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The potential use of mesenchymal stem cells
in hematopoietic stem cell transplantation
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In the last 10 years, mesenchymal stem cells (MSCs) have emerged as a therapeutic approach to regenerative medicine,

cancer, autoimmune diseases, and many more due to their potential to differentiate into various tissues, to repair damaged

tissues and organs, and also for their immunomodulatory properties. Findings in vitro and in vivo have demonstrated immune

regulatory function of MSCs and have facilitated their application in clinical trials, such as those of autoimmune diseases and

chronic inflammatory diseases. There has been an increasing interest in the role of MSCs in allogeneic hematopoietic stem cell

transplantation (HSCT), including hematopoietic stem cell engraftment and the prevention and treatment of graft-versus-host

disease (GVHD), and their therapeutic potential has been reported in numerous clinical trials. Although the safety of clinical

application of MSCs is established, further modifications to improve their efficacy are required. In this review, we summarize

advances in the potential use of MSCs in HSCT. In addition, we discuss their use in clinical trials of the treatment of GVHD

following HSCT, the immunomodulatory capacity of MSCs, and their regenerative and therapeutic potential in the field of HSCT.
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INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) has been
used to treat patients with various malignant and non-
malignant diseases during the last 40 years. In 1957, Thomas
et al.1 first reported the infusion of bone marrow (BM) into
patients who received radiation and chemotherapy. These early
experiences led to the use of allogeneic HSCT to promote
recovery of hematopoietic function after myeloablative
therapy. In 1968, the first successful human BM
transplantion (BMT) was performed by Park et al.2 By the
late 1970s, Thomas et al.3 used allogenic BM from human
leukocyte antigen (HLA)-identical siblings, following total
body irradiation (TBI) and administration of
cyclophosphamide. In vivo transplantation of BM elements
suggested that mesenchymal stem cells (MSCs) were
precursors to BM connective tissue cells. In the 1990s, non-
myeloablative stem cell transplant was used for hematologic
diseases and solid tumors.4,5 Kessinger et al.6,7 introduced the
use of peripheral blood stem cells for allogeneic transplant.

The history of stem cells began with the discovery in the
mid-1800s that some cells had the ability to generate other
cells.8 Stem cell studies were performed by Maximow and
Friedenstein.9,10 Maximow discovered stem cells in the blood
that could differentiate into various blood cells, and observed
the relationship between hematopoiesis and the mesoderm
during development.9 Friedenstein first isolated adult non-
hematopoietic stem cells from the BM and demonstrated
ectopic BM formation by transplanting marrow stromal cells.11

In the 1970s, Friedenstein et al.10 first isolated adherent
stromal cells from whole BM in vitro culture. These adherent
stromal cells were fibroblast-like, clonogenic cells with
multilineage potential to differentiate into different
mesenchymal tissues and hematopoietic-supporting stroma
when a single colony-forming unit-fibroblast (CFU-F) was
retransplanted in vivo.10 In the 1980s, Caplan and Owen
further refined isolation methods and identified MSC
markers.12,13 In 1998, Thomson et al.14 isolated cells from
the inner cell mass of early embryos and developed the first
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human embryonic stem cell lines.14 Gearhart derived germ
cells from fetal gonad tissue.15

Following the discovery of isolation and culture methods for
MSCs, MSC-based therapies for stem cell research and clinical
application began to be developed. MSCs have gained atten-
tion due to their potential for cell therapy and regenerative
medicine. Recently, studies of the immune-suppressive capa-
city and regenerative potential of MSCs have generated clinical
interest in the field of HSCT in terms of preventing graft
rejection and controlling graft-versus-host disease (GVHD), as
well as facilitating tissue engineering.

