. For instance, the effect of glucose on

aging could be due to extracellular glucose sensing (signaling

pathway) or through intracellular glucose effects including glucose

metabolism and cytoplasmic glucose sensing. To distinguish

between them, we studied a strain deleted for the git3+ cytoplasmic

membrane glucose receptor gene. S. pombe cells lacking this

receptor (Dgit3) exhibited extension of their CLS (Figure 2A),

suggesting that the pro-aging effects of glucose depends, at least in

part, on the activation of a signaling pathway initiated by this

receptor. To further confirm this idea, we used a constitutively

active Ga subunit (Gpa2R176Hp) that acts downstream of Git3p in

the glucose-signaling pathway. Gpa2R176Hp constitutively activates

the PKA kinase independently of the presence of glucose by

promoting the synthesis of a high level of cAMP [28,32]. As

expected, cells expressing this activated Ga protein displayed a

significantly reduced CLS (Figure 2A).

To confirm that Dgit3 and gpa2R176H cells have decreased and

increased glucose signaling, respectively, we took advantage of the

fact that in S. pombe, glucose represses the transcription of the

fructose-1,6-bisphosphatase fbp1+ gene via PKA activation [33,34].

We used an fbp1-driven lacZ reporter integrated in the S. pombe

genome to measure fbp1 transcription [35,36]. Thus, the b-

galactosidase activity inversely reflects the level of PKA activation

in this glucose-sensing pathway. As expected, at late logarithmic

Author Summary

Lowering caloric intake by limiting glucose (the preferred
carbon and energy source) increases life span in various
species. Excess glucose can have deleterious effects, but it
is not clear whether this is due to the caloric contribution
of glucose or to some other effect. Glucose sensed by the
cells activates signaling pathways that, in yeast, favor the
metabolic machinery that makes energy (glycolysis) and
cell growth. The sensing of glucose also reduces stress
resistance and the ability to live long. Does glucose
provoke a pro-aging effect as a result of its metabolic
activity or by activating signaling pathways? Here we
addressed this question by studying the role of a glucose-
signaling pathway in the life span of the fission yeast S.
pombe. Genetic inactivation of the glucose-signaling
pathway prolonged life span in this yeast, while its
constitutive activation shortened it and blocked the
longevity effects of calorie restriction. The pro-aging
effects of glucose signaling correlated with a decrease in
mitochondrial respiration and an increase in reactive
oxygen species production. Moreover, a strain without
glucose metabolism is still sensitive to detrimental effects
of glucose due to signaling. Our work shows that glucose
signaling through the glucose receptor GIT3 constitutes
the main cause responsible for the pro-aging effects of
glucose in fission yeast.

Pro-Aging Effects of Glucose Signaling
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Figure 1. Pro-aging effects of glucose in S. pombe. (A) Chronological life span of a wild type strain measured at different glucose concentrations
in YEC by colony forming unit (CFU) counting. Percent on the graphs refers to the concentration of glucose. Survival (Y axis) is expressed as the ratio
of the number of colonies at a given time-point on the number of colonies at the beginning of stationary phase (100%). (B) Morphology of wild type
cells at glucose 2% and 0.2% observed under microscope by Nomarski at early exponential phase and stationary phase (day 8). (C) ROS

Pro-Aging Effects of Glucose Signaling
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phase, deletion of git3+ increased expression of this reporter, while

the gpa2R176H mutation reduced its expression (Figure 2B).

Consistently, culturing WT cells in low glucose conditions also

increased fbp1-lacZ expression (Figure 2B).

Since chronological aging in yeast is linked to the accumulation

of ROS [21,30,37], we next measured the levels of ROS in Dgit3

and gpa2R176H cells. As expected, deletion of the glucose receptor

reduced ROS levels, while the constitutive activation of the

glucose-signaling pathway increased ROS levels (Figure 2C).

Although these results suggest that glucose signaling regulates

aging independently of glucose utilization, it is possible that loss of

the glucose-signaling pathway reduces glucose metabolism in this

mutant. Indeed, the PKA pathway is known to control glucose

intake via the regulation of hexose transporters responsible for

glucose import in S. cerevisiae [38,39]. We thus measured glucose

consumption and found that mutations affecting the glucose-

signaling pathway did not change the rate of glucose consumption

(Figure S3). In conclusion, these results suggest that the glucose-

signaling pathway controls chronological aging independently of

glucose intake and utilization.

Calorie Restriction and Disabled Glucose Signaling
Increase Respiration

Experimentally, the intervention referred as calorie restriction

(CR) is achieved by reducing the calorie intake of an organism and

represents the most effective way to increase life span [3]. This

phenomenon has been verified in almost all species studied, from

yeast to mammals [7,40] including non-human primates [41]. CR

improves general health and delays the inception of many late-

onset diseases in a variety of organisms [42].

In S. cerevisiae, calorie restriction is implemented by culturing the

cells on low glucose concentrations [5,15,43]. Above, we showed

that culturing S. pombe in low glucose decreases glucose signaling,

and demonstrated that mutations affecting this signaling pathway

increase the life span of S. pombe when cultured on high glucose

concentration.

Increased respiration correlates with longevity in yeast [17,20],

and mammals [4]. In yeast, low glucose availability leads to a

switch of the pyruvate metabolism from fermentation toward

mitochondrial tricarboxylic acid cycle and respiration [26,44]. To

determine if mutations in the glucose-signaling pathway affect

respiration in S. pombe, we measured the oxygen consumption of

long-lived Dgit3 and short-lived gpa2R176H cells. In high glucose, we

observed that Dgit3 cells display a higher level of oxygen

consumption as compared to that of WT (Figure 3A). The effect

of respiration on the mitochondrial membrane potential (Dym)

was determined using the DiOC6 dye and showed that the Dym in

stationary phase cells was higher in Dgit3 compared to WT cells

(Figure S4). Interestingly, WT cells cultured in 0.2% glucose

exhibited a higher level of oxygen consumption than the Dgit3

mutant in 2% glucose (Figure 3A), and an increased mitochondrial

membrane potential (Dym) in early exponential phase (Figure S4).

This could explain why CR is slightly more efficient than the git3+

deletion in extending CLS (Figure 2A). Higher respiration was

concomitant with a better growth on respiration medium (glycerol

3%) of both, WT cells previously grown on CR conditions and

Dgit3 cells grown on either normal or CR conditions (Figure 3B).

In addition to glucose repression, the participation of the PKA/

cAMP-mediated signaling pathway in mitochondrial functions has

been suggested in budding yeast [45,46]. Our data and the

observation that pka1+ deletion increased respiration as well (not

shown) support the involvement of Git3/PKA in the regulation of

mitochondrial functions in fission yeast.

