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ABSTRACT

BEERE (Biomedical Entity Expansion, Ranking and
Explorations) is a new web-based data analysis tool
to help biomedical researchers characterize any in-
put list of genes/proteins, biomedical terms or their
combinations, i.e. ‘biomedical entities’, in the con-
text of existing literature. Specifically, BEERE first
aims to help users examine the credibility of known
entity-to-entity associative or semantic relationships
supported by database or literature references from
the user input of a gene/term list. Then, it will
help users uncover the relative importance of each
entity––a gene or a term––within the user input by
computing the ranking scores of all entities. At last,
it will help users hypothesize new gene functions
or genotype–phenotype associations by an interac-
tive visual interface of constructed global entity rela-
tionship network. The output from BEERE includes:
a list of the original entities matched with known
relationships in databases; any expanded entities
that may be generated from the analysis; the ranks
and ranking scores reported with statistical signif-
icance for each entity; and an interactive graphi-
cal display of the gene or term network within data
provenance annotations that link to external data
sources. The web server is free and open to all users
with no login requirement and can be accessed at
http://discovery.informatics.uab.edu/beere/.

INTRODUCTION

Following high-throughput biology experiments, biomedi-
cal researchers frequently find themselves asking a repeated
question, ‘which gene or protein should I test first among
dozens or even hundreds of significant genes or proteins

determined from the high-throughput biology studies?’
Meanwhile, conventional hypothesis-driven researchers, af-
ter performing literature studies of a biological research
topic, may also find it challenging to follow through a com-
prehensive list of candidate biological concepts, including
genes, diseases, drugs, phenotypic features and clinical at-
tributes, from which they often ask, ‘which disease attribute
or features should I focus my study on next?’ In this work,
we are motivated by the need to address the two types
of recurring questions mentioned above for biomedical re-
searchers.

To address the first question on how to characterize a
list of genes or proteins, bioinformaticians typically imple-
ment gene ranking or gene set based enrichment analysis to
avoid ‘cherry-picking’ of genes for subsequent experimen-
tal validations (1). High-throughput biological studies us-
ing Genome-Wide Association Studies (GWAS) or RNA-
sequencing have yielded an overwhelming amount of can-
didate genetic variants and candidate genes for manual ex-
aminations, thus presenting opportunities for gene priori-
tization analysis (2). In the past decade, there have been
a limited number of web-based online gene prioritization
tools such as PINTA (3), ToppGene (4), SUSPECTS (5),
PROSPECTR (6) and ENDEAVOUR (7), but the major-
ity are not web-based (8). These tools work by performing
statistical characterizations of genetic linkage patterns, se-
quence annotations, gene co-expression patterns, protein–
protein network linkage patterns or correlated pathways
(9–14). In particular, with the comprehensive accumula-
tion of scored gene-to-gene correlative relationships into
knowledgebases such as the STRING database (15) and the
HAPPI 2.0 database (16), network-based gene prioritiza-
tion methods have been shown to have an overall high ac-
curacy and low system-level bias, as long as the threshold
may be controlled to balance between network data cover-
age and data quality (15). Examples of network-based gene
prioritization applications include discovering disease genes
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for complex human genetic disorders (8), finding drug tar-
gets (17,18) and repositioning drugs (19).

Few existing web-based tools can help researchers ad-
dress the second question on how to characterize a list
of biomedical terms. A major bottleneck is the lack
of a comprehensive biomedical term-to-term association
knowledge-base until recently (20). Extracting semantic in-
formation from the biomedical literature or the clinical
databases at the PubMed scale has been challenging for
several reasons: a lack of standard ontology and their ap-
plication to annotate all PubMed sentences (20), a lack of
advanced natural language processing techniques that have
been tested at scale (21), the limitation for large-scale appli-
cation that impedes further data analysis (22). Furthermore,
there are few available tools to help prioritize biomedical
concepts across broad Unified Medical Language System
(UMLS) concept categories, except for Phenolyzer that cov-
ers two categories only––‘diseases’ and ‘genes’ (23). There-
fore, to perform general-purpose web-based ‘biomedical
term prioritizations’, new tools must be developed to inte-
grate advanced entity disambiguation techniques (24–27),
network-based prioritization techniques and biomedical se-
mantic relationship database repositories (20).

