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In Brief
We developed a tool, SIMSI-
Transfer, which reduces missing
values in experiments that
consist of multiple TMT batches.
It works by transferring peptide
identifications from one TMT
batch to another based on the
similarity of tandem mass
spectra. SIMSI-Transfer
increases the number of
quantifiable peptide-spectrum
matches by 30% with a
concomitant reduction in
missing values between TMT
batches and is applicable to both
full proteome and
phosphoproteome experiments.
SIMSI is available on GitHub.
Highlights
• Spectrum clustering enables peptide identification transfer between LC–MS/MS runs.• The SIMSI pipeline supports processing full proteome and phosphoproteome data.• SIMSI increases the number of quantifiable PSMs by 26 to 45%.• SIMSI reduces missing values in multibatch TMT labeling experiments by up to 21%.
238
y Elsevier Inc on behalf of American Society for Biochemistry and
ccess article under the CC BY license (http://creativecommons.org/

.100238

mailto:kuster@tum.de
mailto:matthew.the@tum.de
mailto:matthew.the@tum.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.mcpro.2022.100238
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mcpro.2022.100238&domain=pdf


TECHNOLOGICAL INNOVATION AND RESOURCES
SIMSI-Transfer: Software-Assisted Reduction of
Missing Values in Phosphoproteomic and
Proteomic Isobaric Labeling Data Using
Tandem Mass Spectrum Clustering
Firas Hamood , Florian P. Bayer, Mathias Wilhelm, Bernhard Kuster* , and
Matthew The*
Isobaric stable isotope labeling techniques such as tan-
dem mass tags (TMTs) have become popular in prote-
omics because they enable the relative quantification of
proteins with high precision from up to 18 samples in a
single experiment. While missing values in peptide quan-
tification are rare in a single TMT experiment, they rapidly
increase when combining multiple TMT experiments. As
the field moves toward analyzing ever higher numbers of
samples, tools that reduce missing values also become
more important for analyzing TMT datasets. To this end,
we developed SIMSI-Transfer (Similarity-based Isobaric
Mass Spectra 2 [MS2] Identification Transfer), a software
tool that extends our previously developed software
MaRaCluster (© Matthew The) by clustering similar tan-
dem MS2 from multiple TMT experiments. SIMSI-Transfer
is based on the assumption that similarity-clustered MS2
spectra represent the same peptide. Therefore, peptide
identifications made by database searching in one TMT
batch can be transferred to another TMT batch in which
the same peptide was fragmented but not identified. To
assess the validity of this approach, we tested SIMSI-
Transfer on masked search engine identification results
and recovered >80% of the masked identifications while
controlling errors in the transfer procedure to below 1%
false discovery rate. Applying SIMSI-Transfer to six pub-
lished full proteome and phosphoproteome datasets from
the Clinical Proteomic Tumor Analysis Consortium led to
an increase of 26 to 45% of identified MS2 spectra with
TMT quantifications. This significantly decreased the
number of missing values across batches and, in turn,
increased the number of peptides and proteins identified
in all TMT batches by 43 to 56% and 13 to 16%,
respectively.

Isobaric stable isotope labeling techniques such as tandem
mass tags (TMTs) are frequently used for proteome profiling of
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large patient cohorts, exemplified by several projects of the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) (1).
This is because the multiplexing capability of TMT offers
substantial sample throughput (up to 18) as well as consistent
and precise relative peptide and protein quantification within
one multiplexed TMT experiment. It is also more robust than
label-free quantification (LFQ) against variations in the per-
formance of the chromatographic separation system because
quantification is performed on level 2 or 3 tandem mass
spectra (MS2 or MS3). This, in turn, simplifies method transfer,
for example for multi-center clinical projects. The downside of
using TMT labeling is that quantitative accuracy and dynamic
range are typically poorer compared with LFQ because of the
well-documented effect of ratio compression (2). A further
issue arises when combining multiple TMT experiments (i.e.,
batches) into one analysis. Because the set of identified and
quantified peptides is not necessarily the same in each TMT
batch, the amount of missing data (peptide identification and
quantifications) becomes an increasing concern the more TMT
batches are combined. For instance, less than half of all
peptides were quantified in all the 24 batches analyzed in a
study of induced pluripotent stem cell lines, and a similar
observation was made in the analysis of 28 batches of ovarian
cancer samples (3, 4). These missing values pose challenges
for downstream analysis tools that often require full data
matrices to work (4).
For LFQ, the reduction of missing values has already

