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Abstract: Wearable cardiac sensors pave the way for advanced cardiac monitoring applications based
on heart rate variability (HRV). In real-life settings, heart rate (HR) measurements are subject to
motion artifacts that may lead to frequent data loss (missing samples in the HR signal), especially
for commercial devices based on photoplethysmography (PPG). The current study had two main
goals: (i) to provide a white-box quality index that estimates the amount of missing samples in any
piece of HR signal; and (ii) to quantify the impact of data loss on feature extraction in a PPG-based
HR signal. This was done by comparing real-life recordings from commercial sensors featuring both
PPG (Empatica E4) and ECG (Zephyr BioHarness 3). After an outlier rejection process, our quality
index was used to isolate portions of ECG-based HR signals that could be used as benchmark, to
validate the output of Empatica E4 at the signal level and at the feature level. Our results showed
high accuracy in estimating the mean HR (median error: 3.2%), poor accuracy for short-term HRV
features (e.g., median error: 64% for high-frequency power), and mild accuracy for longer-term HRV
features (e.g., median error: 25% for low-frequency power). These levels of errors could be reduced
by using our quality index to identify time windows with few or no data loss (median errors: 0.0%,
27%, and 6.4% respectively, when no sample was missing). This quality index should be useful
in future work to extract reliable cardiac features in real-life measurements, or to conduct a field
validation study on wearable cardiac sensors.

Keywords: wearable cardiac sensors; electrocardiography; photoplethysmography; heart rate vari-
ability; signal quality; real-life measurements

1. Introduction
1.1. Broad Context

Among the host of wearable sensors implied in the Quantified Self nebula [1], physi-
ological sensing stands out as a promising tool, as it may provide objective information
on the subject’s inner states. Widespread applications are to be found in affective com-
puting [2,3], an emergent and multidisciplinary research field that intends to assess and
reproduce mental states from their peripheral and behavioral correlates. Wearable physio-
logical sensors also pave the way for smart healthcare. Clinical issues, like chronic disease
management or heart event prevention, may soon be achieved outside the hospital, thanks
to advanced monitoring systems [4,5].

Whatever the end purpose, feature extraction algorithms (that compute certain param-
eters of interest) are usually run on physiological signals to detect or estimate the target
state (e.g., subject’s stress level or risk for heart attack). In this process, cardiac activity
through heart rate (HR) provides a major source of information. Advanced cardiac moni-
toring can be achieved through a set of statistical, frequency, or geometrical features, which
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quantify heart rate variability (HRV) [6]. Since they correlate with autonomic nervous ac-
tivity, these features allow to predict target states or crisis events—such as stress [7], mental
load [8], and epilepsy [9]. To reliably monitor these HRV features, the ideal cardiac sensor
should be able to timely estimate the heart rate in ambulatory conditions and uncontrolled
environments.

1.2. Wearable Technology for Heart Rate Estimation

The gold standard measure to extract HR is electrocardiography (ECG), in which heart-
beats are markedly identified by sharp and prominent peaks (the R-waves). Instantaneous
heart rates are derived from interbeat intervals (IBI), i.e., the time differences between
successive heartbeats.

Wearable ECG can be achieved through textile electrodes (textrodes, or e-textiles [10]),
which have shown performances comparable with the gold-standard Holter technology
for heart rate estimation [11]. While Holter-type devices require expert knowledge to set
up and become obtrusive in case of physical activity, textrode-based devices have been
successfully integrated in chest belts or usual garments (smart T-shirts for instance). This
makes e-textiles suitable for the widespread market and paves the way for real-life cardiac
monitoring through ECG. To this day, however, they have been mainly commercialized in
specialized areas, like exercise monitoring, and have not been embraced by the common
people yet.

Meanwhile, wrist-worn sensors with abilities in cardiac monitoring (e.g., smart
watches or smart wristbands) are now being used by an increasing numbers of users,
worldwide and daily. Most of these sensors enable photoplethysmography (PPG), a stan-
dard measure of blood volume changes in the skin’s blood vessels [12]. PPG provides
an oscillatory signal made of pulse waves, which can be used to identify heartbeats and
estimate the IBI.

In controlled environments, the IBI signals extracted from PPG and ECG correlate well
under static conditions [13,14]. However, HRV parameters have also shown substantial
deviations between PPG and ECG under the influence of moderate mental effort or wrist
activity [14]. Compared to the sharp R-waves in ECG, the oscillatory nature of PPG
waveforms makes heartbeats difficult to locate in time with high accuracy. Moreover,
the varying pulse transit time between the heart and the wrist may lead to a different
estimate of the IBI at these two locations, depending on dynamic physiological factors like
blood pressure [15]. To account for such differences, HRV is sometimes called pulse rate
variability, when measured through PPG.

In ambulatory settings, an additional source of error in IBI estimation arises from
motion artifacts, which especially affects PPG measurements. Over the past years, artifact
identification and removal has been an active field of research on cardiac signals from
both ECG and PPG [16,17]. A more comprehensive approach consists of computing a
signal quality index (SQI) on the cardiac recordings. This index can be used to timely skip
heartbeat detection when the raw signal is flawed.

1.3. Academic Research on Signal Quality

Regarding ECG, statistical or frequency parameters can be extracted from the raw
signal to assess its quality or infer a signal-to-noise ratio [18]. These ECG features can be
combined using machine learning techniques. Using support vector machines, the SQI
presented in [19] obtained an accuracy of 93% in classifying 10 s segments of arrhythmic
recording as clinically acceptable or not, with manual annotation as a reference. Regarding
PPG, the pulsatile waveform can be compared to a template based on expert knowledge
and the surrounding beats. This technique allowed [20] to reach 95% accuracy while
predicting acceptable pulses against expert annotation, and [21] to reach a true positive
rate of almost 100% in beat detection by setting a threshold on their own SQI—at the price
of missing one beat over 10.
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An alternative approach was presented in [22], where HRV was directly used to
compute an SQI over 30 s segments of IBI signals from ECG recordings in ambulatory
settings. Wavelet entropy was extracted from high-frequency ranges and fed in support
vector machines, with expert annotation as the desired output. The final algorithm reached
94% in accuracy on the test set. An extension of this approach is proposed in [23], where
the SQI (developed on both ECG and PPG recordings) was based on a mixed use of the
IBI estimate (acceptable range and variations) and the raw sensor data (template matching
strategy).