To investigate if Git3/PKA is the only pathway regulating the

metabolic switch toward mitochondrial respiration during CR, we

subjected Dgit3 cells to CR and measured respiration. We

observed an increase in respiration when Dgit3 mutation was

combined to CR compared to Dgit3 cells in 2% glucose (Figure 3A

and C). Hence, CR can increase respiration by mechanisms

independent of the glucose receptor Git3.

On the other hand, we observed that the activated Gpa2R176Hp

prevents the full activation of respiration induced by CR

(Figure 3D). These results are supported by the observation that

gpa2R176H cells did not grow on respiration medium (glycerol)

(Figure 3B). Moreover, as oxygen consumption of WT and Dgit3

cells was 30% higher than gpa2R176H cells in CR, we observed that

the Dym of Dgit3 and WT cells in stationary phase remained

higher than gpa2R176H cells (Figure S4). Altogether these data

suggest that CR and reduced glucose signaling are not equivalent,

and that Git3/PKA is involved in the control of respiration.

Calorie Restriction and Disabled Glucose Signaling
Increase Stress Resistance

Guarente and colleagues proposed that in yeast, CR increases

life span by increasing respiration but not oxidative stress

resistance [17]. However, another study from Kaeberlein and

collaborators contradicted these data. They showed that reducing

glucose levels increased replicative life span in respiratory-deficient

yeast [47]. We showed above that both CR and the Dgit3 mutation

increase respiration, while the gpa2R176H mutation decreased the

effect of CR on respiration. Combining CR and the Dgit3

mutation did not increase respiration over the values with CR

alone. However, the survival of Dgit3 cells was higher on CR than

that of WT cells (Figure 4A). On the other hand, CR did not

increase the respiration rate of the strain expressing activated

Gpa2R176Hp as this intervention did in WT cells (Figure 3D), and

this defect could partially explain its short life span (Figure 4B).

To investigate further whether the additive effect of CR and loss

of Git3p signaling involves respiration, cells were cultured in

20 mM of antimycine A, an inhibitor of complex III of the

mitochondrial electron transport chain, that creates a leakage of

electrons [48] and increases ROS production. Glucose restriction

and git3+ deletion together increased longevity in this high-ROS

context (Figure S5). This suggests that low glucose signaling

cooperates with other effects of CR acting downstream of ROS

production, perhaps stimulating ROS defense mechanisms.

Together, the data suggests that CR and reduced glucose signaling

are not equivalent and these manipulations can actually cooperate

to increase life span by a mechanism different than an increase in

respiration.

To investigate whether resistance to oxidative stress could

explain the longevity effects of CR and git3+ deletion, we next

study the effects of several pro-oxidants molecules on WT and

mutants S. pombe cells grown at high or low glucose concentrations.

measurements by DHR 123 staining in WT cells grown in 2% and 0.2% glucose. Yeast cells were stained at days 1 and 8 of the stationary phase, and
analysed under microscope. (D) Quantitation of ROS-positive cells in WT cells grown in 2% and 0.2% glucose. Yeast cells were stained at days 1, 4 and
8 of the stationary phase and counted under microscope. Data shown are mean6standard deviation of the mean of three independent samples
assayed. *, p,0.02; **, p,0.01, Student test, 2% glucose versus 0.2% glucose at a given day. (E) Chronological life span of wild type grown in SDC
medium supplemented with glucose 2% or glycerol 3%.
doi:10.1371/journal.pgen.1000408.g001
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First, CR and, to a lesser extent, loss of the Git3p GPCR increased

hydrogen peroxide and menadione resistance (Figure 4C). More-

over, CR strengthened the already high stress resistance of Dgit3

cells (Figure 4C). On the other hand, the resistance to both

hydrogen peroxide and menadione treatment in gpa2R176H cells

was significantly lower than in WT (Figure 4D). This stress

sensitivity could also explain the very short CLS of this mutant in

both high and low glucose.

We also measured the levels of cytosolic Cu/Zn-superoxide

dismutase (SOD1) and mitochondrial Mn-SOD (SOD2) by

quantitative PCR (Figure 4E). The importance of these two

enzymes for long-term survival was demonstrated in budding yeast

cultured in high glucose concentration [49]. No significant

differences of expression were seen, neither in SOD2 (Figure 4E)

nor in glutathione peroxidase (Gpx1, data not shown) for all the

mutants and growth conditions tested. Interestingly, WT cells on

CR showed no increased expression of SOD1 or SOD2 despite

their very high oxidative stress resistance (Figure 2C). On the other

hand, the deletion of glucose receptor increased significantly

SOD1 expression. This correlates with the gain of oxidative stress

resistance of this strain (Figure 4C). An unexpected three to six

time rise of SOD1 transcript was observed in the gpa2R176H

mutant, even if this strain displayed a very weak oxidative stress

resistance. This could be the consequence of a feedback

mechanism attributable to the very high production of ROS in

this strain (Figure 2C). Although further studies on the

mechanisms of stress resistance will be necessary, our data clearly

shows that glucose signaling regulates SOD1 expression in S.

pombe. Since SOD1 is not regulated by CR, it may be part of the

mechanism by which the git3+ deletion cooperates with CR to

increase the resistance to oxidative stress and life span.

Loss of Hexokinase 2 Activity Decreases Glucose
Metabolism, Increases Glucose Signaling and Promotes
Aging

In yeast, hexokinase 2 is responsible for channeling glucose into

metabolic pathways by catalyzing phosphorylation of this sugar. It

also has a function in glucose signaling in S. cerevisiae by promoting

the down-regulation of glucose-repressed genes [50,51]. Mutants

of hexokinase do not influence CLS but increase replicative life

span in S. cerevisiae [17,43]. In fission yeast, the glucose

phosphorylation activity is provided by two hexokinases (Hxk1p

and Hxk2p), but the main enzymatic activity is due to hexokinase

2 [50]. Loss of Hxk1p has no significant phenotype (data not shown)

and loss of Hxk2p dramatically decreases the growth rate in

glucose [50]. The double knockout of both hxk1+ and hxk2+ is not

viable on glucose [50]. To determine if hexokinase affects CLS in

S. pombe, we first measured the life span of an S. pombe Dhxk2

deletion strain. Unlike in S. cerevisiae, we observed a significant

decrease in CLS in this strain (Figure 5A).

We have shown above that glucose signaling mediates pro-aging

effects in S. pombe. Therefore, we reasoned that defective glucose

utilization in the Dhxk2 strain could result in an accumulation of

intracellular glucose followed by the inhibition of glucose import.