received considerable attention. The most popular approach
is to find corresponding MS1 features between samples (i.e.,
peptide precursor ions of the same mass-to-charge ratio and
retention time), for example, using the match-between-runs
(MBR) procedure in MaxQuant (© Max-Planck-Institute of
Biochemistry) (5–7). This is an attractive approach because it
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SIMSI-Transfer: Reducing Missing Values Across TMT Batches
does not require an MS2 spectrum for that peptide in each
experiment. The downside is that, because there is no MS2
spectrum that can be used to verify the match, some uncer-
tainty remains as to how correct the assignments are (8). As an
alternative, MS2 spectrum similarity clustering has been pro-
posed to reduce missing values in LFQ experiments (9). In this
approach, MS2 spectra are compared to each other using a
distance metric, and highly similar spectra are grouped
together into clusters. The underlying assumption is that all
MS2 spectra in one cluster represent the same peptide pre-
cursor ion (10–12). If so, the peptide-spectrum match (PSM) of
identified MS2 spectra could be transferred to unidentified
spectra in the same cluster, since they represent the same
precursor peptide. These spectra can originate from different
experiments, in which, for example, the quality of the MS2
spectrum was insufficient for identification by database
searching.
For isobaric labeling, the missing value problem has only

recently begun to receive substantial consideration (3, 4, 13).
For instance, Yu et al. (13) applied the MBR idea to TMT data
(termed isobaric match-between-runs [IMBR]) by matching
MS1 features as in the original MBR approach but in addition
extracting the quantification information from the MS2 or MS3
spectra. While conceptually straightforward, this approach
does not guarantee that the assigned MS2 spectrum actually
belongs to the matched precursor ion, especially when
dealing with samples of high complexity where MS1 isotope
patterns frequently overlap (14, 15). As in the case of LFQ
data, MS2 spectrum clustering can also be used for TMT data.
Compared with IMBR, spectral clustering is less sensitive to
the issue of overlapping MS1 isotope patterns as the transfers
of identifications are based on MS2 spectrum similarity rather
than similar retention times and mass-to-charge ratios only.
MaRaCluster (© Matthew The) (11) is one such spectrum
clustering tool that showed competitive performance over
others (16, 17) and can also be used for TMT data. However,
MaRaCluster has not yet been able to combine data from
several TMT batches for the purpose of reducing missing
quantification values.
Here, we present SIMSI-Transfer (Similarity-based Isobaric

MS2 Identification Transfer), a pipeline that extends the
functionality of MaRaCluster by clustering MS2 spectra of
isobaric labeling experiments and transferring identifications
based on those clusters between TMT experiments. Bench-
marking the pipeline using a data masking approach demon-
strated high recall (85% for full proteome and 81% for
phosphoproteome data) and a false discovery rate (FDR)
below 1% using the recommended parameters. The applica-
tion of this pipeline to the reanalysis of six published CPTAC
datasets increased the number of PSMs by up to 45%. This
corresponded to an increase in the proportion of quantified
peptides and proteins found in all batches by up to 56% and
16%, respectively, thereby reducing missing values on both
2 Mol Cell Proteomics (2022) 21(8) 100238
levels. SIMI-Transfer is programmed in Python and comes
with a graphical user interface that allows users to apply
SIMSI-Transfer to the analysis of MaxQuant results.
EXPERIMENTAL PROCEDURES

Datasets

We used three public studies provided by CPTAC (18–20) for the
evaluation of the SIMSI-Transfer pipeline. Each study consists of a full
proteome and a phosphoproteome dataset. The datasets were
downloaded from the CPTAC data portal in May 2021 (https://cptac-
data-portal.georgetown.edu/datasets) utilizing the IBM Aspera client.

The study by Dou et al. (18) consists of endometrial carcinoma
samples from 95 patients, measured in 17 batches. It is accessible via
the Proteomic Data Commons identifiers PDC000125 (full proteome,
FP) and PDC000126 (phosphoproteome, PP). The study by Gillette
et al. (19) covers 111 lung adenocarcinoma samples in 25 batches and
is accessible via the identifiers PDC000153 (FP) and PDC000149 (PP).
Finally, the study by Krug et al. (20) consists of breast cancer samples
from 134 patients measured in a total of 17 batches and is accessible
using the identifiers PDC000120 (FP) and PDC000121 (PP). All data-
sets used TMT10plex for labeling, with the first nine channels con-
taining patient samples and the last channel containing a common
reference sample (“bridge channel”). Samples from the same patient
were frequently measured multiple times in different batches or in
different TMT channels of the same batch.

The full proteome samples were deep fractionated into 24 (Dou
et al.) or 25 (Gillette et al. and Krug et al.) fractions and contain be-
tween 16 and 25 million MS2 spectra per dataset, whereas the
phosphoproteome samples were fractionated in 12 (Dou et al.) or 13
(Gillette et al. and Krug et al.) fractions and contain between 9 and 14
million MS2 spectra per dataset.

For analyzing the effect of transferred PSMs on peptide- and
protein-level quantification, we used a TMT 11plex proteome mixture
dataset by Thompson et al. (21). It consists of human and yeast
proteome samples distributed across three TMT 11plex batches with
three different yeast-to-human ratio patterns, which were generated
by adding different amounts of yeast cell lysate to a fixed amount of
HeLa cell lysate. The dataset is accessible from the ProteomeXchange
Consortium via the PRIDE identifier PXD014750.