DEFINITION OF MSCS

MSCs, also known as mesenchymal stromal/stem cells, are
non-hematopoietic. They were originally defined as self-renew-
ing, multipotent progenitor cells with multilineage potential to
differentiate into other types of cells of mesoderm origin, such
as adipocytes, osteocytes, chondrocytes, tenocytes and skeletal
myocytes, as well as cells of non-mesodermal origin, such as
hepatocytes, neural cells and epithelial cells.16–19 MSCs were
initially identified in the BM and are commonly isolated by
gradient centrifugation to separate nucleated cells, followed by
in vitro culture and serial passage. However, many publications
suggested the lack of ‘stemness’ of MSCs.20 To improve the
definition of MSCs, the Mesenchymal and Tissue Stem Cell
Committee of the International Society for Cellular Therapy
(ISCT) designated the name ‘multipotent mesenchymal
stromal cells’ for the plastic-adherent cells found under
standard culture conditions.20 The surface phenotype of
culture-expanded MSCs, by the defined ISCT standards, is
negative for surface CD14 or CD11b, CD45, CD34, CD79 or
CD19, and HLA-DR. MSCs are generally, but not
homogeneously, positive for a number of cell-surface
markers, including CD73, CD90 and CD105. Also, MSCs
must differentiate into bone, fat and cartilage by addition of
exogenous growth factors, and must be plastic-adherent
in vitro.21 Additionally, MSCs uniformly express CD49b,

CD49e, CD54, CD166, CD50, CD62L and CD106. MSCs
lack expression of the co-stimulatory molecules CD80, CD86,
CD40 and CD40L.22,23 Expression of chemokine receptors,
including CCR1, CCR7, CXCR4, CXCR5 and the chemokine
CX3CL1, by late-expanded MSCs is downregulated compared
with that of early-passage expanded MSCs.24 The expression of
surface antigens, including GD2, CD271 and frizzled-9, on
MSCs has led to the isolation of MSCs using antibody-based
immunomagnetic beads and/or fluorescence-activated cell
sorting.25–28 The phenotypic markers of MSCs are
summarized in Table 1; however, no single marker
that definitively distinguishes MSCs from all other cell types
has been identified.

Although MSCs can differentiate into various mature cells,
their intrinsic capacity to secrete cytokines and growth factors
at sites of tissue injury and inflammation contributes sig-
nificantly to their therapeutic capacity. The production of
these tropic mediators is defined by their in vivo location,
niche and severity of injury. MSCs are reservoirs for the
production of cytokines, chemokines and extracellular matrix
components, which have the ability to support stem cell
survival and proliferation.27,29,30 MSCs possess differentiation
potential and may regenerate damaged or diseased tissues
in vivo, as well as have a potential role in immunomodulation,
providing a basis for a variety of clinical applications.

SOURCE OF MSCS

MSCs are most commonly isolated from BM,17 but stromal
cells with identical properties of BM-derived MSCs have been
identified in many other tissues. These cells have been obtained
from adipose tissue,31–33 placenta,34 amniotic fluid,35–38

umbilical cord blood (UCB),39,40 connective tissues of
skeletal muscle and dermis,41 dental tissue,42 and fetal tissues
such as lung and blood.35 Mobilized peripheral blood cells
have also been reported as a source of MSCs.43 Although
reports of UCB as a source of MSCs were initially
controversial, there is general agreement that MSCs do reside

Table 1 Characterization of MSCs

Phenotypic markers Other surface molecules used for isolation

Source Negative Positive

Co-stimulatory

(low expression)

Chemokines/receptors

(low expression) Others

Bone marrow

Adipose tissue

Placenta

Amniotic fluid CD14 or CD11b CD80 CCR1

Umbilical cord blood CD45 CD73 CD86 CCR7 GD2

Connective tissues of skeletal muscle and dermis CD34 CD90 CD40 CXCR4 CD271

Dental tissue CD79a or CD19 CD105 CD40L CXCR5 Frizzled-9

Fetal tissue HLA-DR CX3CL1

Peripheral blood cells

CCR, CC chemokine receptor; CD, cluster of differentiation; CXCR, CXC chemokine receptor; CX3CL, CX3C chemokine; GD2, neural gaglioside; HLA-DR, human
leukocyte antigen-DR; MSC, mesenchymal stem cell.
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within cord blood and that the volume and storage time of the
cord blood are critical for successful isolation of MSCs.39

The developmental relationship between these different
MSCs has not yet been determined, and there is no consensus
as to whether BM-derived MSCs are the same as those isolated
from other tissues. Gene expression studies have demonstrated
that MSC populations are highly heterogeneous, including
those from the same tissue source.44 Thus, MSC gene
expression profiles, including expression levels of MSC
markers and some of their functional properties, differ
according to the tissue source.45 With regard to their ability
to renew and differentiate, all cells derived from the majority
of tissues behave in a similar manner. Additionally, the major
functional properties, such as regulation of immunological
tolerance, wound healing, inflammation and fibrosis, are
common to all MSCs.46 The heterogeneity of the MSC
population suggests that different tissue sources may
generate MSCs particularly suited to specific clinical
applications.