In this paper, we report the development of a new easy-
to-use web server called Biomedical Entity Expansion,
Ranking and Explorations (BEERE). BEERE aims to pri-
oritize user-provided biomedical entities for detailed inves-
tigations of the related concepts, known associative rela-
tionships among them, supporting literature evidence, their
relative significance to one another and the relationship net-
work context in which they reside. BEERE works in two
input modes: a gene input mode and a term input mode.
In the gene input mode, BEERE can take the input of a
list of gene symbols or gene IDs (28), retrieve annotated
protein–protein interaction relationships among them with
optional gene neighborhood expansions, rank the retrieved
genes using entity prioritization methods and construct a
gene network for user examinations of highly relevant genes
and their relationships to other genes supported by litera-
ture references. In the term input mode, BEERE can take
the input of a list of concept terms as words/phrases or as
Concept Unique Identifiers (CUIs) (29), retrieve annotated
term-to-term semantic relationships among them with op-
tional term neighborhood expansions, rank the retrieved
terms using entity prioritization methods and construct a
concept term network for user examinations of highly rele-
vant terms and their relationships to other terms supported
by literature references. The two modes of BEERE search
analysis may be performed independently, simultaneously
or sequentially (as we show in the case study). When per-
formed simultaneously, users with a mixture of gene and
other entity terms may search at least the subset of input list
containing genes only using both input modes to compare
the resulting relative rank and network context information
constructed from the protein–protein interaction knowl-
edgebase (for gene input mode) and the PubMed literature
(for term input mode). BEERE enables users to search for
semantic relationships based on specific categories includ-
ing gene–drug, gene–disease, drug–gene or drug–disease re-
lationships, using intuitive web graphical user interfaces, ta-
bles, charts and network graphs. We expect BEERE to be-

come a useful web server in biomedical entity network ex-
ploratory analysis and hypothesis generations.

MATERIALS AND METHODS

Entity-to-entity association data sources and pre-processing

We downloaded protein–protein interaction (PPI) data
from the HAPPI 2.0 database (16), which included
2,922,202 quality-ranked PPI data from both experimen-
tal and computational platforms its 2017 release. HAPPI
database is a quality-ranked comprehensive PPI repository
that uses ‘H-score’––a probabilistic score between 0 and 1 to
express any PPI as true and reliable (16)––control data qual-
ity versus coverage tradeoffs. In BEERE, we set the minimal
quality of reported PPI data to be at the ‘3-star grade’ and
above to achieve a proper balance between data coverage
and quality. This filter allows us to retain ∼22% of all the
downloaded PPIs.

We downloaded Subject-Predicate-Object triples called
predications to represent known semantic relationships be-
tween biomedical entities from the SemMedDB version
31 R (updated on 30 June 2018) (30), which contained
19,836,578 unique predications extracted from PubMed.
SemMedDB uses SemRep (31), a natural language process-
ing engine, to scan PubMed article titles and abstracts, ex-
tract semantic information from biomedical text, and map
extracted Subjects-Predictes-Objects to UMLS standard
vocabularies wherever applicable. In BEERE, we quantita-
tively evaluate each semantic relationship between a Sub-
ject and an Object using a statistical test based on a hy-
pergeometric distribution model. The test works by as-
sessing the statistical significance of observing a specific
count of PubMed citations that support a given Subject-
to-Object pair for each Predicate category against a back-
ground distribution. We then calculate a Relation Density
Score (RDS) for each Subject-to-Object relationship, based
on the P-value derived from each statistical significance test
performed (for details, refer to Supplementary Data). In all,
18,376,458 out of all 19,836,578 predications have a calcu-
lated RDS score > 0.