MaxQuant

Each dataset was analyzed using MaxQuant, version 1.6.17.0 (22).
Searches were performed using TMT 10plex default settings, and
trypsin with allowed cleavages before proline residues was used for in
silico digestion with a maximum of two allowed missed cleavages.
Cysteine carbamidomethylation was set as a fixed modification, and
methionine oxidations as well as N-terminal acetylations were set as
variable modifications. For the phosphoproteome data, phosphoryla-
tion of serine, threonine, and tyrosine was added as variable modifi-
cations. Mass tolerances of 20 ppm for precursor ions during the first
search, 4.5 ppm during the main search, and 20 ppm for MS/MS
fragment ions were applied. An up-to-date reference proteome from
UniProt was downloaded on August 20, 2020 and used for all data-
base searches, and the results were filtered for 1% peptide and 1%
protein FDR. The msms.txt as well as the msmsScans.txt result files
were used for further data processing.

MaxQuant IMBR Search

To compare our transferring pipeline with the IMBR algorithm pro-
vided within MaxQuant, the Dou et al. cohort dataset was also
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SIMSI-Transfer: Reducing Missing Values Across TMT Batches
analyzed with IMBR enabled using the default IMBR parameters
(match time window of 0.7 min and alignment time window of 20 min).
All other parameters were kept identical to the non-MBR search. The
resulting msmsScans.txt file was used to identify and determine the
number of matched MS2 scans.

MaRaCluster

Similarity clustering of MS2 spectra was performed using MaR-
aCluster, version 1.01.1. The CPTAC studies provided .mzML files,
which can be used directly as input to MaRaCluster. MaRaCluster
returns clustering results for various thresholds that correspond to the
–log10(p-value) threshold for complete linkage hierarchical clustering.
In the current study, results for the six default thresholds -5, -10, -15,
-20, -25, and -30 (referred to as p5, p10, p15, p20, p25, and p30
throughout this article) were systematically evaluated to find a good
compromise between maximizing the number of transfers and keeping
errors at an acceptable level. p5 denotes the lowest clustering strin-
gency, whereas p30 represents the most stringent clustering. MaR-
aCluster outputs one cluster result file for each of the thresholds.

SIMSI-Transfer Algorithm

The main algorithm can be divided into three steps:
1. Table merging: MaRaCluster’s output is merged with columns of

the MaxQuant msms.txt file based on the MS2 scan number and
input file name. The resulting table contains all MS2 scans
together with the cluster-ID assigned by MaRaCluster and
MaxQuant identification information for each identified spectrum
filtered for 1% peptide and protein FDR.

2. Cluster categorization: Clusters are categorized based on the
peptide sequence identified by their constituting MS2 spectra:
a. Singleton clusters contain just a single spectrum (identified
or unidentified).

b. Unanimously identified clusters contain spectra that all
identified the same peptide sequence.

c. Fully unidentified clusters exclusively contain spectra that
could not be identified.

d. Ambiguous clusters contain identified spectra with different
unmodified sequences.

e. Transferable clusters contain both identified and unidentified
spectra. All identified spectra have the same modified and
unmodified sequence.

f. PTM-isomeric clusters contain both identified and unidenti-
Precision(i) = TPi

TPi + FPi
= Correct transfers of spectra containing peptide i

All transfers of spectra as peptide i

Recall(i) = TPi

TPi + FNi
= Correct transfers of spectra containing peptide i

All transfers of spectra containing peptide i
fied spectra. All identified spectra have the unmodified
sequence, but they differ in their modification sites.

3. Identification transfer: Using all clusters flagged as “transfer-
able” (class [e] clusters), the peptide sequence is transferred
from the identified “donor” spectra to the unidentified “acceptor”
spectra alongside with information from MaxQuant, such as the
associated protein information. Clusters flagged as “PTM-
isomeric” (class [f] clusters) are also used for transferring, but no
single modified sequence is transferred (see section “Handling
Of Clusters With Positional PTM-Isomers”).

Class (a), (b), and (c), and (d) clusters are not used in this step
because no identification transfers are possible in those cases.

The resulting file resembles a MaxQuant msms.txt output file to
which columns have been added that relay the results of the SIMSI-
Transfer, notably MaRaCluster’s cluster-ID, cluster category accord-
ing to the aforementioned classification, and the identification type
(“direct” for directly identified by MaxQuant or “transfer” for trans-
ferred by our pipeline).

Handling of Clusters with Positional PTM-Isomers

Ambiguous clusters are not suitable for transferring peptide iden-
tifications since it is unclear which identification should be transferred.
For modified peptides, however, MS2 spectrum clustering methods
such as MaRaCluster tend to cluster positional PTM-isomers, for
example, phosphoisomers, especially when multiple potential sites are
in close proximity (Table 1). In these clusters, which are flagged as
“PTM-isomeric” rather than “ambiguous,” the unmodified sequences
in the cluster are identical, but the modified sequences can differ
concerning the position of the modification (ambiguous localization
and confident identification). Since the similarity information gained
from such clusters is still highly valuable, we transfer PTM-peptides
based on the unmodified peptide sequence ignoring the localization
of the PTM for this step. The output file then contains all potential
localizations of modified peptides observed in a cluster. Thus, we give
the user the flexibility to handle ambiguous localization of PTMs in
their preferred way while transferring as much information as possible.
For all results presented in this study, metrics were calculated based
on unmodified sequences unless otherwise stated.