IMMUNOMODULATORY PROPERTIES OF MSCS

MSCs not only provide stromal support for hematopoietic
stem cells in the BM but also have potent immunosuppressive
and anti-inflammatory effects. MSCs suppress T-cell prolifera-
tion induced by alloantigens or mitogens via increasing the
number of regulatory T cells.47,48 The interactions between
T cells and MSCs have significant clinical implications in HSCT.
MSCs have been shown to lessen complications of GVHD after
HSCT49 and immune-mediated disease.50–52 In addition,
MSCs inhibit function of B cells,53 natural killer cells54 and
dendritic cells.55 The main immunosuppressive function of
MSCs is to induce soluble factors, including transforming
growth factor-b,56 hepatocyte growth factor,57 nitric oxide,58

HLA-G59 and indoleamine 2,3-dioxygenase60 (Table 2); how-
ever, these cells can also exert immunosuppressive effects by
direct cell-to-cell interaction.61 The immunosuppressive
capacity of MSCs is enhanced under inflammatory
conditions in the presence of the proinflammatory cytokines
interferon (IFN)-g, tumor necrosis factor-a and interleukin
(IL)-6. MSCs constitutively produce large amounts of IL-6 and

IL-8, and the chemokine CCL-2. When MSCs were treated
with IFN-g, there was secretion of ICAM-1, CXCL-10 and
CCL-8, whereas IL-8 production was decreased.62 This
phenomenon suggests that MSCs target neutrophils and
monocytes under non-inflammatory conditions, but attract
monocytes, dendritic cells, T cells and natural killer cells under
inflammatory conditions.62 A number of studies reported
transforming growth factor-b as a key mediator of
immunomodulation by MSCs. There is some evidence that
the transforming growth factor-b-transduced MSCs used in
our study showed enhanced immunomodulatory effects on
T-cell-mediated immunity.56 Under immunologically
quiescent conditions, MSCs promote T-cell survival and can
induce the activation and proliferation of CD4þ T cells.63,64

The dual immunomodulatory properties of MSCs suggest that
environmental factors may have a crucial role in induction of
MSC-mediated immunomodulation.

Recent studies reported that MSCs must be ‘licensed’ to
exert their immunomodulatory effects. Marigo and Dazzi65

showed that MSCs are not constitutively inhibitory,
but require a licensing step to produce acute inflammatory
helper T-lymphocyte (Th1)-type cytokines. If MSCs are
transplanted during acute inflammation, the microenviron-
ment containing polarized M1 macrophages ‘licenses’ MSCs to
inhibit effector T, B, natural killer and dendritic cells.
In contrast, if MSCs are licensed after the polarization of
M2 macophages by Th2-type cytokines during chronic infla-
mmation, the microenvironment provides alternative licensing
and recruits MSCs to the fibrosis process.65 In conclusion,
MSC therapy in an inflammatory microenvironment that is
licensing-dependent. Under conditions of mild or chronic
inflammation, the lack of licensing fails to provide therapeutic
effects, leading to weakened MSC immunosuppressive activity.

THERAPEUTIC POTENTIAL OF MSCS FOR TREATMENT

OF ACUTE AND CHRONIC GVHD

GVHD is a severe inflammatory condition, which results from
immune-mediated attack of recipient tissue by donor T cells
contained in the allogeneic graft. The immunomodulatory
properties of MSCs have led to clinical trials of MSC-based
therapy to prevent acute GVHD (aGVHD) and chronic
GVHD (cGVHD), major complications that occur after
allogeneic HSCT.66 For a more detailed review of GVHD, see
Schroeder and DiPersio.67 Without intervention before HSCT,
almost all allotransplant recipients develop significant GVHD.
These data suggest that enhancing the immunomodulatory
capacity of MSCs has potential for treatment of GVHD
following HSCT.68 Multiple drugs and strategies are used to
deplete T cells to prevent donor anti-host immunological
complications of allotransplantation. Recently, the immuno-
modulatory and tissue-repair properties of MSCs have led to
many studies and clinical trials of their use as a treatment
for GVHD. The rationale for studies of MSCs was based on
their immunomodulatory properties identified by numerous
in vitro assays and in vivo models, as explained above.