In each experiment, however, the data were collected in laboratory or clinical settings,
using standard instrumentation (like Holter monitors or finger-worn PPG devices), presum-
ably set up by some expert personnel. The proposed SQIs still need validation in real-life
settings, where signals are much more exposed to motion artifacts and collected from
commercial equipment installed by the users themselves. The quality index presented in
this article was not designed to outreach these SQIs in accuracy for detecting flawed signal
segments on standardized data. It aims to provide an easily understandable criterion to
select reliable time widows in real-life IBI signals, assuming that beat detection is skipped
in case of movement artifacts.

1.4. Advanced Cardiac Monitoring with Commercial Sensors

Indeed, some commercial devices compute their own SQIs to control the reliability of
their heart rate outputs in case of noisy data. This is the case, for example, with the chest
belt Zephyr BioHarness 3 that produces a confidence level on its ECG-based HR indicator
(see below). Another well-known device in the sensor market is the smart wristband
Empatica E4, based on PPG. To timely account for data quality, the device returns an
IBI signal only when PPG waveforms are considered consistent enough by the heartbeat
detection algorithm [24]. In other words, the IBI output is bound to some implicit, binary
SQI whose computation has not been disclosed yet by the company.

The E4 wristband has already undergone several validation studies, which focused
on the signal level (accuracy of IBI estimation) and/or the feature level (accuracy of the
feature extraction process). For example, [25] estimated the number of missing beats
in the IBI signal, relatively to standard ECG laboratory instrumentation; and compared
statistical and frequency features from both devices. In the same vein, [26] compared IBI
values and cardiac features from E4 with an ambulatory ECG device (VU–AMS) in clinical
settings; and [27] collected cardiac features from E4 and another wearable ECG instrument
(MindWare Mobile Device).

These studies are consistent in their findings. At the signal level, the IBI estimate
from E4 is well-correlated with the IBI from ECG, with better results in resting than active
conditions. In a given time window, however, the proportion of missing samples could
reach 57% at rest and 99% during a talk [25], due to the heartbeat selection algorithm
embedded in E4. At the feature level, the mean heart rate over a given time window
is estimated with high accuracy; however, all features reflecting HRV show significant
correlations [27] together with significant differences [26] with the ECG-based data.

This deviation from the gold standard reflects the well-known limitations of PPG
in assessing HRV. That said, it also comes along with considerable loss of data on time
intervals where the PPG is likely to be flawed by motion artifacts. Therefore, it is still
unclear whether this substandard cardiac monitoring with Empatica E4 comes (i) from
permanent limitations of PPG, or (ii) from transient data loss due to motion artifacts.

The impact of data loss on feature extraction (assumption (ii)) was shown in a simu-
lation study [28], in which samples were removed from time windows of an ECG-based
IBI signal, following a Gilbert burst model. As the missing sample rate increased, low-
frequency components of the heart rate signal tended to be under-estimated, while the
high-frequency components tended to be over-estimated. If data loss is actually a main
source of error in the feature extraction process, there is room for a real-time quality man-
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agement strategy by skipping feature computation when too many samples are missing.
Still, this has to be shown in PPG-based heart rate data.

Finally, none of these studies has been conducted in real-life settings where motion
artifacts are frequent and commercial sensors are set up by users themselves. In such
conditions, a methodological obstacle has to be overcome: there is no gold-standard
measurement to compare with the validated device. Since any wearable sensor (including
ECG) is exposed to motion artifacts, there is a need to select reliable segments of IBI data
to act as a benchmark. In that perspective, expert annotation cannot make a sustainable
strategy; and academic SQIs still need validation on real-life data. Since most commercial
SQIs are black boxes, they provide both help and burden to the researcher when it comes
to selecting a commercial device for advanced cardiac monitoring. Our work attempted to
address this methodological issue in a field validation procedure for sensor Empatica E4.

1.5. Outline of the Current Study

This article proposes the following contributions to current research on real-life cardiac
monitoring systems.

i. A white-box SQI (the Lack Index) that quantifies the data loss in any IBI signal, and
a straightforward criterion to select reliable IBI segments in real-world data,

ii. Validation results for a wrist-worn sensor (Empatica E4) on the field,
iii. Improvement reports when accounting for data loss in the feature extraction pro-

cess.

In a first step, our index of data loss is developed using three properties of the IBI
signal: its acceptable range, its acceptable variability, and the sum of its acceptable sample
values. This SQI was used to identify time intervals where a wearable ECG device (Zephyr
BioHarness 3) could be used as reference for heart rate estimation. In a second step, validity
of sensor Empatica E4, a surrogate of the wearable ECG, is addressed at the signal level and
at the feature level, in real-life data acquired by non-expert users. The validation method is
similar to [25]: at the signal level, a beat-to-beat analysis is run to compare the IBI signals
from both sensors. At the feature level, statistical and frequency parameters are compared
between both signals. In this process, the Lack Index allowed us to select time windows in
which large error rates were less likely to be encountered.

2. Materials and Methods

This study relies on a database acquired on several subjects, recorded during daytime
for a whole working week. The experimental protocol and resulting dataset is introduced in
the next paragraphs (Materials); then the main data processing and methods for elaborating
the SQI is presented in detail (Methods), along with the validation procedure to estimate
PPG data quality.

2.1. Materials: Experimental Protocol and Cardiac Sensors
2.1.1. Recruitment Procedure

Three healthy male participants (aged 25, 27, and 33) agreed to wear a set of commer-
cial sensors for a whole working week. None of them had a history of neurological disease,
or followed any treatment susceptible to alter their cerebral or neurological functions.
Before the experiment, each participant received a 2 h briefing, and a detailed manuscript
explaining both the protocol and proper use of the sensors, which had to be taken home
for the week. Sensors had to be equipped, taken off, and recharged everyday by the
participants themselves according to the experimenter’s instructions, and then brought
back to the lab for the final debriefing.

All participants signed a written consent at the end of the initial briefing, and received
financial compensation after the equipment was returned. The experimental protocol was
approved by the Ethics Committee in Non-Interventional Research (CERNI) related to
COMUE Univ. Grenoble-Alpes (agreement N◦ 2015-05-12-67), and conducted in accordance
with the Declaration of Helsinki.
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2.1.2. Wearable Sensors and Cardiovascular Signals

Two commercial wearable sensors were used to monitor cardiovascular activity: a
chest belt and a smart wristband.