Masking Analysis

To assess the precision and recall of the SIMSI-Transfer pipeline, we
masked the identifications of a portion (5%, 10%, 20%, or 50%) of the
spectra identified by MaxQuant in each result file before applying our
pipeline. These masked spectra, for which the ground truth identifica-
tion is known, become available as transfer acceptors for the SIMSI-
Transfer pipeline and can in turn be used to assess the precision and
recall of the process. When treating the reidentification of spectra as a
multiclass classification problem with each peptide sequence being a
class, precision and recall can be calculated as microaverages of the
successful and unsuccessful identifications (23). For each peptide
sequence i, precision and recall can be calculated as:
where TP, FP, and FN refer to the true positive, false positive, and false
negative, respectively. The overall precision and recall can then be
calculated as the microaverage across all peptide sequences:

Precision= ∑n
i=1TPi

∑n
i=1TPi +∑n

i=1FPi
= ∑Correct transfers

∑Transfers
Mol Cell Proteomics (2022) 21(8) 100238 3



TABLE 1
Example for handling clusters that contain positional isomers of phosphopeptides

RawFile ScanID ClusterID Sequence Modified sequence Protein ID

rawfile1.raw 5582 75 RASPSPRAA RApSPSPRAA Serine/arginine repetitive matrix protein 1 Direct
rawfile1.raw 5588 75 RASPSPRAA RASPpSPRAA Serine/arginine repetitive matrix protein 1 Direct
rawfile1.raw 5602 75 — — — —

rawfile2.raw 6025 75 RASPSPRAA RApSPSPRAA Serine/arginine repetitive matrix protein 1 Direct
rawfile3.raw 6033 75 — — — —

RawFile ScanID ClusterID Sequence Modified sequence Protein ID

rawfile1.raw 5582 75 RASPSPRAA RApSPSPRAA Serine/arginine repetitive matrix protein 1 Direct
rawfile1.raw 5588 75 RASPSPRAA RASPpSPRAA Serine/arginine repetitive matrix protein 1 Direct
rawfile1.raw 5602 75 RASPSPRAA RASPSPRAA.1.p3/p5 Serine/arginine repetitive matrix protein 1 Transf.
rawfile2.raw 6025 75 RASPSPRAA RApSPSPRAA Serine/arginine repetitive matrix protein 1 Direct
rawfile3.raw 6033 75 RASPSPRAA RASPSPRAA.1.p3/p5 Serine/arginine repetitive matrix protein 1 Transf.

Not all output columns are shown here for better readability. Top, cluster before transfers. The cluster shown here consists of five MS2 spectra
from three different experiments. The same unmodified sequence was identified in experiment 1 (spectra 5582 and 5588) and experiment 2
(spectrum 6025), and two spectra in the cluster were not identified by MaxQuant (experiment 1, spectrum 5602; experiment 3, spectrum 6033).
The identifications differ in the phosphorylation sites, as marked in red, and the cluster therefore is a class (f) post-translational modification
(PTM)-isomeric cluster. Bottom, because the exact modified sequence is not known for the whole cluster, SIMSI-Transfer transfers the un-
modified peptide sequence with a localization flag shown in green as well as the protein information. The flag consists of the total number of
modifications (in this case, one PTM) and all observed modification sites (in this case, phosphorylation sites on position 3 or 5 of the sequence).
Finally, the ID column indicates that the spectra were identified by SIMSI-Transfer as opposed to a direct identification of the search engine.

SIMSI-Transfer: Reducing Missing Values Across TMT Batches
Recall= ∑n
i=1TPi

∑n
i=1TPi +∑n

i=1FNi
= ∑Correct transfers

∑Masked spectra

The FDR is then calculated as:

FDR=1−Precision

Precision and recall were calculated for each clustering stringency
and compared to each other to find the ideal clustering stringency
parameter.