Table 2 Immunomodulatory molecules produced by MSCs

Molecule Function

Transforming growth factor-b Suppress T-lymphocyte proliferation

Hepatocyte growth factor Suppress T-lymphocyte proliferation

Nitric oxide Suppress T-cell function and

responsiveness

Human leukocyte antigen-G Suppress naive T-cell proliferation

Indoleamine 2,3-dioxygen-

ase (IDO)

IDO-mediated T-cell inhibition by convert-

ing tryptophan tokynurenin, a T-cell-inhibi-

tory effector pathway in APCs

Chemokines: CCL-2, ICAM-1,

CXCL-10, CCL-8

Drive T-cell migration toward MSCs

APC, antigen-presenting cell; CCL, CC chemokine; CXCL, CXC chemokine;
ICAM-1, intercellular adhesion molecule 1; MSC, mesenchymal stem cell.
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aGVHD involves direct cytotoxic effects of donor T cells on
recipient tissues, activation of antigen-presenting cells and an
inflammatory cascade that produces cytokines, including IL-1,
IL-6, IL-12, IFN-g and tumor necrosis factor-a.69 At first, there
was a scarcity of preclinical models demonstrating the efficacy
of MSCs in ameliorating aGVHD before clinical studies
started. In fact, most preclinical models were developed after
the demonstration of clinical efficacy. The clinical efficacy of
MSCs in aGVHD was initially observed in a 9-year-old boy
suffering from steroid-resistant grade IV aGVHD who received
haploidentical third-party MSCs.70 In the next phase II clinical
trial, which involved 55 patients with the same condition, the
administration of MSCs significantly improved the overall
survival rate.71 However, in another phase I/II clinical trial, a
single infusion of MSCs given at the time of the transplant did
not prevent the development of aGVHD.72 This discrepency
was also seen in animal models and was later explained by the
findings of preclinical studies. Initial studies of MSCs in a
murine aGVHD model demonstrated that a single infusion of
MSCs at the time of HSCT did not prevent aGVHD,73 but this
could be mitigated by multiple doses given at weekly intervals
subsequent to HSCT.74 Polchert et al.75 reported that MSCs
can be used to treat aGVHD when administered at an
appropriate time in the presence of IFN-g. That study
showed that the survival rate of mice increased when MSCs
were administered at day þ 2 or þ 20 of HSCT, when IFN-g
levels were at their peak. This study demonstrated that timing
was critical because an appropriate inflammatory environment
was needed to ‘license’ the MSCs. The role of IFN-g and of the
inflammatory environment in activation of MSCs to exhibit
inhibitory activty has been described in vitro.76

It has been suggested that inflammatory cytokines, includ-
ing IFN-g, can recruit MSCs to the site of inflammation and
tissue injury.77 In addition to their immunomodulatory effects,
MSCs might enhance the healing of wounded tissue by
providing soluble factors, transdifferentiation and cell fusion.
In a previous clinical trial, patients were treated with MSCs to
ameliorate tissue toxicty following HSCT.78 Tissue injuries,
such as hemorrhagic cystisis and pneumomediastium, were
cleared in several patients after treatment with MSCs. In one
patient with aGVHD, symptoms of perforated diverticulitis
and peritonitis were reversed by MSC therapy.78 Furthermore,
a series of experiment used bioimaging to track the
biodistribution of MSCs in a murine model of aGVHD.79 In
these experiments, donor C57BL/6 splenocytes, which
expressed enhanced green fluorescent protein, were used to
induce aGVHD. Then, MSCs were generated from C57BL/6
donor mice expressing red fluorescent protein (RFP). RFP-
MSC were injected, and both fluorescent signals were detected
consistently. Enhanced green fluorescent protein was first
detected in the lungs, but spread to the gastrointestinal (GI)
tract, liver, skin, and lymph nodes, all of which are known
clinical targets of aGVHD. After injection, RFP signals co-
localized with EGFP signals at the aGVHD target sites, proving
that MSCs can home to sites of aGVHD and potentially exert
direct cell-cell contact-mediated effects as well as paracrine

effects for tissue repair. Murine MSCs that were engineered to
express the anti-inflammatory cytokine IL-10 significantly
reduced the severity of aGVHD compared to unmodified
MSCs.80 It is likely that safely engineered MSCs may provide
more targeted and effective cell therapy for aGVHD.

