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Abstract: Although many chiral ligands for asymmetric catalysis have been developed, there is still a
need for new structures allowing the modular approach. Recently, easy synthesis of chiral pyridine-
containing β-amino alcohols has been elaborated by opening respective epoxides with enantiomeric
1-phenylethylamine. This paper reports the synthetic transformation of β-amino alcohols into the
new complexing pyridine-containing seleno- and thioethers. The amino alcohols were effectively
converted to cyclic sulfonamidates, which were reacted with thiolates or phenyl selenide nucleophile.
The reaction was diastereoselective, and its outcome depended on the configuration at the substitution
center. The problem was discussed considering DFT optimized structures of both diastereomeric
sulfonamidates. New amino-aldimine ligands were also synthesized from chiral pyridine-containing
diamines. Nine new chiral ligands were tested in the Tsuji-Trost allylic alkylation resulting in the
enantiomerically enriched product in up to 75% ee. The observed stereochemical induction agrees
with the prevailing nucleophilic attack at the allylic carbon laying opposite to the complexing nitrogen
of pyridine in η3-allylic intermediate complexes.

Keywords: chiral pyridine compounds; thioethers, selenoethers; chiral diamine Schiff bases; chiral
ligands; asymmetric allylic alkylation

1. Introduction

Catalytic properties of metal complexes used in asymmetric reactions depend on the
coordinated metal and the topology of the chiral ligand. Also, an electronic character of the
donating (metal-binding) groups is of primary importance [1,2]. Their σ-donating and π-
accepting (back-bonding) properties influence the reactivity of the key catalytic complexes.
The chiral sulfur [3–5] and selenium [6,7], in addition to the foremost used phosphorus
and nitrogen [1,2,8] donating ligands play an important role in asymmetric catalysis. In
particular, the asymmetric allylic alkylations catalyzed by Pd (the Tsuji-Trost reaction) [9–17]
have been carried out in the presence of the ligands with sulfide, selenide, and diselenide
groups, as exemplified by chiral ligands 1–5, [18–21] (Figure 1). Though, the literature
reports a moderate number of similar catalysts used in the Tsuji-Trost reaction [22–24]. In
particular, the interplay between the pyridine nitrogen and sulfide- or selenide-donating
site seems to deserve further investigation. Thus, the direct enantioselective transformation
of the easily available chiral β-amino alcohols containing pyridine unit [25] to the new S and
Se derivatives was attempted. However, the nucleophilic substitution of the corresponding
oxophosphonium-activated hydroxyls resulted in the epimerization at the substitution
center. In other cases, the respective internal reaction led to the corresponding aziridines.
Thus, to achieve our task, we adopted the synthetic procedure via cyclic sulfonamidates.
Interestingly, also outcomes of these reactions depended on the stereochemistry of the
epimeric substrates. For comparison, the previously obtained chiral diamines [26] were
transformed into amino-aldimine derivatives, analogous to the well-known salen-type
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ligands. The obtained chiral ligands were examined in the palladium-catalyzed Tsuji-Trost
reaction, giving up to 75% ee. The absolute configuration of the product explains the
preferred direction of the nucleophilic attack and suggests a stronger π-accepting character
of pyridine nitrogen over chalcogen ethers.
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Figure 1. Examples of nitrogen-sulfur and selenium chiral ligands.

2. Results and Discussion
2.1. Synthesis of Sulfur and Selenium Derivatives

To prepare chiral N, S donating ligands, we applied the Hata reaction conditions (Bu3P,
(PhS)2, in toluene under Ar, in a sealed tube at 65 ◦C) [27,28]. When the reaction was run
with the amino alcohol (1S,1′S)-6, the respective phenylsulphanyl derivative 7 resulted in
good yield (Scheme 1), but the product was obtained as a mixture of both diastereomers
(ca. 2:1). Though, when we used the pyridine amino alcohol (1S,2S,1′S)-9, we couldn’t
obtain the desired sulfur-containing compounds. The reaction resulted in a very small
amount of the corresponding aziridines only (Scheme 1). We also used the Grieco procedure
(Bu3P, PhSeCN, in toluene under Ar, at 25 ◦C) [28,29] to obtain the corresponding chiral
selenide (Scheme 1). The hydroxyl group was again activated as the oxyphosphonium
salt and reacted with the phenylselenide anion, giving a mixture of diastereomeric direct
substitution products 8 (4:1). However, when we used amino alcohol (1S,2S,1′S)-9 in this
reaction, we obtained aziridine (2R,3S,1′S)-10 in 88% yield instead the selenium compound.
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Scheme 1. Attempted synthesis of chiral sulfur and selenium derivatives.