RESULTS

SIMSI-Transfer Workflow and Evaluated Datasets

SIMSI-Transfer is a tool for reducing missing values in
database search results of multibatch isobaric labeling ex-
periments (Fig. 1). After processing the raw MS files with
MaxQuant, SIMSI-Transfer applies MS2 spectrum clustering
to the raw MS files and transfers peptide identifications across
TMT batches by combining the MaxQuant and clustering re-
sults. As more peptides are identified in more batches, the
number of missing values decreases. We evaluated six
different clustering stringencies for MaRaCluster, with p5 be-
ing the least stringent clustering and p30 being the most
stringent clustering threshold. The result files of the SIMSI-
Transfer pipeline are structured similarly to the ones pro-
vided by MaxQuant, making them compatible with down-
stream data analysis pipelines established for MaxQuant
output files. We analyzed three CPTAC studies involving three
different cancer types (endometrial carcinoma, lung adeno-
carcinoma, and breast cancer). A summary of these datasets
is presented in Table 2. All studies contain both full and
phosphoproteome measurements and comprise multiple
4 Mol Cell Proteomics (2022) 21(8) 100238
TMT10plex batches (between 17 and 25 batches), which were
in addition fractionated by basic pH reversed-phase liquid
chromatography. This resulted in 16.3 to 24.5 million MS2
spectra for the full proteome samples and 8.6 to 14.1 million
MS2 spectra for the phosphoproteome samples. Processing
these datasets with MaxQuant alone resulted in 16.3 million
PSMs and identification rates of 21 to 22% for the full prote-
ome samples and 12 to 15% for the phosphoproteome
samples, respectively.

Evaluating the Performance of SIMSI-Transfer

The identification transfer accuracy of the SIMSI pipeline was
assessed by two different approaches. First, we masked 10%
of the identified PSMs from each of the datasets, thus treating
them as unidentified spectra from the perspective of SIMSI-
Transfer. We then applied SIMSI-Transfer to the entire data-
set to measure to what extent masked identifications can be
recovered. For simplicity, the results of the MaxQuant analysis
were considered to represent the ground truth for the purpose
of this analysis. Identifications obtained by the transfer process
were then compared against the ground truth data, and preci-
sion and recall were calculated (see Experimental Procedures
section for details). When applying different levels of strin-
gency (p5 to p30) in the spectrum clustering process, calcu-
lated FDRs ranged from 1.8% at the p5 setting (least stringent)
to 0.2% FDR at p30 (most stringent) for the Dou et al. datasets
(Fig. 2) The results for the phosphoproteome showed similar
FDR characteristics ranging from 1.5% for p5 and 0.2% for
p30. At the same time, a higher clustering stringency led to the
formation of fewer clusters containing more than one spectrum.
In turn, this reduces the number of transferable identifications
and results in a lower recall. In addition, at the lowest clustering



FIG. 1. Summary of the SIMSI-Transfer workflow. SIMSI-Transfer uses fragment spectrum clustering to transfer identities across TMT
batches, resulting in more PSMs, peptides, and proteins, and reduced missing values. Red squares in the matrices denote missing values. PSM,
peptide-spectrum match; SIMSI-Transfer, Similarity-based Isobaric MS2 Identification Transfer; TMT, tandem mass tag.

SIMSI-Transfer: Reducing Missing Values Across TMT Batches
stringency (p5), more ambiguous clusters (i.e., clusters con-
taining spectra that represent more than one peptide) are
formed, which cannot be used for transferring identifications
and, therefore, also result in a lower recall. For the full proteome
samples, the best recall of 85% of the masked identifications
was reached at a clustering stringency of p15, and the best
TABLE

Summary of the datase

Name of dataset Cancer type Patients

Dou et al. Endometrial
carcinoma

95

Gillette et al. Lung adenocarcinoma 111

Krug et al. Breast cancer 134

Abbreviations: FP, full proteome; PP, phosphoproteome.
recall of 81% was obtained for the phosphoproteome at a
stringency of p10. A precision of >99% could be obtained for
clustering stringency of p10 or higher for both data types. Other
masking percentages (5%, 20%, and 50%) or other datasets
showed very similar trends (supplemental Fig. S1 and
supplemental Tables S1–S3).
2
ts used in this study

Batches Fractions
Total MS2
spectra

MaxQuant
PSMs

FP & PP: 17 FP: 24 16.3 M 3.38 M
PP: 12 8.63 M 1.29 M

FP & PP: 25 FP: 25 24.5 M 5.41 M
PP: 13 14.1 M 1.67 M

FP & PP: 17 FP: 25 17.2 M 3.53 M
PP: 13 9.96 M 1.20 M

Mol Cell Proteomics (2022) 21(8) 100238 5



FIG. 2. Precision-recall plot assessing the performance of
SIMSI-Transfer illustrated by masking 10% of the Dou et al.
dataset. The full proteome and phosphoproteome dataset show a
precision of >99% at a clustering stringency of p10 or higher. SIMSI-
Transfer, Similarity-based Isobaric MS2 Identification Transfer.