cGVHD occurs after the first 100 days of HSCT and is
characterized by autoimmune-like dysregulation. While
aGVHD involves mainly the skin, liver, and GI tract, cGVHD
affects almost any organ and reduces the quality of life, organ
function, and overall survival.81 In contrast to aGVHD, the
pathophysiology of cGVHD is poorly understood. A clinical
trial of the use of MSCs to treat cGVHD has been reported
recently.72 The first report involved co-transplantation of
HLA-identical sibling culture-expanded MSCs with HLA-
identical sibling HSCT in patients with hematologic
malignancies. Clinical improvement was identified in 22 of
36 (61%) patients who survived at least 90 days.72 Another
report suggested that BM-derived MSCs may be used
successfully to treat adult patients with sclerodermatous
cGVHD,82 because IFN-g, IL-2, IL-10, and IL-4 producing
cells were detected both before and after MSC infusion. Before
MSC infusion, Th2-type cells were markedly increased
compared to Th1 type cells, whereas after MSC infusion, the
proportion of Th1 type cells increased.82 In another study,
infusion of culture-expanded MSCs was investigated as a
therapeutic approach for patients with steroid-resistant
cGVHD.68 Although 14 of 19 patients (73.7%) responded to
MSC administration, only four patients showed complete
remission.68 The majority of patients showed only partial or
mixed responses, suggesting that MSC may not be a potent
immunomodulator in a cGVHD environment. The number of
studies of use of MSCs in cGVHD is insufficient; it is apparent
that unlike aGVHD, the therapeutic effect of MSCs on cGVHD
is limited.

Despite in vitro and in vivo evidence that MSCs can
ameliorate GVHD, clinical trials of the treatment of GVHD
remain incomplete. Our recent data showed that transforming
growth factor-b-transduced MSCs were able to successfully
treat autoimmune arthritis by inducing Foxp3 levels and
inhibiting IL-17 production; however, MSCs themselves did
not suppress IL-17 production.56 These findings suggest that
while MSCs exert immunomodulatory properties via an IFN-g
(thast is, Th1)-dominant response, MSCs may not effectively
inhibit Th17 responses. While the role of Th17 in aGVHD
pathogenesis is still not clearly defined, recent studies have
revealed that GVHD involves a combination of both Th1 and
Th17 responses;83 thus, the monitoring of both Th1 and Th17
responses, rather than Th1 or Th17 responses alone, could be
an accurate indicator of GVHD severity after HSCT.84

Furthermore, Yi et al.85 suggested that blocking Th1 or Th17
cells alone was ineffective for treatment of GVHD. Blocking
Th1 cells led to the exacerbation of Th17 responses, and vice
versa. Thus, new studies are proposing that simultaneous
inhibition of Th1 and Th17 differentiation could be a new
strategy to treat GVHD following HSCT.86 Finally, a more
standardized study design is needed for clinical trials, in order
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to accurately evaluate the effects of MSCs on GVHD. Data
from preclinical murine GVHD models suggest that the timing
of MSC administration is critical to its effectiveness, but the
optimal treatment schedule has not yet been defined. To-date a
variety of dosing schedules has been used; however, the
optimal treatment method should be determined.
Furthermore, as mentioned above, a consensus must be
formed regarding the optimal culture and manufacturing
conditions to generate uniform MSCs. Therefore, more
definitive studies and longer follow-ups during clinical trials
are necessary to assess the long-term efficacy and toxicity

associated with MSC use. In future studies, the use of
genetically modified MSCs holds considerable promise. In
conclusion, both preclinical (Table 3) and clinical (Table 4)
trials using MSCs as a potential therapeutic agent for the
treatment of GVHD are encouraging, yet the data remain
incomplete.