The chest belt Zehyr BioHarness 3 allows continuous electrocardiography (ECGbh,
sampled at 250 Hz) by means of a couple of textrodes embedded on a chest strap. Ac-
quisitions are recorded in a compact module clamped on the strap, which power supply
and memory exceed a full recording day. The device automatically computes two kinds
of heart rate estimators. The first one is a standard tachogram, sampled every time a new
heartbeat is detected on signal ECGbh. The interbeat intervals (IBIbh) are computed by
differentiating all timestamps. The second one is a custom heart rate approximation (HRbh),
which is computed from the surrounding 15 s of signal IBIbh and sampled every second.
The reliability of this HR signal was asserted on the field in [29], in low- and high-physical
activity conditions. As stated before, BioHarness 3 also returns its own (proprietary) SQI:
for each sample HRbh, a confidence level (Chr) is returned as a percentage of maximum
confidence (hence varying between 0% and 100%). According to BioHarness user manuals,
this confidence level Chr is computed from features expressing the maximum level of the
raw signal ECGbh and its signal-to-noise ratio. The device additionally provides: (i) 3-axis
accelerometer data, which will be used below to compute the amount of body movement,
and (ii) a respiration signal, which will not be considered in the current study.

The smart wristband Empatica E4 provides photoplethysmography with green and red
light (PPGe4, sampled at 64 Hz) and automatically computes the interbeat interval (IBIe4).
As mentioned earlier, signal IBIe4 is sampled when signal PPGe4 is considered reliable
enough by the heartbeat detection algorithm. E4 additionally provides skin temperature
and skin conductance data that will not be considered in the current study. It also provides
3-axis accelerometer data, which will be used below to estimate wrist activity. The device
was worn on each subject’s non-dominant arm.

Both sensors can be used in local recording or Bluetooth transmission mode. The
recording mode was preferred for battery saving and to avoid accidental connection losses.
A main challenge with such a protocol choice is that both sensors had to be synchronized
manually.

2.1.3. Sensor Synchronization and Data Collection

As stated before, each sensor was set and started by participants themselves in the
morning (i.e., as soon as possible after getting up). After self-calibration of the sensors
(i.e., one minute after set up), the participants were instructed to stand still and perform
three successive jumps at one-second intervals. This particular, contrived movement leaves
sharp and salient marks on the acceleration signals of each sensor: this allows offline sensor
synchronization with a time resolution high enough for our later analyses (around 0.1 s).
The same procedure was applied before sensors unset at the end of the day (i.e., as late as
possible before sleep), to account for time drift between both sensor clocks.

The participants’ activities and their interactions with the sensors are another paramount
information when collecting data in real life during an extended period. The participants
performed their daily routine wearing both sensors (office-like work, bike or car driving,
leisure and sport training, two of them being high-level athletes). They were also asked
during to report any meaningful daytime event by means of a short questionnaire filled on
a homemade smartphone application. Moreover, they had to recall their main activities
every evening by means of a spreadsheet questionnaire on the provided computer. The
day reconstruction method followed the guidelines of [30]. After uploading sensor data
and daily questionnaires to the laboratory’s own secured network, at the end of each day,
they had a short interview with the experimenter by mail or by telephone, depending on
participant’s own agenda.
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2.1.4. Preliminary Processing and Data Selection

Offline, all signal processing was performed using MathWorks® Matlab R2017b. Sen-
sor data were synchronized on the basis of the successive jumps (by identifying them
and expanding signal timeframes for a perfect match), and examined in the light of our
knowledge concerning subject activities during the experiments. Concerning heart rate
data, the beat-to-beat analyses required perfect sensor synchronization. Therefore, every
record in which the three successive jumps were not clearly identifiable on both sensors’
acceleration data, twice a day (since participants might have neglected them at one or the
other end of the day), were discarded from current analysis.

Subsequently, heart rate signals from both sensors were superposed and visually
examined. The HR estimator from BioHarness (HRbh) was inverted to match the values of
the IBI estimator (IBIbh). It appeared that signal IBIbh could not exceed 215 milliseconds
(32 s) in amplitude, suggesting that sensor BioHarness 3 stored its IBI values in a 16-bits
variable. In our recordings, this had an adverse effect: as soon as no R-peak was detected
during more than 32 s on the ECG, signal IBIbh fell out of sync with signals HRbh and
IBIe4 (probably because of a memory overflow). This happened a couple of times on
several recording days. To deal with this issue, IBIbh was synchronized back with HRbh
manually and piecewise, by correlation maximization on each correct portion of signal
IBIbh. Finally, the wristband signal IBIe4 was also synchronized with the chestbelt signal
HRbh (by correlation maximization) to account for the mean pulse transit time between the
heart and the wrist.

During this two-step, high-precision synchronization phase, every recording day in
which the proposed method needed further improvements was discarded from the final
dataset. This left 11 recording days, i.e., 124 h of multimodal recordings.

To validate the heartbeat detection algorithm of BioHarness (which provides IBIbh)
with an academic reference, the Pan-Tompkins (1985) analysis was finally run on each ECG
recording [31,32]. This provided a third IBI signal, hereafter named IBIpt. Again, this signal
was synchronized with other IBI estimators by correlation maximization.

2.2. Methods: Signal Processing and Quality Estimation

Our final goal was to compare the PPG-based signal IBIe4 with the ECG-based signal
IBIbh, on time intervals where signal IBIbh could be used as a benchmark. This implied to
find such time intervals given that, unlike IBIe4, signals IBIbh and IBIpt were not corrected
for flawed heartbeat detection. To this end, a preliminary rejection of outlier samples
was performed on each IBI estimator following an automatic process. In each cardiac
signal without outliers, the proportion of missing samples was then estimated over 1 min
time windows of data. This proportion of missing samples is the output of our new SQI.
To isolate time windows where no sample was missing (i.e., where flawless heartbeat
detection could be assumed), a criterion was applied on this SQI. On time windows where
signal IBIbh could be used as benchmark, the quality of signal IBIe4 was finally assessed at
the signal level (by matching the heartbeats from both signals) and the feature level (by
extracted cardiac features from both signals).