Due to the lack of selectivity in the method described above, the procedure was
changed. To develop the enantioselective transformation of chiral β-amino alcohols to new
phenylsulfanyl derivatives, we have adopted the synthetic procedure via cyclic sulfonami-
dates, which were obtained earlier in our laboratory [26]. The cyclic amidates could be
prepared by a simple reaction with thionyl chloride followed by the in situ oxidation of
the product. So the corresponding sulfonamides were used as the starting material in the
reaction with a sulfur nucleophile in the presence of diisopropylethylamine (DIEA). The
reaction was carried out in toluene for 4 days at 60 ◦C to give the corresponding products
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15–16 in yields 5–49% (Scheme 2, Method 1) (Table 1). The slow progress of the reaction
was observed for the pyridine derivatives; therefore, the reaction conditions were changed.
Thioles or selenide derivatives were mixed with cyclic sulfonamidates in the presence of
1.5 eq of NaOH suspension in ethanol, which gave products 16–19 in higher yields. This
procedure allowed to shorten the reaction time from 4 days to 4 h—Method 2 (Table 1).
Interestingly, when we used (4S,5S,1′S)-13, the significant drop in yield was observed in
Method 1, the product (1S, 2R,1′S)-16 was only formed in just 5% yield (identified by 1H
NMR), and the starting material could be recovered from the reaction mixture. Method
2 resulted in an elimination reaction, and the inseparable mixture containing enamine
product was obtained (identified by 1H NMR, see SI: Figure S25). To explain these phe-
nomena, we modeled both epimeric cyclic sulfonamidates 13 using the DFT geometry
optimization at the B3LYP/CC-pVDZ level of theory utilizing Gaussian code (Figure 2) [30].
The obtained structures clarify the observed diastereoselectivity. Thus, for (4R,5R,1′S)-13,
the observed nucleophilic attack on the C-5 could take place, while for (4S,5S,1′S)-13, the
respective substitution product was formed in a very small amount (5% only), because of
the steric hindrance (Figure 2). Moreover, the trans-location of the leaving group at the
C-5 and the hydrogen atom at C-4 in the reaction in the presence of NaOH caused the
observed elimination.

The obtained phenylsulfanyl derivatives (1R, 2S,1′S)-16 and (1S, 2R,1′S)-16 were
subjected to the DFT geometry optimization at the B3LYP/CC-pVDZ level of theory
with Gaussian code [30] (Figure 3). GIAO isotropic shielding values were calculated
and converted to chemical shifts for the most stable conformations using linear scaling
factors [31]. The calculated δ values were compared with the experimental data for the very
well-resolved aliphatic region. They showed a good qualitative agreement, which allowed
confirming stereochemistry at the substitution center for both diastereomers (Figure 3 and
SI, Table S1).

Molecules 2021, 26, x FOR PEER REVIEW 3 of 12 
 

 

The reaction was carried out in toluene for 4 days at 60 °C to give the corresponding prod-

ucts 15–16 in yields 5–49% (Scheme 2, Method 1) (Table 1). The slow progress of the reac-

tion was observed for the pyridine derivatives; therefore, the reaction conditions were 

changed. Thioles or selenide derivatives were mixed with cyclic sulfonamidates in the 

presence of 1.5 eq of NaOH suspension in ethanol, which gave products 16–19 in higher 

yields. This procedure allowed to shorten the reaction time from 4 days to 4 h—Method 2 

(Table 1). Interestingly, when we used (4S,5S,1′S)-13, the significant drop in yield was ob-

served in Method 1, the product (1S, 2R,1′S)-16 was only formed in just 5% yield (identi-

fied by 1H NMR), and the starting material could be recovered from the reaction mixture. 

Method 2 resulted in an elimination reaction, and the inseparable mixture containing 

enamine product was obtained (identified by 1H NMR, see SI: Figure S25). To explain 

these phenomena, we modeled both epimeric cyclic sulfonamidates 13 using the DFT ge-

ometry optimization at the B3LYP/CC-pVDZ level of theory utilizing Gaussian code (Fig-

ure 2) [30]. The obtained structures clarify the observed diastereoselectivity. Thus, for 

(4R,5R,1′S)-13, the observed nucleophilic attack on the C-5 could take place, while for 

(4S,5S,1′S)-13, the respective substitution product was formed in a very small amount (5% 

only), because of the steric hindrance (Figure 2). Moreover, the trans-location of the leav-

ing group at the C-5 and the hydrogen atom at C-4 in the reaction in the presence of NaOH 

caused the observed elimination. 

 

Figure 2. Molecular geometry of lowest energy structures optimized at the DFT/B3LYP/CC-pVDZ level for (4R,5R,1′S)-13 

(left) and (4S,5S,1′S)-13 (right). 