SIMSI-Transfer: Reducing Missing Values Across TMT Batches
Second, we analyzed to what extent different clustering
stringency settings led to ambiguous clusters, which may be
considered false positives. Again, this is illustrated on the Dou
et al. full proteome dataset, but now without masking (Fig. 3).
As one might expect, the applied clustering threshold impacts
the number of identifications that are transferred. More spe-
cifically, 1.6 million transfers were made for p5 (+48%) but
only 0.5 million for p30 (+15%). In addition, higher clustering
stringencies increased the number of clusters that contain
only a single spectrum (singleton clusters). Specifically, while
only 9% of all spectra remained unclustered at p5, 49% were
not clustered at p30 (supplemental Figs. S2–S4). Singleton
clusters cannot contribute to transferring identifications.
Consequently, the increase in transferred identifications is
lowest at the highest clustering stringency. Lower stringencies
resulted in more transfers at the cost of more ambiguous
clusters. Such ambiguous clusters are considered false pos-
itives and should, therefore, be minimized. This is illustrated in
FIG. 3. Impact of the applied clustering threshold on identification
on the number of identification transfers. Identifications made by the sear
in blue. B, impact of the applied clustering threshold on the percentage
false-positive level.

6 Mol Cell Proteomics (2022) 21(8) 100238
Figure 3B: at p5, 2.2% of all clusters of size >1 were ambig-
uous, 0.9% were ambiguous at p10, and 0.2% were ambig-
uous at p30. Interestingly, the percentage of ambiguous
clusters at the different clustering stringencies was well in line
with the FDR values determined from the masking analysis. As
the percentage of ambiguous clusters can be determined
without the need for a masking analysis, we propose that the
former may be used as a proxy for estimating the FDR of
identifications transferred by SIMSI-Transfer. The analogous
evaluation of the other five datasets again showed very similar
results (supplemental Table S4 and supplemental Figs. S2–
S4). As the stringency threshold of p10 consistently resulted
in FDR values of below 1% (from the masking analysis) and
less than 1% ambiguous clusters, p10 was set as the default
parameter for SIMSI-Transfer, and all the following analyses
were performed using the p10 threshold.

Application of SIMSI-Transfer to the Reanalysis of Six
CPTAC Datasets

Figure 4 shows the results of applying SIMSI-Transfer to the
datasets summarized in Table 2. It is evident that the number
of identifications across TMT batches increased substantially,
ranging from 26% to 37% for the full proteome data and
between 39% and 45% for the phosphoproteome data. The
slightly higher relative gains for the phosphoproteome data
may be attributed to the fact that modified peptides and the
site of modification are often more difficult to identify than
unmodified sequences by database search engines. The bias
of spectrum clustering should be comparatively smaller and,
therefore, spectrum clustering may be more successful in
relative terms as long as the modified peptide was robustly
identified in at least one TMT batch.
Again exemplified on the Dou et al. datasets, we observed

that the gains in identifications owing to the transfer process
were roughly equally distributed over all batches (Fig. 5). For
the full proteome data, gains ranged between 34% and 39%
per batch and between 35% and 49% for the
gain and false positives. A, impact of the applied clustering threshold
ch engine are shown in gray, and transferred identifications are shown
of ambiguous clusters (false positives). The dotted line marks the 1%



FIG. 4. Bar plot comparing the number of peptide-spectrum
matches (PSMs) before and after applying SIMSI-Transfer in
several data sets (clustering stringency p10). SIMSI-Transfer,
Similarity-based Isobaric MS2 Identification Transfer.

SIMSI-Transfer: Reducing Missing Values Across TMT Batches
phosphoproteome data. The per-batch increase did not
appear to depend on the number of PSMs within a batch. The
fact that batches with fewer initial identifications also had
fewer identifications after the transfer process indicates that
the overall mass spectrometric data quality (e.g., because of
low sample loading) was different between the batches, which
could not be fully compensated for by SIMSI-Transfer. At the
peptide level, the gains were less pronounced but still sub-
stantial, with per-batch increases of 13 to 19% for both full
proteome and phosphoproteome data. Naturally, the gains at
the protein level were smaller but still a respectable 4 to 7%
for the full proteome data and 7 to 10% for the phosphopro-
teome data. As a further plausibility check, we analyzed if the
TMT ratios of the transferred identification were similar to
those of the corresponding protein in the same TMT batch
(supplemental Note S1). We found good agreement between
these quantification values, showing that the transferred
identifications generally reliably contribute to the quantifica-
tion of proteins (supplemental Figs. S5–S8). In addition, we
analyzed if the increase in peptide identifications with SIMSI-
Transfer would have an effect on protein quantification. We
analyzed a dataset with known ratios of HeLa and yeast cell
lysate digests, which provided the ground truth relative
quantification (supplemental Note S2). We found that while
increasing the number of peptide and protein identifications
per batch, the additional peptide identifications did not
change protein quantification accuracy (supplemental Fig. S9).