Moreover in S. cerevisiae, glucose can be re-exported in the

extracellular medium by the hxt hexose transporter [52]. In turn,

the high extracellular glucose concentration would lead to increase

the duration of glucose signaling. To test this hypothesis, we first

measured the glucose concentration in the medium during the

growth of both wild-type and Dhxk2 cells. We found that glucose

levels remained high in the Dhxk2 culture as compared to WT, and

that this strain has a very slow growth rate (Figure 5B). Congruently

with this observation, at early stationary phase Dhxk2 cells exhibited

increased glucose signaling in comparison with control cells, as

represented by the drop of fbp1-lacZ reporter expression (Figure 5C).

In budding yeast, hexokinase activity has been involved in glucose-

signaling pathways during exponential phase [53]. Our results do

not contradict, but support those observations since the Dhxk2

mutant has a defect in glucose signaling in exponential phase when

compared to wild type, as indicated by elevated fbp1-lacZ expression

(data not shown). However, the Dhxk2 mutant reaches stationary phase

with glucose in the medium and its short life span was completely

rescued when cultured in 0.2% glucose. As expected, culturing

Dhxk2 cells in low glucose resulted in a two-fold increase in b-

galactosidase activity indicating an increase in fbp1-lacZ reporter

expression. This shows a reduction in signaling through the Git3/

PKA pathway (Figure 5A and 5C). Taken together, the results are

consistent with the model that an increase in glucose signaling via

the Git3/PKA pathway accelerates aging in Dhxk2 mutants.

Glucose GPCR Git3p Promotes Aging in Absence of
Glucose Metabolism

The strain Dhxk2 still has the hexokinase 1 activity permitting

glucose metabolism (Figure 5B) [50]. To confirm the importance

of the pro-aging effect of glucose signaling isolated from the effect

of glucose utilization as energy source, we constructed a double

knockout of both hexokinases in fission yeast (hxk1+ and hxk2+).

These two mutations should prevent glucose from entering

glycolysis and the pentose phosphate pathway. However, so far

attempts to obtain this double mutant has been unsuccessful [50].

It was concluded that Dhxk1 Dhxk2 strain is not viable on glucose.

To circumvent this problem, we complemented Dhxk2 with a

plasmid expressing Hxk2p (pREP41_hxk2+) and crossed it with a

Dhxk1 strain. After sporulation of the diploid, we selected for

offspring containing both Dhxk1 and Dhxk2 deletions and the

plasmid pREP41_ hxk2+. Then we allowed the strain to lose the

hxk2+ plasmid in a medium containing only glycerol as carbon

source and picked clones without plasmid. Because we obtained

viable double mutants, we concluded that hexokinase activity and

possibly glucose phosphorylation was required for sporulation but

not for survival in S. pombe. Using the same approach, the triple

knockout, Dhxk1 Dhxk2 Dgit3 was created.

These mutants Dhxk1 Dhxk2 and Dhxk1 Dhxk2 Dgit3 could not

grow when switched on plates with only glucose as carbon source.

After at least ten days of incubation however, in some plates we

observed for both strains clones that grew on glucose at a

frequency between 1026 to 1027 (data not shown). The appearance

of such clones was attributed to genetic reversion due to the nature

of hexokinase 2 knockout that was created by insertion of a marker

rather than complete suppression of the open reading frame [50].

Mutants Dhxk1 Dhxk2 and Dhxk1 Dhxk2 Dgit3 were grown in

glycerol as a carbon source for around two divisions with a

Figure 2. Reduction of CLS due to glucose requires signaling via the glucose receptor and G protein. (A) CLS of constitutively activated
G protein mutant gpa2R176H and deletion of glucose receptor Git3p (Dgit3) in 2% glucose compared to wild type in 2% and 0.2% glucose. On the
graphs, 2% and 0.2% refers to the concentration of glucose at the start of the culture. (B) b-Galactosidase activity of strain with fbp1-lacZ reporter
whose expression is repressed by signaling via the Git3/PKA pathway. Cells were collected at late exponential phase and b-Gal activity was measured.
(C) Accumulation of ROS-positive cells at day 4 of stationary phase in Dgit3 and gpa2R176H grown in 2% and 0.2% glucose. Data shown are
mean6standard deviation of the mean of three independent samples assayed. N, p,0.1; *, p,0.02; **, p,0.01, student test, WT versus mutant at the
same glucose concentration.
doi:10.1371/journal.pgen.1000408.g002

Pro-Aging Effects of Glucose Signaling
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Figure 3. Respiration rate is increased in both CR and in strains with defects in glucose signaling. (A) Oxygen consumption measured
using a Clark electrode for WT in low and high glucose, and for glucose receptor deleted strain Dgit3. Owt, Ogit3 represents the average of the
oxygen consumption in exponential phase (calculated with OD595,7 at 2% glucose and OD595,2.1 at 0.2% glucose). (B) Growth of WT, Dgit3 and
gpa2R176H switched from fermentative glucose medium to respiratory glycerol medium. (C) Oxygen consumption of Dgit3 at 0.2% glucose as
compared to wild type. (D) Oxygen consumption for constitutively active Ga subunit (gpa2R176H) in low and high glucose as compared to WT. Owt,
OGpa2* represents the average of the oxygen consumption in exponential phase (calculated with OD595,7 at 2% glucose and OD595,2.1 at 0.2%
glucose).
doi:10.1371/journal.pgen.1000408.g003

Pro-Aging Effects of Glucose Signaling
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doubling time of around ten hours. At this point, they were spotted

on plates containing glycerol plus glucose (Figure 6A). The double

mutant Dhxk1 Dhxk2 did not grow on glycerol with 2% glucose, but

it did on glycerol with 0.2% glucose. This result is consistent with

the idea that the absence of hexokinase activity leads to a sustained

and toxic glucose signaling. In agreement, the impaired growth of

the double hexokinase mutant on glycerol plus glucose 2% was

completely restored by a deletion in the glucose receptor git3+

(Figure 6A).