2.2.1. Outlier Removal

The IBI signal has inner properties that can be used to assess data quality. These
properties were used to reject outlier samples on each IBI signal by applying two successive
criteria: a range criterion and a variation criterion. The range criterion consisted of rejecting
every sample that expressed an instantaneous heart rate outside the range [30; 250] bpm
(kept wide to account for sport training events). The variation criterion considered that the
value of an IBI sample cannot deviate from the mean of its neighbors by more than 30%.
The whole outlier rejection procedure followed the guidelines of [33,34]. Since real-life IBI
signals may sometimes be very noisy, rejection from the variation criterion was performed
in a recursive fashion. A 5 s moving average was computed at first by focusing on each
sample of the IBI signal, successively. Each IBI value deviating from this moving average
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by more than 30% was temporarily regarded as an outlier. In the following iteration, the
moving average was computed on the remaining non-outlier samples. All IBI samples
deviating from this new moving average by more than 30% were regarded as the new
outliers, and so on. The procedure was run until no more outliers were found, or when the
whole process exceeded 20 iterations.

Outputs of this two-step outlier removal process are illustrated in Figure 1. While
computing the last moving average over 5 s windows, the number of available samples
could vary from 1 to 16, depending on the local heart rate and number of missing samples.
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signal after outlier correction.

2.2.2. The Lack Index

In Empatica E4, IBI samples are provided only when the PPG signal is considered
good enough by the sensor’s own algorithm. This results in a scarcer (yet more trustful)
signal than the standard tacogram provided by BioHarness. After the outlier rejection step,
however, the IBI samples from BioHarness were also scarcer when ECG signal quality was
low. If the heartbeat detection algorithm truly detects heartbeats (this hypothesis will be
discussed later), it can be assumed that sample scarcity (after outlier rejection) reflects the
quality of the original IBI signal.

A simple index of “sample scarcity” can be designed by comparing the practical
number N of IBI samples actually found in a given time window, with a theoretical number
Nt of IBI samples that should be found in a standard tacogram with no outlier rejection.
Let a time window of duration W, ranging within [t = 0; t = W], in which N heart beats are
detected at times {t1, t2, . . . , tN}. The corresponding interbeat intervals are computed as:
IBIn = tn − tn−1. In a raw IBI signal (i.e., without outlier rejection), all samples add up to
the total time duration between the first and the last heart beat used for IBI computation.
This can be expressed as:

N

∑
n=1

IBIn =
N

∑
n=1

(tn − tn−1) = tN − t0 ≈W (1)

where t0 is the latest beat detected before the beginning of current time window (t = 0).
The mean IBI (µ) in the current time window is computed by dividing this sum of IBIs

by the number of samples (N) found in this time window. Consequently, this number of
samples N can be recovered by dividing the sum of IBIs by their mean µ. Since this sum of
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IBIs is close to W, according to Equation (1), one can also compute a theoretical number of
samples Nt that is close to N:

N =
∑N

n=1 IBIn

µ
≈ W

µ
= Nt (2)

In other words, when there is no missing sample in the IBI signal, the actual number
of samples (N) that can be counted in any time window can also be estimated with a
theoretical number (Nt) derived from the window size (W) and the mean IBI (µ). When
samples are removed from the IBI signal, however, the actual number N should decrease
while the theoretical number Nt should remain stable. From the relative difference between
these two numbers, we designed an estimator of sample scarcity, hereafter named the Lack
Index (L). As shown in Equation (3) below, the Lack Index L can also be seen as the relative
error between the sum of IBI samples and the time window length:

L =
Nt −N

Nt
=

W/µ−N
W/µ

=
W−∑N

n=1 IBIn

W
(3)

The Lack Index estimates the proportion of missing beats in a given time window.
Combined with an outlier rejection process, it evaluates the quality of the original IBI signal.
In this study, three Lack Indexes (Le4, Lbh and Lpt) were respectively computed out of the
three IBI estimators (IBIe4, IBIbh and IBIpt), on non-overlapping successive time windows
where W was equal to 60 s. Regarding signal IBIe4, the Lack Index was used to quantify
the lack of samples in real-life settings; and its impact on signal quality at the feature level.
Regarding all IBI signals, the Lack Index was used to isolate time windows which can be
considered as flawless, i.e., without any missing beat after outlier removal. This could be
done by setting a rigorous threshold on its value, as shown in the next paragraph.

2.2.3. Criteria to Select Flawless Time Windows

By definition, a given time window of length W encompasses all heartbeat times
{t1, t2, . . . , tN}, but not t0 (located before t = 0) and tN+1 (located after t = W). Therefore, we
can set the following inequality:

(tN − t1) < W < (tN+1 − t0) (4)

When the heartbeat detection is flawless (i.e., no outlier is found in the current win-
dow), Equation (1) applies for the sum of IBI samples and our Lack Index L is framed by
two critical values:

t0−t1
W <

W−∑N
n=1 IBIn
W < tN+1−tN

W
−IBI1

W < L < IBIN+1
W

(5)

Consequently, if the Lack Index L is superior to IBIN+1/W, then the current time
window contains flawed beat detections for the current IBI estimator. Since there is no
confidence that IBIN+1 has been well estimated, the minimum IBI value found in the time
window is a more secure alternative to prevent adjacent time windows from influencing
each other. Therefore, flawless time windows (i.e., windows where the IBI signal has no
missing sample) can be identified for each of the three IBI estimators (i.e., IBIe4, IBIbh, and
IBIpt) when the following criterion is satisfied:

W ∗ L < min(IBI) (6)

Alternatively, BioHarness provides its own SQI: the confidence level Chr, extracted
from online properties of the ECG, whose accuracy is not under scope in the current study.
This confidence level can also be used to select reliable time windows of cardiac signal
from the BioHarness sensor, since it guarantees that heartbeat detection is safe each time its
value reaches 100%. Hence, one may identify a flawless window of cardiac signal when the
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minimum value of Chr over the time window is equal to 100%. This additional criterion
can be used to validate the previous one in our attempt to find flawless windows on signals
IBIbh and IBIpt:

min(Chr) = 100% (7)

In the second part of this study, time segments of signal IBIbh that were identified
as flawless according to Equation (6) were used as benchmarks to assess the quality of
signal IBIe4. This was done at the signal level and at the feature level through two distinct
procedures: a beat-to-beat comparison and feature extraction from both signals.