 

Scheme 2. Syntheses of S and Se compounds via nucleophilic substitution of sulfonamidates.  Scheme 2. Syntheses of S and Se compounds via nucleophilic substitution of sulfonamidates.

Table 1. Ring-opening reactions of cyclic sulfonamidates.

Sulfonamidates R1 R2 NuH Yield [%] a Product 15–19

(5S,1′S)-12 Ph H PhSH 49 (2R,1′S)-15
(5R,1′S)-12 Ph H PhSH 21 a (2S,1′S)-15

(4R,5R,1′S)-13 Py Ph PhSH 30, 58 a (1R,2S,1′S)-16
(4S,5S,1′S)-13 Py Ph PhSH 5 b (1S,2R,1′S)-16
(4R,5R,1′S)-13 Py Ph PhCH2SH 47 a (1R,2S,1′S)-17
(4R,5R,1′S)-14 Bpy Ph PhSH 56 a (1R,2S,1′S)-18
(4R,5R,1′S)-13 Py Ph PhSeH 10 a (1R,2S,1′S)-19

a using Method 2 (1.5 eq NaOH w EtOH), b identified only by 1H NMR.
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2.2. Synthesis of Nitrogen Derivatives (Chiral Schiff Base)

We have synthesized a library of the amino-aldimine ligands from chiral diamines [26].
Although the Schiff bases have been extensively studied [32], there is still a group of
unsymmetrical ligands with unexplored catalytic applications. For this reason, we obtained
appropriate derivatives containing pyridine fragments. The reaction was run in toluene
with salicylaldehydes in the presence of molecular sieves 4 Å. The products 22–24 were
obtained in 60–70% yield (Table 2).
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Table 2. Synthesis of chiral amino-aldimines.
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ligands in the Tsuji-Trost reaction. The model reaction of dimethyl malonate with rac-
1,3-diphenyl-2-propenyl acetate in dichloromethane was carried out in the presence of
N,O-bis(trimethylsilyl)acetamide (BSA), CH3COOK, and dimer of allylpalladium chloride
with 10 mol% chiral ligands under argon atmosphere for 24 at room temperature. The best
catalytic effect of 58% ee for the S enantiomer of the product was observed when ligand (1R,
2S, 1′S)-16 was used (Table 3). Then, the reaction temperature was optimized for reaction
with (1R,2S,1′S)-16 ligand, for 0–4 ◦C we observed an increase in enantioselectivity to 70%
(S), and for −18 ◦C–75% ee (S), respectively. Further lowering the temperature did not
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excess and configuration) was determined by HPLC, comparing the obtained results with
the literature data [32]. In the absence of pyridine moiety (as for the ligands 15), the most
opposite product was formed. We also run the reaction catalyzed by (1R,2S,1′S)-16 between
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1,3-diphenyl-2-propenyl acetate in dichloromethane was carried out in the presence of 

N,O-bis(trimethylsilyl)acetamide (BSA), CH3COOK, and dimer of allylpalladium chloride 

with 10 mol% chiral ligands under argon atmosphere for 24 at room temperature. The best 

catalytic effect of 58% ee for the S enantiomer of the product was observed when ligand 

(1R, 2S, 1′S)-16 was used (Table 3). Then, the reaction temperature was optimized for re-

action with (1R,2S,1′S)-16 ligand, for 0–4 °C we observed an increase in enantioselectivity 

to 70% (S), and for −18 °C–75% ee (S), respectively. Further lowering the temperature did 

not affect the enantiomeric excess (Table 4). The stereochemistry of the product (enantio-

meric excess and configuration) was determined by HPLC, comparing the obtained re-

sults with the literature data [32]. In the absence of pyridine moiety (as for the ligands 15), 

the most opposite product was formed. We also run the reaction catalyzed by (1R,2S,1′S)-

16 between rac-1,3-diphenyl-2-propenyl acetate and acetylacetone and obtained the re-

spective product in only 14% yield, 20% ee for S enantiomer. A similar reaction with ethyl 

acetoacetate gave a mixture of both diastereomers (ca. 1:1) in 95% yield and 20% ee for 

each diastereomer. 

Table 3. Catalytic Tsuji-Trost reaction. 