To assess whether the increase in glucose signaling of the double

hexokinase knockout decreases the viability in stationary phase

(chronological aging), we added 2% glucose to liquid cultures at

late exponential phase (OD595 5–6). Then, viability was evaluated

as a function of time by counting the number of living cells per mL

(Figure 6B). After glucose addition, cultures with and without

glucose needed two-day incubation to reach saturation corre-

sponding to OD595 13 to 16. The Dhxk1 Dhxk2 double deletion

mutant exposed to 2% glucose displayed striking loss of viability

24 hours after glucose addition in comparison to cultures with no

added glucose (Figure 6B). This loss of viability was prevented by

CR (0.2% glucose) or by deletion of git3+ (Figure 6B). To further

characterize the loss of viability induced by glucose in double

hexokinase knockout strains, we stained yeast cells with Phloxin B,

a dye accumulated by dead cells. We found a high proportion of

stained cells (30%) at 18 hours after glucose addition in

comparison to 5% in control cells (Figure 6C). Notably, Phloxin

B stained cells were longer and displayed oversized vacuoles, a

typical phenotype of aging in yeast (Figure 6C). ROS production

was evaluated 36 hours after glucose addition by flow cytometry

with DHE staining. A considerable number of DHE stained Dhxk1

Dhxk2 cells was observed in the culture with 2% glucose

(Figure 6C). Again, Phloxin B staining and the increase in ROS

were prevented by CR (glucose 0.2%) or deletion of git3+

(Figures 6B and C).

Our results show that glucose signaling via the Git3p GPCR is

required for the pro-aging effects of glucose in S. pombe and is

sufficient to mediate detrimental effects even in the absence of

glucose consumption.

Discussion

Excessive glucose signaling has been associated with humans

diseases such as diabetes, as well as with the less understood

process of aging [54]. Several mechanisms have been proposed for

the harmful effects of glucose. Glucose can be directly toxic to cell

components because it can promote non-enzymatic glycosylation

and the accumulation of advanced glycation end products (AGE)

which impair cellular functions [55,56]. Excess glucose metabo-

lism can also be deleterious because glucose oxidation increases

the source of electrons to the mitochondrial respiratory chain in

the form of NADH. In cells with a very active glucose metabolism,

excess electrons can promote the generation of deleterious ROS if

there is no matching increase in the efficiency of electron transport

[54,57]. Glucose and/or nutrient-signaling pathways also control

life span in various species including yeast [15]. The data raise the

question about the relative contribution of signaling and

metabolism to the regulation of life span [58].

Here we examined this question in S. pombe using mutants of the

Git3/PKA glucose-signaling pathway. In this pathway, PKA

kinase is activated by glucose signaling through the Git3p G

protein-coupled receptor (GPCR), which results in the Ga subunit

(Gpa2p)-mediated activation of adenylate cyclase [29] as repre-

sented in Figure 7. This, in turn, produces a linear increase in

cAMP levels. The cAMP is bound by the Cgs1 regulatory subunit

of Pka1 kinase, activating PKA. The consequence is a re-

localization of PKA to the nucleus followed by the inhibition of

the Rst2 transcription factor, an increase in stress sensitivity and a

decrease in cell survival [21,33,59]. We previously demonstrated

the importance of cAMP/PKA pathway in regulating S. pombe

aging by showing that knocking out the only catalytic subunit of

the PKA complex results in increased chronological life span as

well as enhanced stress resistance [21]. However, other nutrient-

signaling pathways may activate PKA complex in yeast, so the

specific role of glucose signaling in the longevity of S. pombe was

unknown.

We show here that low glucose levels increase CLS in S. pombe, a

typical CR response. Also, mutants with a defective Git3/PKA

pathway have an increased life span, a normal glucose

consumption rate, and only a slightly reduced growth rate. The

reverse is also true. High glucose concentration, acting through the

Git3/PKA pathway, promotes aging and decreases stress defense

and respiration. Likewise a constitutively active Ga subunit,

normally coupled to the Git3p GPCR, mimics the effects of high

glucose even in low glucose.

Further support for a role of glucose signaling in the control of

CLS in S. pombe was obtained by studying hexokinase deletion

strains. These mutants die prematurely in stationary phase

concomitant with prolonged stimulation of Git3/PKA signaling.

Since cells without hexokinase cannot metabolize glucose, these

results suggest that sustained glucose signaling, caused by the

excess of extracellular glucose that remains in the medium of

hexokinase mutants, promotes aging in S. pombe. The loss of Git3p

GPCR blocks the detrimental effects of glucose in double

hexokinase mutant. This suggests that glucose exerts a strong

pro-aging effect via the Git3/PKA signaling pathway. Notably, the

premature death of double hexokinase mutant due to high glucose

is concomitant with an accumulation of ROS.

It is remarkable that the effect of deleting hexokinases differs

between S. pombe and S. cerevisiae. In the budding yeast, deletion of

all major hexokinases (glucokinase, hexokinase 1 and 2) impairs

cAMP production and activation of the PKA pathway [60].

Conflicting with these data, we show that in S. pombe, hexokinase

mutants die prematurely due to sustained signaling through this

pathway. Careful examination of our results also reveals that

hexokinase mutants have a defective PKA pathway during the

exponential phase of the cultures. However, these mutants in S.

pombe enter stationary phase with high concentrations of glucose in

the medium and a continual activity of the Git3/PKA pathway

Figure 4. Correlation between longevity and stress resistance of WT S. pombe in CR or in mutants of the glucose-signaling pathway.
Longer chronological life span correlates with higher mitochondrial respiration and increased oxygen stress resistance, except with GpaR176H strain
where loss of survival correlates only with weaker oxidative stress resistance. (A) CLS of Dgit3 grown in 2% and 0.2% glucose as compared to wild
type. (B) Chronological life span of gpa2R176H grown in 2% and 0.2% glucose. (C) Oxidative stress resistance measured in WT, Dgit3 and gpa2R176H after
short treatment of H2O2 and menadione. Cells were collected at day 1 of stationary phase and submitted to oxidative stressors before plating. (D)
Oxidative stress resistance measured in WT and gpa2R176H at weak dose of H2O2 and menadione. (E) Transcript levels of cytosolic and mitochondrial
superoxide dismutase (SOD1 and 2) normalized to wild type cells as measured by quantitative RT-PCR. Total RNAs were isolated in cells collected at
day one of stationary phase. The transcript levels were normalized on two constitutively expressed genes. Standard deviations were calculated on
three independent experiments; student test was done comparing with wild type at glucose 2%. *, p,0.01.
doi:10.1371/journal.pgen.1000408.g004
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that is responsible for their premature aging. In contrast,

hexokinase mutants in S. cerevisiae have longer RLS and a normal

CLS [8,43]. This apparent discrepancy could be the result of

particular differences in the glucose-signaling pathways and energy

metabolism between S. pombe and S. cerevisiae. For instance, the

regulation of glycolysis is different between these two yeasts. S.

cerevisiae growth on glucose is sensitive to trehalose biosynthesis

whereas S. pombe is not [61].