SIMSI-Transfer Reduces Missing Values at the Peptide and
Protein Levels

The occurrence of missing values when combining multiple
isobarically labeled batches is a well-known phenomenon (3)
and was also apparent in the data analyzed in this study
(supplemental Fig. S10). In Figure 6A, the cumulative number of
peptides found in at least n batches is shown before and after
applying SIMSI-Transfer (Dou et al. dataset). Before application
of SIMSI-Transfer, 113 k of 222 k peptides (51%) were found in
at least half of all batches (9 of 17 batches) and only 33 k (15%)
in all 17 batches. At the protein level, 12 k of 15 k (84%) were
found in at least half of the batches, and 9 k (63%) were
identified in all batches (Fig. 6C). SIMSI-Transfer increased the
number of peptides found in at least n batches by about 20 k on
average. The number of peptides found in at least half of the
batches increased by 19% from 113 k to 135 k peptides,
whereas the number of peptides found in all batches increased
by 56% from 33 k to 51 k peptides. Similarly, the number of
proteins found in all batches increased by 13% from 8.9 k to 10
k, which corresponds to a missing value reduction of 21%. For
the phosphoproteome data, a total of 150 k peptides were
identified in at least one batch, and only 8 k (11%) of all pep-
tides were identified in all batches. SIMSI-Transfer increased
the number of peptides found in at least half of the batches by
22% (29 k to 35 k peptides), and the number of peptides found
in all 17 batches by 43% (9 k to 12 k peptides). At the protein
level, 10% more proteins were found in at least half of the
batches (7.6 k versus 8.4 k proteins) and 16% more proteins in
all batches (4.5 k versus 5.2 k). This corresponds to a missing
value reduction of 10%.

Comparison of SIMSI-Transfer to the IMBR Function of
MaxQuant

The MaxQuant software comes with the IMBR function that
attempts to transfer peptide identifications in isobaric labeling
data. To compare IMBR to SIMSI-Transfer, two MaxQuant
analyses were performed on the Dou et al. dataset: one with
and one without IMBR enabled. The results without IMBR
were used as input for SIMSI-Transfer and compared with
results obtained by IMBR. Enabling IMBR led to the identifi-
cation of an additional 94 k (+2.8%) spectra with TMT quan-
tifications. In stark contrast, applying SIMSI-Transfer yielded
1.3 million (+37%) transferred identifications. The overlap
between IMBR and SIMSI-Transfer was 36 k transferred
identifications, corresponding to 38% of the total number of
transfers made by IMBR (Fig. 7A). The limited overlap between
the results of the two algorithms is surprising, particularly
because the majority of cases that are unique to IMBR, unique
to SIMSI-Transfer, or shared between the two represent high-
intensity precursor ions (Fig. 7B).
We assessed the discrepancy between the two approaches

by analyzing spectra identified exclusively by one of the two
tools. For the spectra uniquely identified by SIMSI-Transfer, we
found that ~30% did not have a precursor assigned in the
MaxQuant output files, which excludes them from consider-
ation by MBR. Furthermore, we found that the standard devi-
ation of retention times for each peptide across multiple
batches was far larger than the default retention time matching
tolerance of 0.7 min, even after MaxQuant’s retention time
calibration step (supplemental Fig. S11). While one could
Mol Cell Proteomics (2022) 21(8) 100238 7



FIG. 5. Bar blots showing the results of applying the SIMSI-Transfer process to the Dou et al. dataset. Batch-wise results are visualized
for full proteome (left) and phosphoproteome (right) data at the level of PSMs (top), peptides (middle), and proteins (bottom). PSM, peptide-
spectrum match; SIMSI-Transfer, Similarity-based Isobaric MS2 Identification Transfer.
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increase this tolerance, this would further exacerbate the false
matching problem of MBR (8). Conversely, we found that
spectra identified by IMBR but not by SIMSI-Transfer often
exhibited low similarity to the in silico predicted fragment
spectrum of the peptide sequence by Prosit (© Chair of Pro-
teomics and Bioanalytics) (24) (supplemental Fig. S12), making
such identifications questionable for use in peptide and protein
quantification. This is a result of IMBR exclusively relying on
MS1 feature matching, subject to the abovementioned false
matching problem, whereas SIMSI-Transfer uses MS2 spec-
trum similarity. The exact reason for the small overlap between
the two approaches remains to be investigated in more detail in
the future.
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Another interesting observation for SIMSI-Transfer was a
bimodal distribution consisting of (i) high-intensity precursors
identified across the acetonitrile gradient of the LC-MS/MS
run, and (ii) lower-intensity precursors eluted at high concen-
trations of organic solvent used for column washing at the end
of the run (Fig. 7C). While MaxQuant and IMBR struggled to
identify those precursors, SIMSI-Transfer identified many
spectra from low-abundance precursors in this area. To
ascertain that these low-abundance precursor identifications
are trustworthy, we again resorted to comparing TMT reporter
ion intensities between PSMs made by MaxQuant or trans-
ferred by SIMSI-Transfer to those of their corresponding
proteins in the same TMT batch (supplemental Note S1 and
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FIG. 6. Effect of the SIMSI-Transfer process on the number of missing peptide and protein values across TMT batches (Dou et al.
dataset). A, by definition, the composite of all peptides in this study were found in at least a single batch. The number of peptides found in at
least “n” batches rapidly decreases with the number of batches considered (gray line). Application of SIMSI-Transfer (blue for full proteome and
orange for phosphoproteome) substantially improved these figures across all batches considered. SIMSI-Transfer, Similarity-based Isobaric
MS2 Identification Transfer; TMT, tandem mass tag.
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supplemental Fig. S13). There was very good correspon-
dence, which implies that the transferred identifications are as
reliable for protein quantification as identifications directly
made by MaxQuant.