Biomedical entity identification and expansion

We downloaded standard gene symbol and gene alias infor-
mation from the NCBI Gene database to resolve gene sym-
bol entries in the gene input mode. In the term input mode,
we standardize all input biomedical terms to the term dic-
tionary compiled by the SemMedDB. However, gene name
entity recognition in the SemMedDB is not always accurate,
even though gene symbols and gene IDs are standardized.
For example, we found that the ‘ENO1’ term (CUI = 2023)
and the ‘ENO1 gene’ term (CUI = C1414402) were kept
separate from each other in the SemMedDB, but they re-
fer to the same semantic concept. Ongoing work of using
both NCBI gene thesaurus and gene ontology to map and
resolve gene entities is still needed. For the same reason, we
are keeping the gene input mode separate from the term in-
put mode in the current implementation of BEERE.

To map input biomedical terms to those represented in
the SemMedDB term dictionary, we provide three user-
selected term matching strategies: ‘exact match’, ‘substring
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match’ and ‘fuzzy match’. An exact match requires the user
input term to match exactly an entry in the SemMedDB
term dictionary. BEERE chooses this option by default.
A substring match requires the user input term to match
a term in the SemMedDB term dictionary using a regu-
lar expression match to the closest term by length. A fuzzy
match utilizes the Levenshtein-distance (L-distance) func-
tion in the Oracle database to retrieve all candidate terms.
Since the term semantics can be heavily altered by a dele-
tion or a replacement of characters in a term, we set the
penalty score of deletion or replacement to be 5, higher than
the penalty score of insertion at 1. BEERE returns the term
with the lowest L-distance as the best match and users have
the option of overriding this by selecting more than one best
match in the advanced mode.

Network data quality control

To quantitively evaluate the network’s quality before the
biomedical entity ranking, BEERE introduces two metrics:
index of aggregation (IOA) and seed’s coverage in the net-
work (SCN). IOA assumes that the network possessing high
quality will contain as much as connected nodes in the
largest network. IOA is calculated using the number of the
nodes in the largest network divided by the total input. SCN
is a broad aggregation index that assumes that the higher
quality network, the higher connected nodes than isolated
nodes. SCN is calculated by the number of connected nodes
divided by the total input.

Network-based entity prioritization

BEERE provides an initial ranking algorithm and two it-
erative ranking algorithms. The initial ranking algorithm
applies a heuristic relevance score calculation developed in
(1). The relevance score calculation is a fast evaluation of
the hub nodes by involving the weighted neighborhood and
it successfully ranks the top biological relevant genes in
Alzheimer’s disease. The two iterative ranking algorithms,
PageRank and ant-colony algorithm, are widely used in dif-
ferent knowledge domains with considerable successful ap-
plications. We describe the full details of PageRank, mod-
ified ant-colony algorithm and the statistical evaluation in
BEERE ranking in the Supplementary Data.

Network visualization and annotation

The word-cloud visualization (https://github.com/
timdream/wordcloud2.js/) of the entity ranking is im-
plemented in BEERE. The biomedical entity font size in
word-cloud is generated based on the square-root of the
ranking score divided by the square root of the total entity’s
number and multiplied by a scale factor. The default scale
factor is set to be 40. The histogram visualization of the
ranking score distribution is supported by d3.js. The bin
size of the distribution is the log2-scale ranking score. The
sigma.js (http://sigmajs.org/) javascript is implemented to
visualize the network. The enhanced network visualization
features, such as draggable nodes, hover effect, color group-
ing, clickable nodes and edges, and layout algorithms, are
supported by the modified plugins from sigma.js adapted
to BEERE.

Data provenance

Both PPI data provenance and term-to-term association
data provenance are managed in BEERE. We manage PPI
data provenance from both the HAPPI 2.0 database down-
load and the PubTator (32) results. In the gene annotation,
PubTator reports F1 scores as 82.97 using the GeneTUKit
and 92.89 using the GenNorm. HAPPI 2.0 databases con-
tain reference sources of all compiled PPIs, which we com-
piled into the BEERE web server. Pubtator applies text
mining technique to process all PubMed articles (both ti-
tles and abstracts) into a gene2Pub file, while also compiled
into BEERE. The 09/2018 version that we incorporated
into BEERE contained 7,677,876 gene-to-PMID relation-
ship pairs, where PMID refers to the PubMed article identi-
fier. We manage predication data provenance directly using
96,363,098 predication-to-PMID PubMed text citations in
the SemMedDB version 31 R.