2.2.4. Beat-to-Beat Comparison between IBI Signals from BioHarness and E4

When both signals are properly synchronized, each beat in IBIe4 can be identified to
one beat in IBIbh. This was done by splitting the timeframe of signal IBIbh at the middle
between each couple of successive heartbeats, defining a set of time intervals surrounding
each heartbeat (see Figure 2 below). Samples of signal IBIe4 were enumerated within each
of those time intervals: an empty interval means one missed beat and an interval with more
than one sample IBIe4 means (at least) one overdetected beat. In each time interval where
no heartbeat was missing or overdetected, a pair of matching IBI samples was identified
between the two signals. The absolute difference was computed between all matching
pairs of IBI samples.
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dotted lines delimit the time intervals attached to each IBI sample from BioHarness, which are numbered in grey at the top
of the chart. Intervals N◦ 4, 5, 6, 7, 8, 26, 27, 28, 29, and 30 have no red crosses; thus, 10 samples (33%) are missing in signal
IBIe4. All red crosses here are matched samples, so that no sample is overdetected in signal IBIe4.

This beat-to-beat analysis was run for every time window where signal IBIbh had
no missing sample, according to the criterion provided in Equation (6). The following
parameters were computed on each single time window: (i) the probability for a sample in
signal IBIbh to be missing in signal IBIe4 (pmiss), (ii) the probability for a sample in IBIe4 to
be an overdetection (pover), and (iii) the mean absolute difference in IBI value between pairs
of matched samples in signals IBIbh and IBIe4 (µdiff). These parameters allow to quantify
three types of errors that can occur during a beat detection: a false negative, a false positive,
and a true positive with a wrong value. Let us call Nbh the number of samples for IBIbh
in this time window, Ne4 the number of samples for IBIe4, nmiss the number of missing
samples in IBIe4, nover the number of overdetections, andM the set of matched samples
between the two signals. The three previous error rates were computed this way:

pmiss = nmiss

Nbh
, pover = nover

Ne4
,

µdiff = 1
card(M) ∑

n∈M
|IBIe4(n)− IBIbh(n)|

(8)
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2.2.5. Feature Extraction

In advanced cardiac monitoring applications, descriptive features are usually com-
puted over a full time window. For example, the mean interbeat interval (µ) and their
standard deviation (σ, also called SDNN in current literature) are frequently used in the
assessment of mental states. Some features are especially designed to describe HRV: for
example, the root mean square of successive differences in the IBI (rmssd), and the low- and
high-frequency components in its power spectrum (lf and hf, respectively, corresponding
to the normalized power in frequency ranges [0.04; 0.15] Hz and [0.15; 0.50] Hz.

These five cardiac features were extracted and compared between signals IBIbh and
IBIe4, over time intervals where signal IBIbh showed no missing sample (i.e., satisfied the
criterion set in Equation (6)). The two frequency features were computed by integrating
a Lomb-Scargle periodogram [35], a frequency analysis technique adapted to non-evenly
sampled signals. The time window length W = 60 s, was set to ensure adequate resolution
in the lower frequencies.

To assess feature extraction from IBIe4 with IBIbh as the benchmark, the absolute error
rate (E) between both estimates was computed for each feature f, over each time window.

f ∈ {µ, σ, rmssd, lf, hf}, Ef =
∣∣∣ fe4−fbh

fbh

∣∣∣ (9)

This error rate was used to answer two additional questions: (i) What levels of error
could be expected for a given cardiac feature when extracted from signal IBIe4? (ii) To
what extent could the Lack Index (Le4) be used to reduce this error? Since the Lack Index
Le4 estimates the proportion of missing samples in a time window, question (ii) tests the
hypothesis that lack of samples is a significant factor in misestimating a feature from
signal IBIe4. If so, one could set a threshold on Le4 to timely control the risk of error when
extracting a cardiac feature from real-life IBI recordings.

In practice, however, samples could be extremely rare in signal IBIe4 when the heart-
beat detection algorithm was unsuccessful over large time intervals. In such contexts,
it may be meaningless to compute some of the previous features since the IBI segment
contains too little information. Therefore, some conditions were set to compute a given
feature (and the corresponding error rate) only when the number of samples Ne4 in signal
IBIe4 was sufficient over a 60 s time window:

• µ was computed when Ne4 ≥ 1 sample;
• σ was computed when Ne4 ≥ 2 samples;
• rmssd was computed when Ne4 ≥ 2 successive samples;
• lf and hf were computed when Ne4 ≥ 18 samples.

The minimum number of samples needed to estimate the frequency features depends
on the range and resolution of the Lomb-Scargle periodogram, which is different for each
window of unevenly sampled IBI signal [36]. To avoid setting rules that are outside the
scope of this study, the minimum Ne4 was thus derived from the Shannon-Nyquist theorem,
assuming that power spectrum should spread (at least) beyond the critical frequency of
0.15 Hz (hence: Ne4 ≥ 60[s] ∗ 2 ∗ 0.15[Hz] = 18).

2.2.6. Activity Level Monitoring

Since previous error rates were computed under ambulatory conditions, the amount
of body movement stands as a major feature to monitor in order to explain potentially
low performances for each IBI estimator. Using data from its 3-axis accelerometer, the
BioHarness sensor computes and returns an estimate of activity which, according to
device documentation, is derived from the Euclidean norm on the 3 bandpass-filtered
acceleration components. Although this parameter might accurately reflect the amount
of chest movement, there is no equivalent indicator for the wrist-worn sensor E4. A
common Activity level estimator was thus computed from the raw acceleration data of
both sensors, to quantify body movements on both locations on comparable magnitude
scales. Each component was first bandpass-filtered in the frequency range [0.1; 10] Hz,
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with a digital second-order Butterworth filter, to account for non-human artefacts and
the low-frequency contributions of gravity. According to previous studies in human
movement quantification [37,38], the sum of each component’s average signal magnitude
area correlates well with energy expenditure and allows to distinguish between rest and
active periods. This can be expressed as:

A = ∑
i∈1...3

Ai, Ai =
1

W

W∫
t=0

|ai(t)|dt (10)

where ai is one of the three bandpass-filtered acceleration components, and [0, W] delimits
a given time window. Activity A was thus computed for both sensors to provide one
activity estimate for each body location: Abh for the chest and Ae4 for the wrist. Over
the set of all available 60 s time windows in the database, our activity estimate Abh got a
Spearman correlation coefficient of 0.91 with the mean activity estimate from BioHarness.

3. Results

This section presents validation results on sensor Empatica E4 through the three stages
of our validation method: (i) selection of time intervals with no missing sample; then (ii)
validation of estimator IBIe4 against estimator IBIbh at the signal level and (iii) at the feature
level.