 

Chiral Ligand Conversion [%] a 
Ee [%] 

Configuration 

(2R,1′S)-15 15 Rac 

(2S,1′S)-15 30 31 (R) 

(1R,2S,1′S)-16 100 58 (S) 

(1R,2S,1′S)-17 98 26 (S) 

(1R,2S,1′S)-18 89 13 (R) 

(1R,2S,1′S)-19 70 50 (S) 

(1S,2R,1′S)-22 98 b 49 (S) 

(2R,1′S)-23 66 b 38 (R) 

Chiral Ligand Conversion [%] a Ee [%]
Configuration

(2R,1′S)-15 15 Rac
(2S,1′S)-15 30 31 (R)

(1R,2S,1′S)-16 100 58 (S)
(1R,2S,1′S)-17 98 26 (S)
(1R,2S,1′S)-18 89 13 (R)
(1R,2S,1′S)-19 70 50 (S)
(1S,2R,1′S)-22 98 b 49 (S)

(2R,1′S)-23 66 b 38 (R)
(2R,1′S)-24 69 b 38 (R)

a Calculated from 1H NMR, b Reaction was run for 48 h.
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Table 4. Optimization of reaction temperature.

Chiral Ligand Temperature
[◦C] Conversion [%] Ee [%]

Configuration Time [h]

(1R,2S,1′S)-16 0–4 97 70 (S) 48
(1R,2S,1′S)-16 −18 75 75 (S) 96
(1R,2S,1′S)-16 −30 5 73 (S) 10
(1S,2R,1′S)-22 −18 96 71 (S) 96

The observed stereochemical outcome of the (1R, 2S,1′S)-16 catalyzed allylic alky-
lation, i.e., formation mainly of the (S)-configured product, can be accounted for the
preferred nucleophilic attack at the trans position [33] of the allylic part of the intermediate
η3-allylpalladium complex with (1R,2S,1′S)-16 (Scheme 3). The same direction of stereo-
chemical induction (50% ee, (S)-alkylation product) was observed in the reaction catalyzed
by the analogues selenium-containing ligand (1R,2S,1′S)-19.
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Thus, for both M- and W-shaped η3-allylic intermediate complexes, the nucleophilic
addition led to the obtained (S)-product. Generally, the enantioselectivity in the Tsuji-
Trost reaction depends on both, steric and electronic properties of the η3 palladium allylic
complexes [9–17]. An attacking nucleophile favorably approaches the complexed allylic
system from the site opposite to the more π-accepting ligand center. Thus, in the case of
heterobidentate N (sp2)—chalcogen ether ligands, the nucleophile approaches trans to the
more π-accepting imine donor (here: pyridine nitrogen) [33,34]. For strongly σ-donating N
(sp3) and weakly π-accepting chalcogen atoms, the attack trans to chalcogen is generally
favored [35,36]. This last tendency may be responsible for the observed stereochemical
result of the reaction catalyzed by (2S,1′S)-15. Also, the imino-amines lacking pyridine
moiety (23 and 24) gave mostly the Tsuji-Trost product of (R)-configuration, while the
respective pyridine derivative (1S,2R,1′S)-22 afforded (S)-product with considerable ee.

3. Materials and Methods
3.1. General

Solvents were distilled, and other reagents were used as received. Reactions were
monitored by thin-layer chromatography (TLC) on silica gel 60 F-254 precoated plates, and
spots were visualized with a UV lamp (A.Krüss Optronic GmbH, Hamburg, Germany)
and/or Dragendorff reagent. Separation of products by chromatography was carried
out on silica gel 60 (230–400 mesh). Observed rotations at 589 nm were measured using
an Optical Activity Ltd. Model AA-5 automatic polarimeter (Huntington, UK). 1H and
13C NMR spectra (400, 600 MHz, and 100, 151 MHz, respectively) were collected on Jeol
400 yh and Bruker Avance II 600 instruments (Karlsruhe, Germany). The spectra were
recorded in CDCl3 referenced to the respective residual signals of the solvent. Chemical
shifts are given in parts per million (ppm) and coupling constants (J) are in Hertz (Hz).
High-resolution mass spectra were recorded using electrospray ionization on Waters LCT
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Premier XE TOF instrument (Milford, MA, USA). Melting points were determined using a
Boëtius hotstage apparatus (PHMK VEB Analytic, Dresden, Germany). The enantiomeric
ratios of the samples were determined by chiral high-performance liquid chromatography
(HPLC) measurements (Thermo Fisher Scientific, Waltham, MA, USA) using Chiracel ADH
chiral column.