FACILITATING ENGRAFTMENT BY MSCS

MSCs have been suggested to be the progenitor cells that
modulate alloreactivity and promote hematopoietic reconsti-
tution. Therefore, MSCs have been suggested to enhance

Table 3 In vivo immunosuppressive effects of MSCs

Animal, model MSCs Outcome Reference

Mouse, CIA TGF-b-transduced MSCs Suppressed development of

autoimmune arthritis and joint

inflammation

Park et al.56

Mouse, aGVHD Single infusion of MSCs No effect on prevention of GVHD Sudres et al.73

Mouse, aGVHD Multiple infusions of MSCs after HSCT,

once GVHD has been fully established

Increased survival rate and

amelioration of disease

Tisato et al.;74

Polchert et al.;75

Joo et al.79

Mouse, aGVHD IL-10-transduced MSCs Reduced severity of aGVHD Min et al.80

Mouse, graft rejection Co-transplantation of fetal and adult human MSCs Long-term engraftment Almeida-Porada et al.87

Sheep, graft rejection Co-transplantation of fetal and adult human MSCs Long-term engraftment Noort et al.88

Primate, graft rejection Autologous intra-BM transplantation of MSC Improved engraftment Masuda et al.90

Mouse, graft rejection Allogeneic MSCs Increased rejection Nauta et al.91

Mouse, non-obese diabetic Allogeneic MSCs Induction of mixed chimerism

and prevention of insulitis

Asari et al.;98

Itakura et al.99

Rat, hindlimb transplant Co-infusion of allogeneic MSCs and bone

marrow cells

Induction of stable high-level

chimerism

Pan et al.100

Mouse, chimerism Intra-bone marrow-bone marrow transplantation

with allogeneic MSCs

Induction of mixed chimerism Wang et al.101

aGVHD, acute graft-versus-host diasease; BM, bone marrow; CIA, collagen-induced arthritis; GVHD, graft-versus-host diasease; HSCT, hematopoietic stem cell
transplantation; IL-10, interleukin 10; MSC, mesenchymal stem cell; TGF-b, transforming growth factor-b.

Table 4 Clinical trials of MSC therapy for hematopoietic stem cell transplantation

Target

Source of

MSCs

Type of

trial Observations Reference

Treatment of aGVHD BM I CR (100%) Le Blanc et al.70

Treatment of aGVHD BM II 30 CR (54%)

9 PR (16%)

Le Blanc et al.71

Prevention of aGVHD, cGVHD BM, PBSC I 22/46 (50%) still developed aGVHD

22/36 (61%) still developed cGVHD

Lazarus et al.72

Prevention of aGVHD, cGVHD BM I Incidence of aGVHD in MSC-treated patients was 31%,

whereas control was 41%. None of the MSC-treated patients

developed cGVHD.

Bernardo et al.95

Treatment of cGVHD BM I Decreased signs and symptoms in all patients Zhou et al.82

Treatment of cGVHD BM I 4 CR (21%)

10 PR (52%)

Weng et al.68

Facilitation of engraftment BM I–II Engraftment prompt in all patients without toxicity of MSC Koc et al.,92

Facilitation of engraftment BM I–II All patients given MSC showed sustained hematopoietic

engraftment without adverse reaction

Ball et al.93

aGVHD, acute GVHD; BM, bone marrow; cGVHD, chronic GVHD; CR, complete response; MSC, mesenchymal stem cell; PBSC, peripheral blood stem cell; PR, partial
response.
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engraftment and to prevent rejection after HSCT. Co-trans-
plantation of fetal and adult human MSCs promoted long-
term engraftment in immunodeficient (non-obese diabetic/
SCID) mice and fetal sheep.87,88 Infusion of allogeneic BM-
derived MSCs inhibited lymphocyte proliferation and
prolonged skin allograft survival.89 Co-transplantation with
MSCs improved HSC engraftment after autologous intra-BM
(IBM) transplantation in non-human primates.90 In murine
models, the infusion of host MSCs enhanced engraftment of
allogeneic hematopoietic cells; however, donor MSCs increased
rejection of an allogeneic stem cell graft.91 During the first
clinical trial, rapid hematopoietic recovery was accelerated by
the use of culture-expanded marrow MSCs and autologous
blood transplantation.92 In a phase I/II clinical trial, co-
transplantation of donor MSCs in 14 children given T-cell-
depleted HLA-disparate CD34þ cells accelerated leukocyte
recovery and prevented graft rejection.93 In a pediatric
phase I/II trial, infusion of ex vivo culture-expanded third-
party haploidentical MSCs into unrelated pediatric UCB
transplantation prompted hematopoietic recovery.94

Co-infusion of parental MSCs in pediatric patients given
allogeneic UCB graft prevented aGVHD, but did not affect
engraftment or hematopoietic recovery.94,95 In an adult phase
I/II clinical trial, patients receiving UCB transplantation with
co-infusion of third-party donor, mobilized hematopoietic
stem cells did not affect the kinetics of engraftment
or aGVHD.96 These findings indicate that co-infusion of
hematopoietic cells and MSCs is safe in vivo and clinically,
while the engraftment capacity of MSCs in terms of efficacy
remains uncertain.