3.1. Time Windows with Flawless Heartbeat Detection

For each of the three IBI estimators (IBIbh, IBIpt, IBIe4), the criterion shown in Equation
(6) was applied to isolate 60 s time windows where no sample was missing. The criterion
based on BioHarness native SQI (Equation (7)) was also applied as a reference. Following
each criterion, the size of the selected subset of time windows is displayed in Table 1 below,
as a percentage of the initial database. It represents the probability of selecting a random
time window if either the BioHarness SQI (Cbh) or the Lack index (Lbh, Lpt, Le4) had been
used to select flawless time windows.

Table 1. Proportion of selected 60 s time windows over the whole dataset (upper line), and maximum
activity level in chest (Abh) and wrist (Ae4) in the selected time windows (lower lines). Over the
whole dataset (i.e., without window selection), the maximum level for Abh was 382 mG and the
maximum level for Ae4 was 825 mG. Column N◦ 2 corresponds to window selection from BioHarness
SQI: Chr (Equation (7)). Columns N◦ 3, 4, 5 correspond to window selection from the Lack Index of
each IBI signal: Lbh, Lpt and Le4 (Equation (6)).

Criterion Chr Lbh Lpt Le4

Selected windows 51.4% 48.2% 43.3% 0.6%
Maximum Abh 137 mG 137 mG 137 mG 7.05 mG
Maximum Ae4 415 mG 415 mG 415 mG 19.1 mG

Each subset of time windows also contained various amounts of chest movement
(Abh) and wrist movement (Ae4). Within each subset, the range of these indicators reflects
the amount of body movement that can be monitored when the corresponding criterion is
satisfied. The two last lines of Table 1 thus displays the maximum Abh and maximum Ae4
over the time windows selected following each criterion. A lower figure means that fewer
degrees of physical activity could be monitored through the corresponding signal without
losing IBI samples.

In Table 1 (line 2, columns 2, 3, and 4), the number of selected windows is similar for
the three cardiac signals from BioHarness (HRbh, IBIbh, and IBIpt): about half the original
database was selected according to each SQI (resp. Chr, Lbh, and Lpt). Three conclusions can
be drawn from these three figures. First, no cardiac sensor is immune to real-life artefacts,
since half the database showed at least one missing beat after outlier rejection. Second,
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BioHarness algorithm for heartbeat detection (column 3) performed slightly better than
the academic reference (Pan-Tompkins, column 4) on the same ECG recordings (with resp.
48% and 43% selected time windows). Third, the two criteria used for columns 2 and 3
validated each other in assessing BioHarness cardiac signals. Indeed, the proportions of the
selected time windows are close to each other (resp. 51.4% and 48.2%); and 91% of the time
windows that satisfied Equation (6) (based on the Lack Index Lbh) also satisfied Equation (7)
(based on the Confidence Level Chr). The native BioHarness SQI thus validated the ability
of the Lack Index to select IBI segments with good signal quality.

Compared to the three cardiac signals from BioHarness, however, our criterion selected
a very small subset of time windows showing no data loss for signal IBIe4 (0.6% of the
original database). This significant shrinkage of the subset size (line 2) comes with a
significant drop in the amounts of body movement that can be monitored in this subset
(lines 3 and 4). Indeed, the maximum levels of chest activity (Abh) and wrist activity (Ae4)
are identical across columns 2, 3, and 4 (for sensor BioHarness), up to 36% (for chest) and
50% (for wrist) of the maximum activity level in the original database. In column 5 (sensor
E4), though, the maximum levels of chest and wrist activity are 20 times lower, down to
1.8% (for chest) and 2.3% (for wrist) of the maximum activity levels in the database.

In a nutshell, Table 1 shows that time windows where signal IBIe4 can be considered
flawless are very rare in real-life recordings. As expected, the quality of data from sensor
Empatica E4 is strongly related to the amount of body movement. The next paragraphs
address this issue more accurately, by validating the IBI estimate of Empatica E4 at the
signal and the feature level.

3.2. Characterization of Empatica’s IBI Estimate at the Signal Level

In the next step, all time windows where signal IBIbh showed missing samples (accord-
ing to Equation (6)) were removed from the original dataset. This left 3370 time windows
(56 h of recordings) where signal IBIbh could be used as benchmark to validate signal IBIe4.
Following the heartbeat-to-heartbeat analysis proposed in Section 2.2, we used this new
dataset to address the following questions:

• What kinds of errors can be expected in signal IBIe4 under real-life conditions
(Section 3.2.1);

• To what extent are these errors related to wrist movements (Section 3.2.2).

We finally used our results to show that the Lack Index accurately estimates the
proportion of missing beats over any time window (Section 3.2.3).

3.2.1. Error Rates over All Time Windows

As introduced in Section 2.2, three parameters were computed to qualify the estimation
of the IBI by Empatica E4: the proportion of missing samples pmiss, the proportion of
overdetected beats pover, and the mean absolute deviation between matching IBIs µdiff.
The repartition of these error rates is pictured with histograms in Figure 3 below.

Results on the missed sample rate pmiss confirm that signal IBIe4 was very scarce over
the time windows where signal IBIbh could be used as benchmark. In plot (a), half the
time windows have a pmiss over 98%. Actually, 42% of the time windows did not show
any sample of signal IBIe4. In 90% of the time windows, the heartbeat detection algorithm
missed at least one beat over two (i.e., the 1st decile in pmiss is close to 50%).

In plot (b), however, one may notice that 81% of the time windows show no ovede-
tected heartbeat (pover = 0%). Overdetection is thus a marginal phenomenon in signal IBIe4.
In plot (c), one may also notice that deviations between matched samples of signals IBIbh
and IBIe4 are typically low: 90% of the time windows show a mean deviation (µdiff) below
130ms, which represents roughly 15% of a typical IBI value.

These results show that in the estimation of IBI with Empatica E4, the risk of false
positive (i.e., an overdetected beat) is very low and the estimation accuracy is typically high.
That said, plot (c) also demonstrates that such an estimation is not perfect: the mean value
of µdiff over the dataset is 67 ms, which represents roughly 7% of a typical IBI. Together
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with the high rates of missed beats, this should impact the quality of feature extraction in
advanced cardiac monitoring applications.
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3.2.2. Impact of Wrist Activity

One may still argue that histograms of Figure 3 include all amounts of body move-
ments, while PPG measurements are known to behave well under conditions of low
physical activity. In this paragraph, we measure the same error rates at low and high
amounts of wrist movement.