3.2. General Procedure for the Synthesis of Cyclic Sulfonamidates

The synthesis of S,S-dioxides was performed according to a modified literature pro-
cedure [26,37,38]. To a solution of amino alcohol 6, 9 or 11 (1 mmol) and triethylamine
(3 mmol, 0.42 mL) in dry dichloromethane (3.5 mL) was added a solution of thionyl chloride
(0.8 mmol, 58 µL) in dry dichloromethane (0.25 mL) at −78 ◦C for 20 min. The mixture
was stirred at −78 ◦C for 20 min and 0 ◦C for the next 20 min. The reaction mixture was
partitioned between ether and water, the organic layer was washed with brine and dried
over anhydrous sodium sulfate, filtered, and the filtrate was concentrated in vacuo. The
residue was dissolved in acetonitrile (4 mL), cooled to 0 ◦C, and NaIO4 (1.2 mmol, 257 mg),
RuCl3·3H2O (ca. 2 mg), and water (4 mL) were added. The reaction mixture was stirred at
room temperature for 1 h and then extracted 3 × Et2O. The combined organic extracts were
washed with brine and dried over sodium sulfate. The residue was purified by column
chromatography (SiO2, 10% AcOEt in hexane) to provide the cyclic sulfamidate. The same
eluent was used for TLC; the respective Rf value is given below.

1H and 13C NMR spectra for (5S,1′S)-12, (4R,5R,1′S)-13, (4S,5S,1′S)-13 are in agreement
with the reported ones [26].

(5R)-Phenyl-3-(1′S-phenylethyl)-1,2,3-oxathiazolidine-2,2-dioxide [(5R,1′S)-12]

Colorless oil, 150 mg, 46% yield, [α]20
D = 25 (c = 0.49 CHCl3), 1H NMR (400 MHz, CDCl3) δ:

7.41–7.30 (m, 10H), 5.51 (t, J = 7.3 Hz, 1H), 4.61 (q, J = 6.7 Hz, 1H), 3.54 (dd, J = 9.8, 6.7 Hz,
1H), 3.40 (dd, J = 9.8, 7.6 Hz, 1H), 1.70 (d, J = 6.7 Hz, 3H); 13C NMR (400 MHz, CDCl3)
δ: 140.0, 135.5, 129.8, 129.1, 128.9, 128.5, 127.2, 126.5, 80.4, 57.1, 52.6, 19.2, HR-MS (ESI)
[C16H17NO3S + Na]+ requires 326.0822; found 326.0826
(4R,5R)-4-Phenyl-5-(2,2′-bipyrid-6-yl)-3-(1′S-phenylethyl)- 1,2,3-oxathiazolidine-2,2-dioxide
[(4R,5R,1′S)-14]

Yellow oil, 259 mg, 50% yield, [α]20
D = 60 (c = 0.78 CHCl3);), Rf = 0.13; 1H NMR (400 MHz,

CDCl3) δ: 8.63–8.61 (m, 1H), 8.18–8.15 (m, 1H), 8.06–8.04 (m, 1H), 7.79–7.75 (m, 1H), 7.52–
7.48 (m, 1H), 7.34–7.25 (m, 6H), 7.07–6.95 (m, 6H), 6.16 (d, J = 6.11 Hz, 1H), 4.87 (d, J = 6.4 Hz,
1H), 4.37 (q, J = 6.7 Hz, 1H), 1.87 (d, J = 7.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 155.4,
152.2, 149.3, 140.7, 137.4, 137.0, 135.9, 133.5, 128.9, 128.7, 128.4, 128.3, 128.2, 127.3, 124.0,
121.1, 120.7, 120.5, 82.6, 67.3, 57.0, 20.2; HR-MS (ESI) [C26H23N3O3S + H]+ requires 458.1533;
found 458.1535

3.3. General Procedure for the Synthesis of S and Se Derivatives

Method 1: Sulfonamide (0.2 mmol) was dissolved in toluene (1 mL), then diisopropy-
lethylamine (0.3 mmol, 0.055 mL) and thiophenol (0.25 mmol, 0.024 mL) were added. The
mixture was stirred at 60 ◦C under argon for 4 days. The crude mixture was then applied
to a chromatography column (SiO2, 30% AcOEt in hexane) for product isolation. The same
eluent was used for TLC; the respective Rf values are given below.

Method 2: Sulfonamide (0.2 mmol or 0.5 mmol for reaction with Se derivatives) was
dissolved in EtOH (0.5 mL), then a suspension of NaOH (15 mg) in EtOH (1 mL) and the
appropriate sulfur or selenium derivative (0.25 mmol or 0.55 mmol for Se derivatives) were
added. The mixture was stirred at 60 ◦C under argon for 4 h. Then, ethanol was evaporated,
1 mL of H2O was added, followed by extraction with 3 × 5 mL of Et2O, dried over Na2SO4.
The product was isolated in the same way as in method 1.