INDUCTION OF MIXED CHIMERISM USING MSCS

Induction of mixed chimerism and achieving immunological
tolerance is an important goal in the efforts to reduce the
morbidity, mortality and shortage of organ transplants as well
as to combat hematological malignancies. Mixed chimerism
entails coexistence of recipient and donor hematopoietic cells
following transplantation of donor BM into conditioned
recipients. These protocols involve T-cell depletion, co-stimu-
lation blockade and therapeutic use of regulatory T cells.97

Recent studies of MSC-mediated anti-GVHD effects, their
supportive role in hematopoietic engraftment and their
immunomodulatory properties have led to increasing use of
MSCs in mixed chimerism protocols.

Most mixed chimerism protocols utilizing MSCs use
recipient conditioning regimens to enhance the engraftment
of donor BM followed by the co-administration of BM cells
and MSCs. In non-obese diabetic mouse models, known to be
highly resistant to chimerism induction, recipient mice were
treated with a preconditioning regimen consisting of 3 Gy TBI
and anti-CD3 monoclonal antibody injection.98 The co-
injection of allogeneic BM cells and MSCs facilitated
engraftment, induced mixed chimerism with a success rate
greater than 78%, and prevented insulitis and the onset of
diabetes. Furthermore, no GVHD developed with this
treatment regimen. Similar results were demonstrated in

streptozotocin-diabetic rats.99 The recipient rats received a
conditioning regimen consisting of anti-lymphocyte serum
and 5 Gy TBI, followed by co-infusion of allogeneic MSCs, BM
cells and islets. Although all recipients rejected the islets
initially, half developed stable mixed chimerism and donor-
specific immune tolerance, shown by donor skin engraftment
and a second round of islet transplants. In another experiment,
recipient Lewis rats received a similar conditioning regimen
consisting of anti-lymphocyte serum, rapamycin immuno-
suppressive therapy (from days 0 to 130) and 3 Gy TBI,
followed by co-infusion of allogeneic MSCs and BM cells.100

Additionally, a hindlimb allotransplant was performed 30 days
after the BMT. The immunosuppressive therapy was stopped
100 days after hindlimb transplantations. Fourteen of fifteen
recipients developed stable and high-level chimerism, and the
survival time of hindlimb allografts was prolonged even after
the withdrawal of rapamycin in the group with co-
administration of MSCs. In contrast, a protocol that induced
mixed chimerism with no cytotoxic conditioning was
evaluated.101 Wang et al.101 established mixed chimerism by
IBM–BMT combined with BM-derived allogeneic MSC
treatment in mice. IBM-BMT is a method that administers
donor BM directly into the recipient BM. Because of the low
morbidity of GVHD and rapid recovery of hematopoietic
function, IBM-BMT is considered one of the best strategies,
and intraosseous infusion is an established method for patients
receiving critical care in the clinical setting. The donor-derived
MSCs were transplanted intravenously daily for 4 days before
the actual transplantation, and IBM-BMT was performed
immediately after the fourth injection. The majority of the
mice developed 20–25% chimerism levels among myeloid
lineage cells, whereas no chimerism was detected in either
control group (IBM-BMT or BM-MSC treatment alone).