Figure 5. Hexokinase 2 mutant has a decreased survival and an increased glucose signaling in stationary phase. Impairing glucose
metabolism strongly decreases CLS and increases Git3/PKA signaling in late exponential phase cells. This pro-aging effect is lost when less glucose is
provided. (A) CLS of WT and Dhxk2 in low and high glucose concentration. (B) Glucose consumption according to growth in WT and Dhxk2 cultured
in 2% and 0.2% glucose. (C) b-Galactosidase activity of Dhxk2 with fbp1-lacZ reporter. Cells were collected at late exponential phase and b-
galactosidase activity was measured.
doi:10.1371/journal.pgen.1000408.g005
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Figure 6. Git3p-dependent glucose signaling promotes aging in the absence of glucose metabolism. (A) Survival of Dhxk1 Dhxk2 and
Dhxk1 Dhxk2 Dgit3 cells shifted from liquid culture with glycerol to solid media with glycerol, without or with glucose 0.2% or 2%. The growth of
double hexokinase mutant on respiratory media plus glucose 2% is possible only with deleted Git3p-mediated signaling. 1 to 104 represents the
factors of dilution. (B) Quantification of living cells of Dhxk1 Dhxk2 and Dhxk1 Dhxk2 Dgit3 grown in respiratory media supplemented with glucose.
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Despite the very significant role of Git3/PKA pathway in the

pro-aging effect observed in the double hexokinase mutant, our

work showed that the signal from the Git3p GPCR dependent

pathway is not the only regulator of all the effects on aging due to

glucose. First, in minimal medium completed (SDC), lowering

glucose concentration had no effect on longevity (data not shown).

Nevertheless, glucose decreased longevity when S. pombe were

grown in synthetic medium based on yeast nitrogen base [26].

Other nutrient limitation is suspected to affect PKA-regulated

processes. For instance, conjugation efficiency is controlled in both

Git3/PKA cAMP-dependent manner and in a cAMP/PKA

independent manner sensitive to medium composition [62]. This

The number of living cells per mL is calculated as the number of colony forming units on solid glycerol medium per mL of culture. Averages and
standard deviations were calculated on three independent cultures. Left panel, Dhxk1 Dhxk2; right panel, Dhxk1 Dhxk2 Dgit3. (C) Microscopy analysis
of double hexokinase mutants with vital dye Phloxin B applied 18 hours after glucose addition. The percentage under each picture represents the
ratio of fluorescent cells counted under microscope on 500 cellules. (D) ROS production estimated by flow cytometry using DHE staining. This assay
was carried out 36 hours after glucose addition. Left panel, increase of DHE staining was observed only in Dhxk1 Dhxk2 with glucose 2%,
corresponding to premature aged cells. Right panel, summary of flow cytometry results of DHE-fluorescing cells (M2 population). In Dhxk1 Dhxk2,
90% of the cells displayed about a 3 times greater fluorescence intensity between no glucose and glucose 2%. Three independent cultures were
analysed for averages and standard deviations.
doi:10.1371/journal.pgen.1000408.g006

Figure 7. A glucose-signaling pathway involved in fission yeast longevity. Glucose availability is sensed through two major pathways in
fission yeast, the Git3/PKA pathway and the glucose repression pathway. Each of these pathways regulates mitochondrial functions. In the present
study, we underlined the importance of Git3/PKA dependent signaling in longevity versus the glucose repression pathway and the metabolic effect
of glycolysis. Git3/PKA signal inhibits mitochondrial respiration, oxidative stress response and promotes ROS formation and pro-aging phenotypes.
Discontinuous line represents functions inferred by homology with S. cerevisiae. Question mark represents the possible role of mitochondria in aging
besides ROS production.
doi:10.1371/journal.pgen.1000408.g007
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PKA-independent nutrient sensing could mimic the effect of

glucose restriction in rich medium and may explain why the life

span of S. pombe grown in SDC is not affected by glucose. This

explanation is consistent with the fact that the respiration rate in

2% glucose is higher in synthetic medium than in rich medium

(complex medium) [26]. Another indication that the signal from

the Git3/PKA pathway is not the only one to control the rate of

aging is provided by the glucose receptor mutant (Dgit3). This

deletion strain still responds to CR with a higher oxidative stress

resistance, lower ROS levels and an increased survival (Figure 4C,

2C and 4A). In agreement, studies in Caenorhabditis elegans [63],

Drosophila [64] and mice show that disabling the insulin/IGF-1

signaling pathway can cooperate with CR to increase longevity

[65–72]. What are the other possible mechanisms by which

glucose could accelerate aging in S. pombe?

In budding yeast, glucose activates the glucose repression

pathway, which is regulated by the AMP-activated protein kinase

(AMPK) Snf1p complex [53,73]. So the Git3/PKA-independent

effect of glucose could be explained by the activation of AMPK

complex which affects aging in yeast and metazoans [74,75]. Our

S. pombe hexokinase deletion mutants are expected to be defective

in this pathway [53,76] but they still age prematurely when grown

in high glucose concentrations, suggesting that glucose repression

is not involved in the pro-aging effects of glucose. Conversely, we

could not discard the possibility that some pro-aging effects of

glucose are mediated by the non-enzymatic glycosylation of

proteins by glucose. Nevertheless, altogether our data point toward

a regulation of longevity primarily via the glucose signaling

through Git3/PKA pathway, raising the question about the

underlying mechanisms. Although further work is required to

discover the mechanisms by which glucose signaling accelerates

aging in S. pombe, our current evidence points to the mitochondria

as the target of glucose signals. First, CR (low glucose) in wild type

yeast enhances respiration and mitochondrial membrane poten-

tial, prevents ROS production and improves oxidative stress

defense. Second, Dgit3 cells have a similar phenotype and, in

addition this strain displays a higher expression of cytosolic

superoxide dismutase in stationary phase. These could explain the

additional longevity of Dgit3 cultured under CR conditions

(Figure 7).

In yeast, the cAMP/PKA glucose sensing pathway possibly

represents the ancestor pathway of insulin/IGF-1 signaling in

multicellular eukaryotes. This pathway signals the presence of

glucose, the preferred energy source. It also controls stress

resistance, growth rate and sexual development, modifies mito-

chondrial metabolism, and ultimately controls life span as we have

shown in this study. Similar to our observations for the Git3/PKA

pathway in fission yeast, a decrease in the insulin/IGF-1 signal

increases longevity as a function of CR in mammals. The extent to

which dietary restriction may actually be effective in humans is still

unknown. Our results also show that CR and loss of the Git3p

GPCR cooperate to increase life span. This suggests that if this

pathway is conserved in higher organisms, its inhibition may lead

to an anti-aging treatment not relying on strict diets with a limited

caloric content as used in animal research. Interestingly, inhibition

of cAMP synthesis by the knockout of the type 5 adenylyl cyclase

(AC5) gene induced Raf/MEK/ERK-dependent stress resistance

and lengthened life span in mice [77]. The effect of reducing

glucose signaling in S. pombe also results in a decreased cAMP

synthesis in response to glucose, because Git3p, via Gpa2ap,

activates adenylate cyclase [32]. Since CR and inhibition of

glucose signaling cooperate to extend life span in S. pombe, it would

be interesting to combine agents that reduce cAMP synthesis or

reduce PKA activity with CR in mammals.