(2R)-2-phenyl-N-((1S)-phenylethyl)-2-(phenylsulfanyl) ethanamine [(2R,1′S)-15]
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Yellow oil, 33 mg, 49% yield (Method 1), [α]20
D = −45 (c = 0.82, CHCl3); Rf = 0.38; 1H NMR

(400 MHz, CDCl3) δ: 7.33–7.14 (m, 15H), 4.31 (t, J = 7.3 Hz, 1H), 3.76 (q, J = 6.7 Hz, 1H),
2.99–2.88 (m, 2H), 1.30 (d, J = 6.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 145.4, 140.7, 134.6,
132.1, 128.8, 128.6, 128.5, 128.01, 127.98, 127.5, 127.1, 126.7, 57.9, 53.6, 52.3, 24.4; HR-MS
(ESI) [C22H23NS + H]+ requires 334.1624; found 334.1617.

(2S)-phenyl-N-((1S)-phenylethyl)-2-(phenylsulfanyl) ethanamine [(2S,1′S)-15]

White solid, 14 mg, 21% yield (Method 2), [α]20
D = 63 (c = 0.32, CHCl3) m.p 89–91 ◦C;

Rf = 0.25; 1H NMR (400 MHz, CDCl3) δ: 7.31–7.14 (m, 15H), 4.30 (t, J = 7.3 Hz, 1H), 3.76 (q,
J = 6.7 Hz, 1H), 2.97–2.86 (m, 2H), 1.28 (d, J = 6.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ:
145.2, 140.4, 134.6, 132.2, 128.8, 128.6, 128.5, 128.0, 127.6, 127.2, 127.1, 126.6, 56.0, 53.3, 52.1,
24.5; HR-MS (ESI) [C22H23NS + H]+ requires 334.1624; found 334.1627.

N-(1′S-phenylethyl)-(1R)-phenyl-(2S)-(phenylsulfanyl)-(2S)-pyridin-2-yl ethanamine [(1R,2S,1′S)-16]

Yellow oil, 48 mg, 58% yield (Method 2), [α]20
D = −128 (c = 0.94 CHCl3); Rf = 0.45; 1H NMR

(400 MHz, CDCl3) δ: 8.35–8.33 (m, 1H), 7.30–7.09 (m, 16H), 6.92–6.89 (m, 1H), 6.81 (d,
J = 7.9 Hz, 1H), 4.46 (d, J = 8.3 Hz, 1H), 3.95 (d, J = 8.3 Hz, 1H), 3.48 (q, J = 6.7 Hz, 1H), 1.32
(d, J = 6.7 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 159.9, 153.9, 149.0, 145.3, 141.0, 135.8,
135.2, 131.7, 128.8, 128.5, 128.3, 128.0, 127.2, 126.8, 126.7, 123.4, 121.7, 63.5, 62.8, 55.1, 25.1;
HR-MS (ESI) [C27H26N2S + H]+ requires 411.1889, found 411.1894.

N-(1′S-phenylethyl)-(1S)-phenyl-(2R)-(phenylsulfanyl)-(2R)-pyridin-2-yl ethanamine [(1S,2R,1′S)-16]

Yellow oil, 4 mg, 5% yield (Method 1), Rf = 0.36, 1H NMR (400 MHz, CDCl3) δ: 8.48–8.46
(m, 1H), 7.33–7.07 (m, 16H), 6.98–6.95 (m, 1H), 6.83 (d, J = 7.9 Hz, 1H), 4.53 (d, J = 8.2 Hz,
1H), 4.47 (d, J = 8.2 Hz, 1H), 3.68 (q, J = 6.4 Hz, 1H), 1.35 (d, J = 6.4 Hz, 3H).

N-(1′S-phenylethyl)-(1R)-phenyl-(2S)-(benzylsulfanyl)-(2S)-pyridin-2-yl ethanamine [(1R,2S,1′S)-17]

Yellow oil, 40 mg, 47% yield (Method 2), [α]20
D = −153 (c = 1.05, CHCl3); Rf = 0.14; 1H NMR

(400 MHz, CDCl3) δ: 8.38–8.36 (m, 1H), 7.37–7.32 (m, 1H), 7.28–7.17 (m, 6H), 7.15–7.05 (m,
9H), 6.96–6.93 (m, 1H), 6.86 (d, J = 7.9 Hz, 1H), 4.01 (d, J = 8.2 Hz, 1H), 3.85 (d, J = 8.6 Hz,
1H), 3.51 (d, J = 2.8 Hz, 2H), 3.42 (q, J = 6.7 Hz, 1H), 1.28 (d, J = 6.7 Hz, 3H); 13C NMR
(101 MHz, CDCl3) δ: 160.2, 148.9, 145.4, 141.3, 137.9, 135.9, 129.1, 128.5, 128.4, 128.3, 128.0,
127.1, 127.0, 126.8, 126.7, 123.5, 121.7, 63.0, 59.0, 54.9, 35.9, 25.1; HR-MS (ESI) [C28H28N2S +
H]+ requires 425.2046; found 425.2054.