Web server design and data management architecture

We developed BEERE as an integrated, searchable,
knowledge-based web server. BEERE was developed using
PHP5, Javascript and an open-source CodeIgniter infras-
tructure developed by EllisLab (https://www.codeigniter.
com/). The ranking algorithms and statistical analysis
in BEERE are written in python 3.0. The algorithms
are optimized by parallel processing and the applica-
tion programming interface (API) service is supported
by Django (https://github.com/django/django). DataTables
(https://datatables.net/), a plugin for jQuery is used for dis-
playing the tables, a plugin for jQuery was used for dis-
playing the tables. Oracle Database 12g (https://www.oracle.
com/database/12g-database/) is used in the database server.
The compatibility of BEERE is shown in the help session
online.

RESULTS

Summary of features

The pages of BEERE consist of three components: main
body, left sidebar and right sidebar. The main body returns
the intermediate/final table or graphs. The left sidebar is
used for displaying the parameter panel or advanced input
in advanced mode, and the right sidebar is used to show
additional details such as data provenance during network
exploratory analysis sessions.

BEERE offers advances to the other popular web servers
such as ToppGene (4), Phenolyzer (23) and Semantic MED-
LINE (33), by implementing several advanced features. We
summarize the contribution of BEERE with respect to al-
gorithms, data and quality control, and the visualization
shown in Table 1. Given the input of fewer than 1000 en-
tities, BEERE will return reasonable respective interactiv-
ity within the limited time using parallel processing and the
iterative ranking algorithms in BEERE capture preference
of the given item versus all of the others, not just immedi-
ate neighbors. The quality control of PPI and the biomed-
ical term-to-term relationships enable the users to expand
the seed to a certain extent. The network expansion allows
BEERE to increase the index of aggregation by introducing
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Table 1. The features comparison between BEERE and other three web servers: ToppGene, Phenolyzer and Semantic Medline

Feature BEERE ToppGene Phenolyzer Semantic MEDLINE

Algorithm Ranking algorithm PageRank,
ant-colony

k-step Markov,
PageRank, HITS

Gene-disease score Not mention

Iterative ranking yes yes no no
Evaluation Statistical model yes yes no no
Data and quality Relationship quality

control
yes no yes (factor control) no

Network extension
with IOA evaluation

yes yes (neighbor
distance)

no no

Biomedical term yes no yes (disease) yes
Visualization Network with

provenance data
yes yes (provide

networks)
yes yes

Grouping annotation yes no no no

Grouping annotation: The node color visualization using the annotation, e.g the genes annotated in different pathways can be visualized in the network
using different colors.

the ‘bridge’ nodes that connect to at least two seeds. There-
fore, BEERE can monitor the network quality and seed’s
coverage in quantitive quality control. The biomedical term
and term-to-term relationships have been introduced in the
BEERE, which can be a huge interest to the hypothesis-
driven analysis. The network with detail information in the
visualization panel provides an intuitive way for the users
to grasp the critical biomedical entities. More features such
as entity grouping annotation and layout algorithm options
enable the users to easily observe new biomedical entity pat-
terns in the network.

Given a list of biomedical entities, BEERE provides a
five-step procedure to generate the biomedical rank and vi-
sualization panels shown in the ‘Graphical abstract’.