In conclusion, our work with S. pombe highlights the importance

of glucose-signaling pathways and oxidative stress resistance in

aging. Given the importance of glucose as a central metabolite, it is

surprising that the pathway for glucose sensing existing in S. pombe

has not been found yet in mammals. Whether a glucose receptor

contributes to these signaling pathways in metazoans remains to be

demonstrated. Our data together with the interesting phenotype of

the AC5 KO mice provide the rationale for further inquiry into

glucose sensing pathways in mammals.

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki.

Media and Yeast Strains
MM refers to Edinburgh Minimal Medium [78] complemented

by adenine, uracil, leucine and/or histidine 75 mg.L21 (A,U,L,H).

SMC refers to synthetic medium complemented and is composed

of MM plus adenine, uracil, leucine and/or histidine 444 mg L21

(A,U,L,H). Its composition is described in a previous study [21].

The same medium with glycerol 3% ethanol 0.2% for carbon

source was named SMC glycerol. Mating and sporulation were

carried out on MEA plates (bacto malt extract 3%, glucose 0.4%,

pH 5.5, supplemented by adenine, histidine, uracil, leucine

225 mg.L21 each). Yeast extract complete medium (YEC), was

made of yeast extract 5 g.L21 (BD, Difco) supplemented with

222 mg.L21 of adenine, uracil, leucine and histidine, and glucose

2% unless otherwise specified. All cultures were incubated at 30uC
in a rotating incubator shaker at 250 rpm (New Brunswick

instrument).

Growth curves represent the average of three independent

cultures. Morphological analysis of wild type cells in YEC glucose

0.05%, 0.2%, 0.5% or 2% was done in 10 mL cultures in 50 mL

conic tubes with air-permeable cap grown overnight. Early log

phase refers to OD595 0.5.

The strains used in this work are all described in supplementary

Table 1. Wild type refers to strain SP14000, except for Figure 2B,

5C, S4 in which it refers to FWP87. The gpa2R176H (RWP1) [32]

Dgit3 deletion (CHP984) [28], Dhxk1 and Dhxk2 deletions

(CJM387, CJM389) [50] alleles were previously described.

The double Dhxk1 Dhxk2 mutant was constructed as follows.

Dhxk2 (CJM389) was transformed with a plasmid bearing the hxk2+

ORF, previously amplified by PCR and inserted into the SalI site

of pREP41 (pREP41_Hxk2). PCR primes sequences will be

provided upon request. The Dhxk2 pREP41_Hxk2 strain

(SP14405) was mated with Dhxk1 (CJM387). Corresponding

diploids were sporulated in MES media and spores hxk1::ura4+

hxk2::his3+ harbouring the pREP41_Hxk2 plasmid were selected

on MMA media. Haploids were grown to saturation in liquid

SMC supplemented with adenine and leucine 222 mg.L21 and

with glycerol 3%, ethanol 0.2% as carbon sources. Then, they

were diluted in the same fresh medium and cultured a second time

to saturation in order to force cells to lose pREP41_Hxk2 plasmid.

At this point, clones without plasmids were selected on plates SMC

AL glycerol. The loss of pREP41_Hxk2 plasmid was validated by

verifying that these clones Dhxk1 Dhxk2 (SP14483 and SP14493)

cannot grow without leucine, the marker on the pREP41 plasmid.

In addition, these clones cannot grow on SMC AL glucose 2%.

The triple mutant Dhxk1 Dhxk2 Dgit3 was obtained by first

constructing a Dhxk1 Dgit3 double knockout (SP14373) after

mating the single mutants Dhxk1 (SP14313) and Dgit3 (SP14105).

The resulting Dhxk1 Dgit3 strain was crossed with Dhxk2
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pREP41_Hxk2 (SP14405) and the haploid strain Dhxk1 Dhxk2

Dgit3 without plasmid was isolated as described previously for

Dhxk1 Dhxk2.

Three independent cultures of each double hexokinase mutant

Dhxk1 Dhxk2 and Dhxk1 Dhxk2 Dgit3, were started in 75 mL

(250 mL flask) YEC glycerol and incubated 24 hours. At OD595

0.6, 0.1 mL were harvested, washed in sterile water and serial

diluted to be plated as drop test on solid YEC glycerol 3% ethanol

0.2% glucose 2% or 0.2% or no glucose. Plates were incubated 8

days at 30uC. The same 75 mL cultures were grew until OD595 5

to 6 and split in 3 times 25 mL cultures, one let with glycerol only,

one complemented with glucose 2%, one with glucose 0.2%.

These 18 cultures were then studied as described below.

Reversion of the Growth defect in Glucose of Dhxk1
Dhxk2 Mutants

The frequency of cells able to recover the ability to grow on

glucose in Dhxk1 Dhxk2 mutants was measured by plating serial

dilution of 100 mL of a saturated culture of SP14383 and SP14393

on SMC AL glycerol and on SMC AL glucose and by counting

colonies forming units. The average of the ratios of six

independent clones of SP14383 and SP14393 was 1.661026.

Because of the very low frequency of this event and the long time

revertants take to grow and reach a significant number, we

consider that these revertants did not influence our data.

Chronological Life Span Assays and Survival
The protocol for CLS measurement by CFU counting has been

described previously [21] except that the first estimation of the

number of living cells was delayed. Cells that reached maximal

density were harvested, serial diluted and plated 24 hours and

48 hours after the optical density was stable and maximal; the

higher number of living cells from these two samples was

considered as the beginning of CLS curve (i.e., survival 100%).

Error bars represent standard deviation calculated from four

cultures separated from a single initial culture at the end of

exponential phase. Each assay was repeated at least three times.

All CLS analysis were performed in YEC AULH 222 mg L21

except in Figure 1E where the medium is SMC AUL 444 mg.L21

glycerol 3%. For antimycine A treatment, cultures were started at

OD595 0.2 with 20 mg.mL21 antimycine A (solubilized in ethanol

100%) and CLS was measured as described above, except that

cells entered stationary phase at a lower OD.