MSC IMMUNOGENICITY

MSCs are considered to be immunoprivileged because of their
absent or low expression of major histocompatibility complex
class II and other co-stimulatory molecules. MSCs have also
been found to have an immunosuppressive role. Thus, MSCs
have been assumed to be a powerful therapeutic tool that
could be used regardless of the major histocompatibility
complex identity between donor and recipient. However,
recent research has revealed that MSCs can stimulate immune
responses under certain conditions. Depending on the IFN-g
level, MSCs can exhibit antigen-presenting properties.102 At
low IFN-g levels, MSCs can upregulate the expression of major
histocompatibility complex II and gain the ability to act as an
antigen-presenting cell.102 IFN-g-treated MSCs have also
been demonstrated to induce ovalbumin-specific immune
responses.103 The IFN-g-treated syngeneic MSCs could
process the ovalbumin antigen peptide, present it on major
histocompatibility complex II molecules, and activate
ovalbumin-specific T cells.103 MSC immunogenicity has also
been demonstrated in vivo models. The presence of allogeneic
MSCs in a non-myeloablative transplantation setting
resulted in a significantly increased graft rejection.91,104,105
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Furthermore, the administration of allogeneic MSCs induced
T-cell responses in naive immunocompetent host mice. It
appears that MSCs can engraft immunocompromised hosts,
but have limited capacity to elicit an immune response in an
immunocompetent host. Many aspects of the immunogenic
properties of MSCs remain to be elucidated; therefore, further
studies should validate the efficacy and clinical consequences
of the use of MSCs.

GRAFT-VERSUS-TUMOR EFFECT FOLLOWING MSC

THERAPY

Allogeneic donor lymphocytes produce a strong graft-versus-
tumor (GVT) effect. However, its clinical efficacy is limited by
conditioning-related toxicity, GVHD, and engraftment failure.
Barnes and Loutit106 first reported GVT alloreactivity of
allogeneic HSCT in a murine model. The GVT response is
mediated largely by minor histocompatibility antigens,107–109

natural killer cells110–113 and donor lymphocyte infusion.114–116

A major focus of allogeneic HSCT is augmentation of GVT
effects without GVHD. Recent investigations have focused on
infusion of cells, novel pharmacologic agents and biological
agents that may specifically prevent GVHD without affecting
GVT reactions. More specifically relevant to GVT effects, 20
patients with hematologic malignancies received MSCs from
HLA-mismatched donors after conditioning with TBI and
fludarabine.117 HLA-mismatched non-myeloablative HSCT
with MSC co-infusion exhibited a therapeutic effect on the
hematologic malignancies. Furthermore, the results suggested
that MSC co-infusion prevented GVHD while preserving GVT
effects.117 Although the induction of tumor inhibition and
enhancement are polar opposites, MSCs have numerous
beneficial properties in terms of promoting GVT effects due

to both their immunomodulatory properties after HSCT that
may suppress tumors, as well as their tropism toward the
tumor microenvironment.

CONCLUSION

HSCT was initiated in 1957 by Thomas et al.1 by the infusion
of human BM into leukemia patients. Currently, a variety of
stem cell sources other than the BM, such as peripheral blood,
amniotic fluid and UCB, are being used in transplantation
settings, and new treatment methods are continually being
discovered. However, the limitations of HSCT, including
infection, relapse of disease, engraftment and complications
of GVHD, have not been resolved. At present, MSCs are an
excellent candidate with clinical therapeutic potential for
HSCT. Preclinical and clinical studies of MSC therapy are
revealing new methods of overcoming these limitations. The
potential uses of MSCs include treatment of GVHD,
facilitation of hematopoietic engraftment, induction of
mixed chimerism and induction of the GVT effect. In
addition, MSCs possess unique properties of immune
modulation and tissue regeneration that highlight their
potential as a potent therapeutic tool (Figure 1). Based on
the results of clinical studies, to improve the safety and
efficiency of MSC therapy, studies of specific markers that
identify MSCs, cell dose and the timing and route of
administration are crucial and must continue. Furthermore,
enhancement of the therapeutic activity of MSC transplants
is required to increase our knowledge of how MSCs
regulate the host immune response, and therefore, further
studies may be needed to identify the immunoregulatory
mechanisms and in vivo biological activities of MSCs after
administration.

Figure 1 MSC-mediated therapies targeting for hematopoietic stem cell transplantation. The potential uses of MSCs include treatment of
GVHD, facilitation of hematopcietic engraftment, induction of mixed chimerism and induction of the GVT effect. MSCs possess unique
properties of immune modulation and tissue regeneration. k : suppression; m: promotion. GVHD, graft-versus-host disease; GVT, graft-
versus-tumor; HLA, human leukocyte antigen; IDO, indoleamine 2,3-dioxygenase; MSCs, mesenchymal stem cells; TGF-b, transforming
growth factor-b.
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