Searching the databases with a list of terms or genes

The input page allows users to enter a gene list or a biomed-
ical term list, and BEERE will retrieve the matched en-
tity and relationships from the databases HAPPI 2.0 and
SemMedDB respectively. We use two as examples. One is
a gene list consisting of 200 glioblastoma (GBM) genetic
candidates from the OMIM database. The other is a term
list consisting of three different vitamins and Alzheimer’s
disease. The advanced parameters setting allows users to
control relationships quality. In PPI retrieval, the parame-
ter ‘PPI confidence’ provides three PPI cutoffs ‘0.45’, ‘0.75’
and ‘0.9’ and a ‘customized cutoff’ option. Those three PPI
cutoffs are equivalent to the 3-star, 4-star and 5-star PPI’s
quality in the HAPPI 2.0 database. In the term-to-term rela-
tionship retrieval, users can enter a number varied from 0 to
max-value of the RDS. The parameter ‘expanded’ provides
the option for network one-layer expansion, which poten-
tially increases the index of aggregation by introducing the
‘bridge’ nodes to the network. In biomedical term retrieval,
the parameter ‘matching’ offers ‘fuzzy matching’, ‘substring
matching’ and ‘exact matching’ options to maximize the re-
trieving power. The parameter ‘predicate’ provides a list of
predicates for a single or multiple selections.

Verifying retrieved terms against search terms

The retrieved biomedical entity page helps the user to ver-
ify the query. In the matched entity table, the matches and

mismatches are displayed for users to review and search
again. In the example of a gene list, the gene matching
table shows the queried gene symbols, matched gene and
Seed/Expanded/none tag ‘S/E/-’. If the user’s input gene
is an alias or a gene synonym, BEERE will automatically
map the queried gene to HAPPI 2.0 database gene symbols.
In the example of a term list using ‘substring’ matching, the
table shows matches and modified matches with the lowest
Levenshtein’s distance (L-distance) as the best candidates.
In the advanced model, all the potential mismatches are dis-
played for an adjustment.

Retrieving known relationships

In the retrieved related relationships page, the relationships
table shows the quality of the relationships. Reviewing the
two tables, users can choose to ‘refine the table and try
to match again’ or ‘process to entity prioritization’. In ad-
vanced search, users can adjust the parameters ‘iteration’,
‘sigma’ and ‘method.’ The parameter ‘iteration’ provides
the recursive ranking score. The parameter ‘method’ pro-
vides the ‘page rank’ and ‘ant colony’ algorithms. The pa-
rameter ‘sigma’ provide a damping factor varying from
[0,1] (default value is 0.8), which determines the probabil-
ity of randomly choosing a relationship will eventually stop
choosing.

Rank entities from the network

The biomedical entity prioritization page provides the ta-
ble and two visualization panels. In the prioritization ta-
ble, there are six parameters: ‘entity name’, ‘in-expanded
network’, ‘ranking score’, ‘rank’, ‘adjust P-value’ and ‘sig-
nificance’. Each row is clickable and it is linked to the en-
tity information page. The page shows the attributes of the
biomedical entity and the relationships specific to the se-
lected entity. In the visualization panels, two graphic figures
help users to intuitively view the significant entities and the
ranking score distribution. The word-cloud graph deploys
the highly significant biomedical entities in the center with
relative larger fonts.
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Table 2. The network quality control using different PPI cutoffs

Expanded Yes (0.9) No

PPI Cutoff 0.9 0.45 0.75 0.9
IOA 0.99 (1962/1984) 0.76 (130/172) 0.64 (110/172) 0.52 (90/172)
SCN 0.87 (150/172) 0.78 (134/172) 0.68 (117/172) 0.59 (102/172)
Interaction 6833 543 326 200

IOA: Index of Aggregation, SCN: Seed’s Candidate Coverage in Network

Visual exploration of network relationship data

The network visualization page provides an interactive
graphical panel to allow users intuitively to discover the
critical entities and interactions with provenance. Three lay-
out algorithms, directed-force (default), DEMA and circu-
lar have been provided. The current view of the network can
be exported as a PNG image and the network’s edge and
node information can be exported as an SVG file. The left
side advanced function panel offers a customized entity as-
sociation input for adding the grouping information, and by
clicking ‘next’ button, BEERE visualizes the color-grouped
nodes in the network and shows the grouping information
table below the network graph. The edges are clickable that
can trigger the right side panel and show the table of entity
relationship’s detail and the provenance of the relationships.