Number of living cells per mL was calculated by plating

dilutions of sample of the cultures as described above accepted that

solid YEC glycerol was used. The concentration presented (living

cells/mL) with standard deviation represents the average of three

independent cultures. Survival analysis by Phloxin B staining was

done according to a previous publication [21], with the exception

that the percentage of stained cell was obtained by counting under

microscope after background subtraction. At least 500 cells were

counted for each condition.

In vivo Staining of ROS by DHR 123 and DHE
Epifluorescence microscopy analyses were performed using an

inverted Nikon Eclipse E800 microscope equipped with a

Nikon_60 DIC H (1.4 NA) lens and a Photometrics CoolSNAP

fx CCD camera. Images were acquired using a motion-picture

camera CCD CoolSnapFX 12 (Photometrics, Tucson, AZ, USA)

bit and analysed with UIC Metamorph software (Molecular

Devices Corporation, Downington, PA, USA). The percent of

ROS-positive cells was measured with dihydrorodhamine 123

(DHR 123, Sigma) following a previously described protocol [21].

The fluorescence of this dye is activated by peroxynitrite and

peroxide in the presence of peroxidase [79]. A total of 500 to 700

cells per culture were counted to determine the percentage of

positively stained cells and standard deviations were calculated

using three independent experiments. Staining by dihydroethi-

dium (DHE, Sigma) is more specific to superoxide production [80]

and was achieved as followed. 1.46107 cells were collected and

resuspended in 0.1 mL 16PBS with DHE 50 mM and incubated

10 minutes at 30uC. The DHE solution was removed, cells were

resuspended in 20 mL 16 PBS and deposited on a microscope

slide with a thin layer of agarose 1%. Counting was done the same

way than for DHR123 using a Cy3 filter. Flow cytometry analysis

was performed following the protocol detailed in [21] excepted for

cells grown in glycerol. They were sonicated 15 seconds with a

Sonicator Dismembrator Fisher Scientific Model 100 set to

12 watts. FACS analysis was done using FL1 filter for DiOC6

dye and FL3 filter for DHE dye.

Oxygen and Glucose Consumption Assays
Oxygen consumption was measured in cultures grown to cell

concentrations between OD595 0.8 and 1.5. Cells were cultured in

YEC to a given OD, and then the culture was diluted in its own

medium if OD595 was greater than 1.5, or concentrated in its own

medium by centrifugation if OD595 was less than 0.8. The goal

was to measure the respiration of cultures with similar concentra-

tions and in the exact medium in which the samples were taken.

10 mL of culture, sometimes diluted or concentrated, was

incubated with gentle agitation at 30uC and 5 mL was loaded in

the measurement chamber at 30uC with agitation. The oxygen

consumption was followed with a Clark electrode YSI model 53

oxygen monitor until all oxygen was consumed in the chamber.

The calibration of the Clark electrode for the maximum oxygen

concentration (100%) was done on the air. The consumption was

linear, the measure was recorded with a tracer Linear1100 and the

slope was calculated for each sample. The result corresponding to

the rate of respiration was normalized on the OD595 of the cells in

the chamber and expressed in %O2.min21.OD21.

Glucose concentration was measured on the supernatants of

cultures at different ODs following the protocol given in

QuantichromTM Glucose Assay Kit from BioAssay SystemsH.

The results presented are the averages of three independent

cultures.

b-Galactosidase Assays
b-galactosidase activity, expressed from the fbp1-lacZ reporter,

was determined as previously described [36] except that cultures

were grown in YEC to late exponential phase (OD595 9 in glucose

2%, and OD595 2 in glucose 0.2%). CHP1229 was grown to only

OD595 5.5 corresponding to the end of its exponential phase.

Oxidative Stress Survival and Re-Growth on Glycerol Plate
Cells were cultured in YEC glucose 2% or 0.2% to stationary

phase, and harvested 24 hours thereafter. Cultures were diluted to

OD595 0.5 to 0.8 in water and submitted to various oxidative

shocks at 30uC. These include 1 M H2O2 for 120 minutes;

0.75 M Menadione for 180 min; 0.5 M H2O2 for 30 min or

0.3 M Menadione for 90 minutes. Then, cells were washed twice

with 1 mL water and serially diluted tenfold four times. Each

dilution was spotted on YEC plates and incubated five days at

30uC. For re-growth on glycerol plates, cells were grown in YEC

glucose 2% to OD595 0.5 and washed twice in water. Cells were

serially diluted as described above and spotted on SMC AULH

glycerol 3%.
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Mitochondrial Membrane Potential Analysis by Flow
Cytometry

Mitochondrial membrane potential (Dym) was measured with

DiOC6 (Molecular Probes). Yeast strains were grown over-night in

10 mL YEC using 50 mL tubes with half screw cap to allow gas

exchange. Early exponential phase refers to cells harvested at

OD595 from 0.7 to 1. Late exponential phase refers to cultures at

OD595 2.1 to 2.4 in glucose 0.2% and OD595 4 to 5 for cultures in

2% glucose. Stationary phase refers to cultures let 24 hours in the

incubators after saturation, corresponding to OD595 2.4 to 2.7 in

0.2% glucose and OD595 6 to 7 in 2% glucose. Then, 1.46107cells

were collected, concentrated in 0.1 mL of their own medium and

incubated in DiOC6 0.175 mM 15 minutes at 30uC. Next, 50 mL

of this volume was diluted in 0.95 mL of 16 PBS and flow

cytometry analysis was carried out as described above.

Real Time Quantitative PCR
Total RNA were reverse transcribed in a final volume of

100 mL using the High Capacity cDNA Reverse Transcription Kit

with random primers (Applied Biosystems, Foster City, CA) as

described by the manufacturer. Reverse transcribed samples were

stored at 220uC. A reference RNA (Human reference total RNA,

Stratagene, Ca) was also transcribed in cDNA. Gene expression

level was determined using primer and probe sets provided upon

request. PCR reactions for 384 well plate formats were performed

using 2 mL of cDNA samples (50 ng), 5 mL of the Express qPCR

SuperMix (Invitrogen), 2 mM of each primer and 1 mM of the

probe in a total volume of 10 ml. The ABI PRISMH 7900HT

Sequence Detection System (Applied Biosystems) was used to

detect the amplification level and was programmed FAST with an

initial step of 3 minutes at 95uC, followed by 45 cycles of

5 seconds at 95uC and 30 seconds at 60uC. All reactions were run

in triplicate and the average values were used for quantification.