To distinguish several amounts of wrist movement, the dataset was divided in 10 sub-
sets of time windows corresponding to each decile of wrist activity Ae4 (the lowest 10%
make one subset, the next 10% make another subset, etc.). In each of these subsets, the
median and interquartile range were computed for the two error rates pmiss and µdiff (pover

was not considered since it was typically negligible). The results are displayed in Figure 4.
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Figure 4. Statistics on IBI estimation quality through distinct levels of wrist activity. (a) Proportion of
missed beats (pmiss) against wrist activity (Ae4); (b) Misestimation degree (µdiff) against wrist activity.
The X-Axis represents each decile of Ae4 in the dataset. Plain lines stand for the median error at each
decile of activity, and colored areas materialize the interquartile range.

In chart (a), the median (thick line) and the interquartile range (colored area) of the
proportion of missing beats (pmiss) together show a steep rise across the lower deciles of
wrist activity (Ae4 < 17 mG), and remain stable afterwards (pmiss ≈ 100%). According to
the Student’s two-sample t-test, there was a highly significant difference in pmiss between
the two first deciles of wrist activity (p < 0.001, 672 degrees of freedom). These results
confirm that wrist movements strongly increased the probability of missing a heartbeat,
even at the lowest rates (median pmiss ≈ 80% in the second decile of Ae4).

In chart (b), the mean absolute deviation (µdiff) shows a comparable trend: the median
error increases across the first deciles of wrist activity (from 21 ms at 4 mG to 36 ms at
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17 mG); and tends to remain stable afterwards. A one-way ANOVA across all deciles of
Ae4 showed a significant impact of this factor on parameter µdiff (p < 0.001, 1952 degrees of
freedom). However, the median curve remains encased in parameter variability (colored
area); and there is no significant difference between the two first deciles of wrist activity
(p = 0.283, 563 degrees of freedom). Compared to pmiss, the mean deviation µdiff was thus
only mildly affected by the amount of wrist movement.

During the final step of this study (see Section 3.3), the first decile of wrist activity was
used to delimit a subset of time windows showing better IBI estimation, since pmiss and
µdiff are both lower than in the rest of the dataset.

3.2.3. Validation of the Lack Index

In the current study, the Lack Index (Le4) and parameter pmiss are two distinct mea-
sures of the proportion of missing beats in a given time window. Over all time windows
where signal IBIbh could be used as benchmark, the linear correlation coefficient found be-
tween Le4 and pmiss was 0.999. This suggests that, despites the underlying hypotheses, our
Lack index precisely estimates the actual proportion of missing samples in a time window.
The mean absolute deviation between the two indicators is 0.6%. Since an extremely low
IBI (e.g., 0.5 s) covers 0.8% of a 60 s time window, the minimum IBI divided by window
length (60 s) was a relevant upper limit on Le4 to claim that a time window had no missing
sample (pmiss = 0%). This validates the criterion proposed in Equation (6).

3.3. Validation of Empatica E4 at the Feature Level

Finally, the reliability of signal IBIe4 for advanced cardiac monitoring was addressed
by extracting the five features introduced in Section 2.2.5. For each feature f ∈ {µ, σ, rmssd,
lf, hf}, the corresponding error rate Ef between signals IBIe4 and IBIbh was computed
following Equation (9).

These error rates were first computed over the 3370 time windows where signal IBIbh
could be used as benchmark (i.e., where the Lack index Lbh satisfied the criterion defined
in Equation (6)). The results are displayed in Figure 5 below. In each of the five panels, the
plain blue line materializes the cumulative probability of error for a given feature f. This
function corresponds to the probability for error Ef to be less than or equal to a given value.
The median error is obtained when the curve reaches 50% in ordinate. The full curve can
be interpreted like a ROC curve: when it rises steeply from 0% to 100%, lower error rates
come with higher probabilities, which means that feature extraction from signal IBIe4 is
more reliable.

When features are blindly computed over all time windows (plain blue line) the
median errors are, in ascendant order: µ: 3%, σ: 25%, lf: 25%, rmssd: 62%, hf: 63%. The
mean IBI (µ) by far is the more accurately estimated: almost 90% of the time windows have
an error rate below 10%. The curve of each other temporal feature resembles the curve
of a frequency feature: σ and lf on the one hand, rmssd and hf on the other hand. Such
similarities, which justified the positioning of the features on Figure 5, are not surprising
since these couples of features are known to correlate each other in long recordings [39]. In
panels (b) and (c), the long-term HRV features (σ, lf) show together lower error rates than
the short-term HRV features (rmssd, hf), but also higher rates than the mean IBI (µ).

To reduce such error rates and ensure a reliable feature extraction, one may set a
criterion to select time windows where signal IBIe4 should be more reliable. As stated in
Section 3.2.2, for example, the first decile of wrist activity (Ae4) defines a subset of time
windows where signal IBIe4 shows lower error rates at the signal level. The cumulative
probability of error for this “Low Wrist Activity” subset is materialized by the red dashed
lines in all panels of Figure 5.
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Since we have designed a SQI (the Lack Index) that estimates the proportion of missing
samples in a time window, we also questioned the influence of this parameter on feature
estimation quality. To mirror the previous segmentation over wrist activity (Ae4), the first
decile of the Lack Index (Le4) made another subset of time windows with “Low Lack
index”. The cumulative probabilities of error in this subset are provided by the green,
dash-dotted line in each chart of Figure 5.

Finally, a third subset of data was made from the time windows where signal IBIe4 had
no missing sample, according to Equation (6). This more stringent criterion was designed
to suppress the effect of data loss during feature extraction. In each chart of Figure 5, the
cumulative probabilities of error in this subset are represented by the green dotted line.

As expected, the “Low Wrist Activity” data (red dashed lines) yielded lower error
rates than the full dataset. The “Low Lack Index” subset, however, yields better results for
every feature, except hf. Regarding signal quality for feature extraction, therefore, the Lack
Index seems to have greater discriminative power than physical activity estimates.

Indeed, the “No Missing Sample” criterion (based on the Lack Index) performed by
far the best segment selection. In chart (d), the green dotted curve is merged with the top
of the graph: this means that all time windows showed error rates close to 0%. In the other
charts, however, the feature estimation is still imperfect; the median error rates being: σ:
10%, lf: 6%, rmssd: 34%, hf: 27%. If the long-term HRV features (σ, lf) now display low
error rates, this error remains high for the short-term HRV features (rmssd, hf), even when
no sample is missing in the time window.