CASE STUDY

While BEERE supports user analysis with either ‘a gene list
as the input’ or ‘a term list as the input’ independently, we
will demonstrate a more sophisticated case study in which
genes and terms are analyzed in conjunction with each
other. In this case study, a user is presumably interested in
exploring all candidate genes for glioblastoma (GBM), an
aggressive form of brain tumor with low patient survival,
to understand which genes may be worth validating experi-
mentally and whether there are additional candidate genes
not yet curated in public databases.

To prepare the BEERE web-based data analysis, a
BEERE user first performs a search for disease-specific
candidate genes against the NCBI-hosted OMIM database
(34), which contains disease–gene curations for more than
6300 disease phenotypes and more than 4000 genes. Upon
search with the term ‘glioblastoma’, the OMIM database
returned 241 entries, among which 200 are gene candidates.
The user then saves the gene list (‘seed genes’ or the ‘seed’) to
perform a ‘gene list as the input’ query against the BEERE
web server (refer to Example B on the web server to obtain
this gene list). Since the user is also interested in finding new
gene candidates, user can set the network expansion flag as
‘YES’, using HAPPI 2.0 PPI data with the quality filter of
0.75 (four-star ratings) and above.

After a user confirms the mapping of matched gene sym-
bols in the BEERE’s database, BEERE shows (in step third)
a list all the seed genes and network-expanded genes using
the nearest neighbor network consisting of PPIs from the
HAPPI 2.0 database, default PPI quality control parame-
ters and the default gene ranking algorithm. The expanded
gene network has a high IOA at 99% and seed gene cov-
erage in the network (SCN) is 87% (Table 2). The result
shows that seed gene ranking remains consistent regardless

of whether there is an expanded network or not, because
top-10 BEERE-ranked seed genes in the expanded network
are also found in the top 10% in non-expanded network,
except for PLK1 (Table 3). The entire gene rank of the ex-
panded and non-expanded networks are shown in Supple-
mentary Tables S1–4. The PLK1 ranks in the top due to its
high connectivity to the expanded genes. About 250 out of
258 PLK’s interactors are expanded genes. Three of those
expanded genes, UBC, APP and MYC, are statistically sig-
nificant with P-values <0.05. Meanwhile, these genes are
also reported to be ubiquitously expressed in brain (35).
PLK1 is a Ser/Thr protein kinase gene belonging to the
CDC5/Polo subfamily. It is highly expressed during mitosis
and elevated levels of PLK1 are found in many cancers in-
cluding glioblastoma (36,37). About 14 expanded genes are
statistically significant at P-values ≤0.05 (Figure 1). All 14
genes except for the EGF gene, a gene with more than 384
PubMed abstract co-citations with the term ‘glioblastoma’,
are also ranked by ToppGene in the top 5.5% (Table 4). Our
BEERE results also highlighted the significance of perform-
ing biological entity expansions––expanding gene symbols
to aliases and gene full names––to reduce false negatives.

To investigate whether the ‘new’ candidate genes dis-
covered from BEERE gene-based analysis is valid, a user
may continue the web-based analysis by switching to
BEERE term-based analysis section, using terms includ-
ing ‘glioblastoma’ and each of the 14 new candidate genes.
After term expansion and ranking, BEERE helps users to
construct a network in the last analysis step (step fifth) to al-
low users’ visual exploration of the heterogeneous biomedi-
cal entity-to-entity interaction network, which consists of
both disease terms and gene symbols. BEERE-generated
semantic predications help users to validate co-cited gene-
to-disease pairs (Table 4) given the options of SemMed
V30 and ‘fuzzy matching’. BEERE-generated ranks of the
biomedical terms reveal that the epidermal growth fac-
tors, amyloid genes, ubiquitin genes and tyrosine genes are
tightly related to glioblastoma. Further, exploring each can-
didate gene’s mechanisms of actions in glioblastoma shows
that 11 out of 14 genes have a direct effect on glioblas-
toma. Among them, five genes (UBC, MYC, HDAC1,
SUMO1 and ABL1) augment glioblastoma; four genes
(APP, SRC, FYN and EP300) are associated with glioblas-
toma; a gene (EGF) and an estrogen receptor (ESR1)
produce the glioblastoma (38,39). All the above relation-
ships can be explored within the network visually and
shown in the detailed HTML tables next to the network
graph on the web server to reveal underlying PubMed ar-
ticles referred by the predications. Interestingly, among the
three genes (CREBBP, PCNA, ESR1) without direct rela-
tionships found within SemMedDB extracted predications,
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PCNA PCNA or Proliferating Cell Nuclear Antigen