The relative quantification of target genes was determined using

the nnCT method. Briefly, the Ct (threshold cycle) values of

target genes were normalized independently to endogenous

control genes (nCT = Ct target2Ct endogenous) and compared with

a calibrator (WT 2% glucose sample C): nnCT = nCt Sample

2nCt Calibrator. Relative expression (RQ) was calculated using the

Sequence Detection System (SDS) 2.2.2 software (Applied

Biosystems) and the formula is RQ = 22nnCT. All gene

expression (RQ) represents the average of three RQ from three

independent experiments. Standard deviations were calculated

with these three RQ. Two endogenous control genes were used:

Top1+ and SPBC887.02; both selected to be highly and

constitutively expressed during stationary phase. Similar results

were obtained with both of them. Results showed were

calculated with Top1+.

RNA Extraction
5 mL of stationary phase culture (day 1) was resuspended in

300 mL guanidinium isothiocyanate Solution (Guanidinium Iso-

thiocyanate 4 M, Sodium Citrate 25 mM, pH 7.0, b-Mercapto-

ethanol 1 M) in 2 mL screw cap tubes. 0.3 mL of RNase-free

beads was added and vortexed 4 times 30 seconds with Bead

Beater. All the homogenate was transferred to a 2 mL Phase Lock

Tube (PLG) (Qiagen). 26 mL Sodium Acetate 2 M (pH 4.0) was

added to the sample, cap the PLG tube and mix briefly. 260 mL

water-saturated phenol was added to the sample, cap the PLG

tube, and mix thoroughly. 75 mL Chloroform: Isoamyl Alcohol

(49:1) was added to the sample in the same PLG 2 ml tube and

mix thoroughly by repeated gentle inversion. Incubate on ice for

15 minutes, and centrifuge at 13,000 rpm for 5 minutes in a

microcentrifuge. The aqueous phase was transferred to a new pre-

spin PLG 2 ml tube, 250 mL Phenol-Chloroform-Isoamyl Alcohol

(50:49:1) was added and mixed thoroughly by repeated gentle

inversion and centrifuge. In the same PLG tube, 250 mL Phenol-

Chloroform-Isoamyl Alcohol (50:49:1) was added, then mixed and

centrifuged. The resultant aqueous phase was collected; an equal

volume of 100% Isopropanol was added, and mixed by repeated

inversion. The solution was centrifuged at 13 000 rpm for 20 min

at 4uC. The resultant supernatant was discarded and the pellet was

washed 4 times with 200 mL 80% ethanol, using 2 minutes

centrifugation to re-pellet the sample if necessary. The final wash

was discarded and the pellet dried at room temperature. Finally,

the pellet was dissolved in 100 mL RNase-free water and stored at

270uC. RNA integrity was checked on 1.5% agarose gel

electrophoresis with RNA loading buffer (Qiagen).

Accession Numbers
The code in parenthesis refers to pombe genome project

nomenclature git3+ (SPCC1753.02c); gpa2+/git8+ (SPAC23H3.13c);

hxk1+ (SPAC24H6.04); hxk2+ (SPAC4F8.07c); fbp1+ (SPBC1198.14c);

sod1+ (SPAC821.10c); sod2+ (SPAC1486.01); gpx1+ (SPBC32F12.03c);

top1+ (SPBC1703.14c); unnamed a chloride channel (SPBC1703.14c)

Supporting Information

Figure S1 Growth curves of wild type in different concentration

of glucose. The cells were grown in YES AULH and ODs were

calculated on the average of three independent cultures.

Found at: doi:10.1371/journal.pgen.1000408.s001 (0.9 MB TIF)

Figure S2 Dihydrorhodamine 123 (DHR 123) and dihydroethi-

dium (DHE) in vivo staining of reactive oxygen species. This control

experiment was carried out in order to verify that DHR 123 and

DHE were consistently specific of yeast cells that produce high

quantity of ROS, alive or recently dead. Cells killed by

amphotericin B treatment are not stained showing that dead cells

are not systematically positive. (A) Comparison between the

quantification of ROS-positive cells by DHR 123 or DHE.

Cultures were stained at day 2 and 5 of the stationary phase and

positive cells were counted under microscope (see Materials and

Methods). Data shown are mean6standard deviation of three

independent samples assayed. *, p,0.01, Student test, 2% glucose

versus 0.2% glucose. (B) DHR 123 and DHE did not stain WT

cells killed with amphotericin B. Cells were grown to stationary

phase, treated or not with 10 mg/mL of amphotericin B during

16 hours (h), incubated in water during 24 h and analysed by

fluorescence microscopy. Percents indicate the amount of ROS-

positive cells as compared to the total number of cells. (C) Survival

of WT cells after treatment with amphotericin B. Cells were grown

to stationary phase, treated with 10 mg.mL21 of amphotericin B

during 16 h, incubated in water during 24 h, serially-diluted (101

to 104) and spotted on YEC glucose 2% plates. Growth was

monitored during 5 days at 30uC. (D) Morphological comparison

of ROS-positive and ROS-negative WT cells stained by DHR 123

or DHE. White arrows indicate marked cells that appear dead,

black arrows indicate marked cells that appear alive and stars

indicate unmarked cells that appear dead.

Found at: doi:10.1371/journal.pgen.1000408.s002 (8.9 MB TIF))

Figure S3 Glucose consumption according to growth of

gpa2R176H and Dgit3 yeasts grown in 2% and 0.2% glucose.

Found at: doi:10.1371/journal.pgen.1000408.s003 (1.2 MB TIF)

Figure S4 Mitochondrial membrane potential (Dym) analysis by

Flow cytometry on cells stained with DiOC6. Exp: exponential;

Stat: stationary. Black arrows show dead cells. See Materials and

Pro-Aging Effects of Glucose Signaling
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Methods for details. DiOC6 is known to stain mitochondria in

fission yeast [81]. The intensity of DiOC6 fluorescence is

increasing with mitochondrial membrane potential, as shown in

S. cerevisiae [82].

Found at: doi:10.1371/journal.pgen.1000408.s004 (2.1 MB TIF)

Figure S5 Chronological life span of WT and Dgit3 grown in 2%

and 0.2% glucose with 20 mg.mL21 antimycine A (AA). Vector

corresponds to ethanol to a final concentration to 0.1%.

Found at: doi:10.1371/journal.pgen.1000408.s005 (0.6 MB TIF)

Figure S6 b-Galactosidase activity of Dgit3 and gpa2R176H with

fbp1-lacZ reporter both grown in 2% and 0.2% glucose. Cells were

collected at late exponential phase and b-Galactosidase activity

was measured.

Found at: doi:10.1371/journal.pgen.1000408.s006 (0.7 MB TIF)

Table S1 Strains used in this study presented with their

genotypes and the laboratory where they were created. * refers

to strains created for this study.

Found at: doi:10.1371/journal.pgen.1000408.s007 (0.03 Mb

DOC)
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