N-(1′S-phenylethyl)-(1R)-phenyl-(2S)-(phenylsulfanyl)-(2S)-(2,2′-Bipyridin-6-yl) ethanamine
[(1R,2S,1′S)-18]

Yellow oil, 55 mg, 56% yield (Method 2), [α]20
D = −132 (c = 1.04, CHCl3); Rf = 0.20; 1H

NMR (400 MHz, CDCl3) δ: 8.61–8.60 (m, 1H), 8.07–8.04 (m, 1H), 7.75–7.71 (m, 1H), 7.46 (q,
J = 7.6 Hz, 1H), 7.28–7.06 (m, 17H), 6.91 (d, J = 7.6 Hz, 1H), 4.50 (d, J = 7.6 Hz, 1H), 4.11
(d, J = 7.6 Hz, 1H), 3.51 (q, J = 6.7 Hz, 1H), 1.34 (d, J = 6.7 Hz, 3H); 13C NMR (101 MHz,
CDCl3) δ: 159.0, 156.2, 155.0, 149.2, 149.0, 137.6, 136.9, 136.8, 132.0, 128.9, 128.7, 128.4, 128.0,
127.2, 126.9, 126.8, 126.7, 126.3, 123.6, 123.2, 121.4, 118.9, 63.2, 55.1, 40.6, 24.8; HR-MS (ESI)
[C32H29N3S + H]+ requires 488.2155; found 488.2165.

N-(1′S-phenylethyl)-(1R)-phenyl-(2S)-(phenylselenyl)-(2S)-pyridin-2-yl)ethanamine [(1R,2S,1′S)-19]

Colorless oil, 24 mg, 10% wydajności (Method 2), [α]20
D = −112 (c = 0.74, CHCl3); 1H NMR

(400 MHz, CDCl3) δ: 8.33–8.31 (m, 1H), 7.33–7.05 (16H), 6.86–6.83 (m, 1H), 6.57–6.55 (m,
1H), 4.49 (d, J = 8.6 Hz, 1H), 4.06 (d, J = 8.6 Hz, 1H), 3.48 (q, J = 6.7 Hz, 1H), 1.32 (d,
J = 6.7 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 160.3, 149.0, 145.3, 141.5, 135.6, 135.2, 128.8,
128.5, 128.12, 128.08, 127.5, 127.04, 126.98, 126.9, 126.7, 123.1, 121.4, 63.5, 58.9, 55.1, 25.2; 77Se
NMR (38 MHz, CDCl3): δ Se 416.99; HR-MS (ESI) [C27H26N2Se + H]+ requires 459.1334;
found 459.1351
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3.4. General Procedure for the Synthesis of Mono-Aldimine (Chiral Schiff Base)

To a solution of the diamine (0.15 mmol) in dry toluene (1 mL) were added a solution
of the aldehyde (0.15 mmol) in the dry toluene (0.5 mL) and Activated molecular sieves
4 Å under argon atmosphere. The reaction was carried out at RT for 6h, and then the crude
mixture was separated by column chromatography (SiO2, 20% AcOEt in hexane) to give a
pure product. The same eluent was used for TLC; the respective Rf values are given below.

2-(tert-butyl)-4-methyl-6-(E-(((1S,2R)-1-phenyl-1-(((S)-1-phenylethyl)amino)-2-(pyridin-2-yl)
ethyl)imino)methyl) phenol [(1S,2R,1′S)-22]

Yellow oil, 47 mg, 70% yield, [α]20
D = 9 (c = 1.10 CHCl3), 1H-NMR (400 MHz, CDCl3) δ:

8.49–8.47 (m, 1H), 8.22 (s, 1H), 7.58–7.54 (m, 1H), 7.28–7.08 (m, 13H), 7.07–6.83 (m, 1H),
4.66 (d, J = 6.1 Hz, 1H), 4.48 (d, J = 6.1 Hz, 1H), 3.67 (q, J = 6.4 Hz, 1H), 2.25 (s, 3H), 1.45
(s, 9H), 1.21 (d, J = 6.4 Hz, 3H); 13C-NMR (151 MHz, CDCl3) δ: 197.2, 167.7, 159.9, 158.3,
148.8, 145.4, 140.4, 137.3, 136.2, 135.5, 131.5, 131.1, 130.1, 128.5, 128.2, 126.6, 123.0, 122.2,
120.5, 118.4, 81.5, 65.0, 54.9, 34.9, 29.5, 25.3, 20.7; HR-MS (ESI) [C33H37N3O + H]+ requires
492.3009; found 492.3021

2,4-(ditert-butyl)-6-((E)-((1-((S)-1-phenylethyl)amino)-(2R)-(phenyl)ethyl)imino)methyl) phe-
nol [(2R,1′S)-23]