EP300 EP300 or E1A Binding Protein P300

… …

Disease Glioblastoma

+

BERRE Biomedical term rank and validation

Term rank distribution

Term rank word-cloud

Term-to-term network

BERRE Biomedical network validation

InA
172

B
8

C

28
DE

Figure 1. The pipeline overview of the conjunction analysis in glioblastoma (GBM) genetic candidate’s discovery. In the first part, BEERE offers a ranked
order list of critical seed and expanded genes with statistical significance using the expanded network analysis. (A) The input is the 200 genetic candidate
genes downloaded from OMIM databases. (B) In BEERE quality control, BEERE automatically maps the queried genes to HAPPI database gene symbols.
By verifying the 172 genes matched to HAPPI database, BEERE returns 6833 PPIs passing the PPI cutoff. The network quality is good that Index of
Aggregation = 0.99 and Seed’s Coverage in Network = 0.87. (C) BEERE generates the gene ranks. About 87 seed genes are statistically significant and 14
expanded genes are statistically significant. In the second part, BEERE reveals the critical mechanisms using comprehensive term mapping, heterogeneous
network analysis, and term ranking. (D) About 28 biomedical entities using genes, aliases and disease terms are the input of the network meta-analysis. (E)
The term ranking score distribution and term rank word-cloud intuitively show the important entities such as epidermal growth factors, amyloid genes,
ubiquitin genes and tyrosine genes are tightly related to glioblastoma. The provenance of the gene to glioblastoma relationship is displayed on the selected
edge such as APP affects glioblastoma with one literature support. The PMID and a link to outsource are displayed by clicking the entry with the detail
of the relationships.

Table 3. The top-10 ranked seed genes in expanded network compared to the ranks in non-expanded networks

5-star+Exp. 3-star 4-star 5-star

Seed Gene Rank P-value Rank P-value Rank P-value Rank P-value

TP53 1 0.00053 2 0.015 2 0.017 4 0.0028
EGFR 2 0.0011 4 0.03 4 0.034 5 0.0032
PIK3R1 3 0.0016 5 0.037 3 0.026 2 0.0012
AKT1 4 0.0021 3 0.022 6 0.051 8 0.0085
CTNNB1 5 0.0027 1 0.0075 1 0.0085 1 0.00096
PIK3CA 6 0.0032 9 0.067 5 0.043 3 0.0027
PLK1 7 0.0037 31 0.23 21 0.18 12 0.036
RAC1 8 0.0043 11 0.082 10 0.085 6 0.0053
RB1 9 0.0048 10 0.075 9 0.077 7 0.0065
CCND1 10 0.0053 7 0.052 7 0.06 11 0.019
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Table 4. The expanded genes validation using the PubMed article term-to-term co-citations and network semantic relationship validation

Gene Search term
BEERE
Top rank P-value

ToppGene
rank

ToppGene
Normal-
ized
rank

PubMed
Initial
count

PubMed
Extended
count

Network
validation Literatures PMID

UBC UBC or ubiquitin or
ubiquitin C

1 (33) 0.017 116 32 0 137 Augments 1 27766591

APP APP or amyloid or
amyloid beta

2 (54) 0.028 1 1 23 61 Affects 1 15302999

MYC MYC or c-myc or myc
proto-oncogene

3 (69) 0.035 17 5 300 300 Augments 1 26993778

HDAC1 HDAC1 or Histone
decacetylase

4 (74) 0.038 46 13 12 12 Augments 1 27766591

SUMO1 SUMO1 or ubiquitin 5 (75) 0.038 373 102 3 138 Augments 1 27766591
SRC SRC or