DISCUSSION

The results presented in this study demonstrate that the
SIMSI-Transfer pipeline improves the number of MS2 spectra
FIG. 7. SIMSI-Transfer outperforms the IMBR method of MaxQua
made by SIMSI-Transfer only (blue), by IMBR only (orange), and by both
Transfer only (blue), by IMBR only (orange), and by both (green). C, precur
chromatographic elution time. IMBR, isobaric match-between-runs; SIM
that lead to peptide identifications in isobaric labeling exper-
iments. It also reduces missing values at the level of PSMs,
peptides, and proteins when combining multiple TMT batches,
and this was true for both proteome and phosphoproteome
data. Both aspects are relevant for large-scale isobaric la-
beling studies in which many samples are distributed over
many TMT batches, as illustrated by the reanalysis of a
number of clinical cohorts from the CPTAC project. Although
nt. A, Venn diagram showing the comparison between identifications
(green). B, intensity distribution of precursor ions identified by SIMSI-
sor ion intensity distribution of all SIMSI-Transfer identifications split by
SI-Transfer, Similarity-based Isobaric MS2 Identification Transfer.
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not tested here specifically, the improved data consistency
will facilitate a more consistent recognition and comparison of
cancer-relevant proteins and pathways and, more generally,
an increase in statistical power.
Two independent methods were used to assess the quality of

SIMSI-Transfer results. The masking analyses allowed
computing an FDR, and calculating the number of ambiguous
clusters turned out to be a good proxy for FDR as the clustering
thresholds required for both approaches were the same. At the
recommended thresholdof p10, bothFDRand thepercentageof
ambiguous clusters were below 1%. We cannot guarantee that
this threshold is optimal for every dataset, but we encourage
users to explore the effects of different thresholds on their
respective data using the software provided in this article.
SIMSI-Transfer strongly outperformed the IMBR function of

MaxQuant, but the overlap between the two approaches was
surprisingly low. The reasons for this discrepancy remain
elusive at present. In addition, we note that we were unable to
reproduce the results reported in the original IMBR publica-
tion, on the dataset used in the original publication (data not
shown) (13). As an alternative to MBR, Corthésy et al. (25) have
shown substantial gains in identifications on cerebrospinal
fluid samples using the similarity of MS2 spectra to consensus
spectra. However, this project is no longer maintained, and we
were unable to get this tool to work.
Distinguishing between different phosphorylation sites

within a peptide sequence, especially if the potential phos-
phorylation sites are in close proximity, remains challenging
for SIMSI-Transfer. This is not an exclusive shortcoming of the
presented method but rather a general issue in peptide iden-
tification/localization by classical database searching. When
only a few (if any) fragment ions can be observed in MS2
spectra that distinguish the different localization possibilities,
it becomes increasingly more difficult to locate the modifica-
tion site accurately (26). It should be noted that database
search algorithms such as Andromeda from MaxQuant and
Mascot by Matrix Science also suffer from this issue (27), and
other more dedicated software packages can be used to
resolve such ambiguities at least partially (28–31). We chose
to retain such ambiguous phosphopeptide spectra clusters
because we deem these to contain valuable information for
further biology-centered data analysis. For now, the user will
be informed about localization ambiguity, and extending
SIMSI-Transfer to resolve ambiguities of PTM-isomeric pep-
tides will be investigated in future work.
SIMSI-Transfer provides a graphical user interface but can

also be run from the command line. As input, it only requires
the MaxQuant output folder as well as the *.raw files from the
mass spectrometer, which get converted to *.mzML files
internally using the TermoRawFileParser by CompOmics (32).
As a proxy for the FDR of the transferred identifications,
SIMSI-Transfer determines the number of ambiguous clusters
in the run, which closely followed the FDR calculated in the
masking analysis. Optionally, an FDR can be calculated using
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the masking approach for higher confidence. The user can run
multiple clustering thresholds to select the appropriate strin-
gency for further downstream analysis. SIMSI-Transfer can be
used to handle large cohort studies. The largest dataset
analyzed here comprised 625 raw files and was processed on
a desktop personal computer in less than 1 day.
Further improvements of SIMSI-Transfer can be envisaged.

Currently, it uses MaRaCluster for MS2 spectrum clustering in
conjunction with identification results from MaxQuant but can
be extended to handle outputs from other database search
engines. The integration of other clustering tools can also be
considered, but prior work indicated that, for LFQ data,
different tools yield comparable results (16). SIMSI-Transfer is
an open-source software. Its modular design enables its
integration into other established data processing pipelines.
The authors, therefore, anticipate that SIMSI-Transfer consti-
tutes a useful tool for the scientific community for the inte-
gration of large-scale proteomic studies that use isobaric
stable isotope labeling strategies.
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