Yellow oil, 41 mg, 60% yield, [α]20
D = 86 (c = 1.05 CHCl3), Rf = 0.36, 1H-NMR (600 MHz,

CDCl3) δ: 8.49 (s, 1H), 7.40–7.39 (m, 1H), 7.32–7.25 (m, 10H), 7.09–7.08 (m, 1H), 4.65–4.64 (m,
1H), 3.90–3.87 (m, 1H), 3.01–2.99 (m, 2H), 1.46 (s, 9H), 1.31 (d, J = 7.03 Hz, 3H), 1.29 (s, 9H);
13C-NMR (101 MHz, CDCl3) δ: 166.8, 158.1, 145.3, 141.6, 140.3, 136.8, 129.1, 128.7, 128.3,
127.5, 127.3, 127.1, 126.6, 126.3, 117.9, 73.9, 58.0, 54.7, 35.2, 34.2, 31.6, 29.5, 24.6; HR-MS (ESI)
[C31H40N2O + H]+ requires 457.3213; found 457.3221

2-(tert-butyl)-4-methyl-6-((E)-((1-((S)-1-phenylethyl)amino)-(2R)-phenyl)ethyl)imino)methyl)
phenol [(2R,1′S)-24]

Yellow oil, 41 mg, 68% yield, [α]20
D = 81 (c = 1.06 CHCl3), Rf = 0.30, 1H-NMR (600 MHz,

CDCl3) δ: 8.40 (s, 1H), 7.32–7.23 (m, 10H), 7.22–7.14 (m, 1H), 6.92–6.91 (m, 1H), 4.46 (t,
J = 6.7 Hz, 1H), 3.81 (q, J = 6.7 Hz, 1H), 2.92 (d, J = 6.7 Hz, 2H), 2.27 (s, 3H), 1.45 (s, 9H), 1.31
(d, J = 6.7 Hz, 3H); 13C-NMR (101 MHz, CDCl3) δ: 166.3, 158.2, 145.3, 141.5, 137.2, 130.9,
129.9, 128.7, 128.6, 127.6, 127.1, 127.0, 126.8, 126.6, 125.4, 73.9, 57.9, 54.7, 34.9, 29.5, 24.6, 20.7;
HR-MS (ESI) [C28H34N2O + H]+ requires 415.2744; found 415.2753.

3.5. Catalytic Reaction Procedure (Tsuji-Trost)

A solution of chiral ligand (0.01 mmol) and the allylpalladium chloride dimer (1 mg,
0.0025 mmol) was stirred in dry dichloromethane (0.4 mL) under argon atmosphere at
room temperature for 15 min. Then a solution of rac-1,3-diphenyl-2-propenyl acetate
(25 mg, 0.1 mmol) in dichloromethane (0.4 mL), dimethylmalonate (0.035 mL, 0.3 mmol),
N,O-bis(trimethyl-silyl)acetamide (0.075 mL, 0.3 mmol) and anhydrous potassium acetate
(0.3 mg, 0.003 mmol) were added.

The reaction was carried out at room temperature for 1–4 days (monitored by TLC) [18].
After the reaction was complete, the crude mixture was filtered by SiO2, and then the
solvent was evaporated to give the crude product as yellow oil. Enantiomeric excess was
determined using a Chiralpak AD-H column (n-hexane/isopropanol 90/10, 1.0 mL/min,
254 nm) tR 12.4 and tS 17.2 min. Configuration assignment was based on the literature
data [32]. 1H-NMR (400 MHz, CDCl3) δ: 7.32–7.18 (m, 10 H), 6.45 (d, J = 15.6 Hz, 1H), 6.32
(dd, J = 15.9, 8.9 Hz, 1H), 4.25 (dd, J = 11.0, 8.6 Hz, 1H), 3.93 (d, J = 11.0 Hz, 1H), 3.74 (s,
3H), 3.69 (s, 3H).

4. Conclusions

Concluding, we successfully converted chiral pyridine-containing amino alcohols into
the respective thioethers, selenoethers, and the mono-Schiff bases of the corresponding
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diamines. These new chiral compounds were tested in the Tsuji-Trost allylic alkylation
resulting in the enantiomeric enrichment of product in up to 75%. The resulting stereo-
chemical induction agrees with the nucleophilic attack at the allylic carbon located trans to
the complexing nitrogen of pyridine in η3-allylic intermediate complexes.

Supplementary Materials: The following are available online, Figures S1–S25: copies of 1H and
13C NMR spectra, Figures S26–S28: HPLC plots for the Tsuji-Trost reaction outcomes, Table S1:
Comparison of experimental and calculated (DFT/GIAO) chemical shifts.
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