Tyrosine-Protein
Kinase

6 (76) 0.039 31 9 165 167 Affects 6 3146045|15994925|
15618223|20947248|
19098899|25048528

ABL1 ABL1 or
Tyrosine-Protein
Kinase

7 (83) 0.042 142 39 4 10 Augments 1 23383209

FYN FYN or
Tyrosine-protein kinase

8 (85) 0.043 93 26 17 23 Affects 1 15994925

PCNA PCNA or Proliferating
Cell Nuclear Antigen

9 (87) 0.044 166 45 93 108 Indirectly
affect

- -

EP300 EP300 or E1A Binding
Protein P300

10 (88) 0.045 52 15 3 5 Affects 2 21489305|26722247

GRB2 GRB2 or Growth
Factor Receptor
Bound Protein

11 (90) 0.046 22 6 14 14 Indirectly
affect

- -

CREBBP CREBBP or CREB
Binding Protein

12 (92) 0.047 83 23 1 4 Indirectly
affect

- -

EGF EGF or Epidermal
Growth Factor

13 (93) 0.047 5146 1395 384 1419 Produces 1 3011820

ESR1 ESR1 or Estrogen
Receptor 1

14 (96) 0.049 34 10 5 6 Produces 1 20841389

each gene connects to six (for CREBBP), seven (for PCNA)
and six (for ESR1) existing genes, respectively. This suggests
strong candidacy for these genes were investigated further
for their molecular mechanism links to glioblastoma.

Furthermore, we believe the case study above demon-
strated that BEERE not only as a tool for gene-based or
term-based network expansion, ranking and exploration
tools separately, but also as an iterative analysis platform for
users who switch between biomedical entity relationship ex-
plorations and phenotypically significant gene network ex-
plorations. For example, having obtained the above results,
a user may enter into ‘gene-based’ analysis again, using 200
previously OMIM-curated genes and 14 newly discovered
candidate genes, to explore a gene-to-gene association net-
work without network expansions. Such ranking may shed
additional light on the relative significance of all candidate
genes. Networks using disease, genes and drugs may also be
expanded, ranked and explored iteratively from within the
BEERE tool subsequently.

DISCUSSION

BEERE is a new web-based data analysis tool to help
biomedical researchers characterize any input list of
genes/proteins, biomedical terms, or their combinations
against databases containing gene-to-gene relationships
and semantic term-to-term relationships. We developed

BEERE first to help users examine whether there is credi-
ble biological evidence of gene-to-gene associative relation-
ships or term-to-term semantic relationships within the user
input of a gene/term list. This is an important first step
towards the interpretation of high-throughput Omics se-
quencing data or manually curated biological entities for
hypothesis-driven research. Moreover, using the entire col-
lection of biomedical entity-to-entity relationship pairs, we
demonstrated that BEERE can help users uncover the in-
herent relative importance of each entity within the list, al-
low users to visually explore constructed global entity re-
lationship network and assist users with examining differ-
ent types of relationship pairs to trace back biomedical en-
tity relationships of interest to the original cited PubMed
articles. We demonstrated that BEERE could accelerate
biomedical mechanistic studies downstream of Omics anal-
ysis or initial curation with its current set of features when
proper parameters are set correctly. We envision biologi-
cal users of BEERE could use the entity expansion, rank-
ing and exploration features iteratively to examine gene-
to-gene, gene-to-disease, gene-to-drug, gene-to-risk factors,
and many types of biomedical entity relationships for their
research. With ongoing database update and database cov-
erage expansion to include additional contents from sources
such as gene sets and gene signatures, e.g., PAGER (40) and
GeneSigDB (41), we expect BEERE to become a useful web
service for the biomedical research community.
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