Beyond its impact on feature extraction, the low number of available samples in IBIe4
also reduced the number of time windows available for feature computation. Over all time
windows where IBIbh could be used as reference, the mean IBI (µ) could be extracted 58%
of the time (since at least 1 sample was required); features σ and rmssd, 51% of the time
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(since 2 samples were required); and features lf and hf, 23% of the time (since 18 samples
were required).

4. Discussion

As a reminder, the contributions of this study are threefold: (i) a validation experiment
of Empatica E4 on the field; (ii) a white-box SQI (the Lack Index) and a methodological
framework to qualify heart rate signals in real-life settings; (iii) the use of the Lack Index to
reduce the impact of data loss during feature extraction. The following paragraphs will
discuss these three contributions.

4.1. Field Validation of Empatica E4

Technically speaking, Empatica’s built-in algorithm (that returns an IBI estimation
only under conditions of satisfactory PPG quality) is working quite well. In our dataset,
overdetection of heartbeats remained a marginal phenomenon. The IBI estimation error
was typically low and this misestimation degree increased only moderately with physical
activity (Figure 4b). In other words, Empatica’s heartbeat detection algorithm is both
specific (few false positives) and accurate (true IBI values). In time windows where all
heartbeats were detected by Empatica’s algorithm, perfect computation of the mean IBI
(Figure 5d) demonstrates that signal IBIe4 was not biased. These results confirm the
potential of PPG measurements for monitoring instantaneous pulse rates, which is already
intended by a number of wrist-worn cardiac sensors in commercial settings.

At the signal level, such an accuracy is achieved at the price of a very scarce IBI
estimation, as shown by parameter pmiss in Figure 3a. This lack of available IBI samples in
real-world data supports the findings of earlier laboratory studies [25]. At the feature level,
our study demonstrated that data loss is a major source of error when trying to extract HR
and HRV features: reducing the proportion of missing samples also reduces the error rates,
as seen in every chart of Figure 5. This factor is bounded to (but not entirely explained by)
the amount of wrist activity (see Figure 4a).

4.2. Assets and Drawbacks of the Lack Index to Assess the Quality of a Signal

To produce these results, we used a two-steps method to conduct a validation study
in real-life settings: (i) select time intervals where a reference measurement (e.g., wearable
ECG) shows no missing sample after outlier rejection; and then (ii) compare the target
heart rate signal with the benchmark IBI segments. Our method relies on a new white-box
SQI: the Lack Index, which precisely estimates the proportion of missing samples in the IBI
signal (see Section 3.2.3). This SQI comes with a straightforward criterion to select time
windows in which no sample is missing (Equation (6)).

That said, the Lack Index assumes that all IBI samples in a time window are valid heart
rate data. To be used as an SQI, it should be combined with an efficient outlier rejection
procedure to ensure that all IBI samples have the properties of a valid cardiac signal. The
procedure implemented in Section 2.2 is a perfectible example of such an approach: since it
relied on closely neighboring data, it was unable to identify a too long succession of invalid
IBI samples. For such reasons, future work in this area should consider different time
windows or more advanced criteria for outlier identification (e.g., adaptive filtering [40]),
provided the algorithm can withstand the fast variations and high missing sample rates
usually found in real-world heart rate data.

4.3. Potential of the Lack Index in Advanced Cardiac Monitoring Applications

Regarding Empatica E4, the results of Table 1 and Figure 3 suggested that real-life
cardiac monitoring applications should always rely on incomplete segments of the IBI
signal (no sample was missing in only 0.6% of the dataset; and half the samples were
missing in 90% of the dataset). To implement a sustainable feature extraction process,
a compromise should be brought on an “acceptable” number of missed beats for each
individual feature. The Lack Index was designed to deal with such an issue.
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In Figure 5, indeed, the flawless detection criterion (Equation (6)) could suppress
the estimation error for the mean heart rate (µ). This was not the case, however, for the
HRV features (σ, rmssd, lf and hf) that still showed non-zero error rates when no sample
was missing. As stated earlier in this study, these residual errors may arise from two
distinct phenomena: (i) the unavoidable noise in IBI estimation due to the smooth shape
of the PPG waveform, or (ii) the varying pulse transit time between heart and the wrist.
Since factor (i) varies from one heartbeat to another, it may explain the residual error rates
found for short-term HRV features (rmssd, hf). Since factor (ii) depends on physiological
variables like blood pressure, it may explain the residual error rates found for longer-term
HRV features (σ, lf). Another striking result is that residual errors are typically lower for
longer-term (σ, lf) than for shorter-term (rmssd, hf) HRV features. This finding is consistent
with [28]; it shows that high-level applications (e.g., inner states monitoring or heart event
prevention) using high-frequency HRV should carefully consider the missing sample rate
when running its predictions.

In this study, we did not interpolate the IBI signal since we were interested in the
impact of data loss on feature extraction. Based on the Lack Index, future work may
consider the use of interpolation approaches at different missing sample rates on real-
world measurements (similar work has been done with simulated data loss [41]). Another
limitation of this study is that HRV features were computed without accounting for the
influence of the window size (W = 60 s). Future work should also consider the combined
effect of the Lack Index (L) and the window size (W) while extracting features from real-life
recordings (similar work has been done with simulated data loss [28]). Bearing that in
mind, whether or not pulse rate variability and HRV should be considered as distinct
cardiac measures is still an open question. The answer might depend on the features of
interest, the time intervals, and the desired application.

As illustrated in this article, there is still work to be done on cardiac monitoring
systems (using either PPG or ECG) to make the estimation of heart rate more robust to real-
life conditions. Cardiac measurement will likely remain prone to artefacts, in spite of the
technical advances made in the recent years. This illustrates the need for system-specialized
SQIs (like the one proposed by BioHarness) to ensure that higher-level algorithms will not
run on false information. In advanced cardiac monitoring applications, however, there is
also need for white-box indicators to implement strong quality management strategies in
the feature extraction process. In that perspective, the current study proposed a method to
timely control the risk of error due to data loss in real-life settings. At a time when cardiac
monitoring techniques are being developed beyond ECG and PPG, this method should
also help the researcher to characterize several sensors outputs comparatively.

5. Patents

The work reported in this manuscript has led to patent applications, currently regis-
tered under N◦ FR3098390-EP3763283-US2021007674.
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