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Abstract: Neuroinflammation, where inflammatory cytokines are produced in excess, contributes to
the pathogenesis of delirium. Microglial cells play a central role in neuroinflammation by producing
and releasing inflammatory cytokines in response to infection, tissue damage and neurodegener-
ation. Dexmedetomidine (DEX) is a sedative, which reduces the incidence of delirium. Thus, we
hypothesized that DEX may alleviate delirium by exhibiting anti-inflammatory action on microglia.
In the present study, we investigated the anti-inflammatory action of DEX on human microglial
HMC3 cells. The results indicated that DEX partially suppressed the IL-6 and IL-8 production by
lipopolysaccharide (LPS)-stimulated HMC3 cells as well as the phosphorylation of p38 MAPK and
IκB and the translocation of NF-κB. Furthermore, DEX substantially suppressed IL-6 and IL-8 pro-
duction by unstimulated HMC3 cells as wells as the phosphorylation of p38 MAPK and IκB and the
translocation of NF-κB. These observations suggest that DEX exhibits anti-inflammatory action on
not only LPS-stimulated but also unstimulated microglial cells via the suppression of inflammatory
signaling and cytokine production.
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1. Introduction

Perioperative disturbances of cognition occur acutely in the form of postoperative
delirium (POD) as postoperative cognitive dysfunction (POCD). Delirium is defined as
a fluctuating disturbance of consciousness with reduced ability to focus, sustain, or shift
attention, accompanied by a change in cognition and perceptual disturbances. Delirium is
the most frequent neuropsychiatric syndrome in the hospital, especially in older patients
with pre-existent cognitive impairment. Delirium is associated with impaired physical and
cognitive recovery, increased hospital costs and a higher mortality, and neuroinflammation
is involved in the pathogenesis of delirium. The patients who develop delirium have a
significantly longer duration of mechanical ventilation and longer intensive care unit (ICU)
length of stay, as well as an over twofold higher risk of mortality. Interestingly, it has been
reported that the high blood level of IL-6 is observed in patients with delirium during
hospitalization in the ICU [1]. Therefore, controlling neuroinflammation is therapeutically
important for limiting the risk of developing POD/POCD.

Microglia are located in the central nervous system (CNS) and interact with neural
synapses. Microglia also play an important role in the innate immune system and neu-
roinflammation of CNS [2]. In response to injury or inflammatory stimuli, microglial cells
are rapidly activated and promote neuroinflammatory reactions through the secretion of
various chemokines and cytokines. Increased activation of microglia is also evident in POD.
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Interestingly, increased levels of inflammatory mediators (such as IL-6) are known to have
a high incidence of POD [3].

Dexmedetomidine (DEX) is a sedative with the action of an alpha 2-adrenergic receptor
agonist primarily used in the ICU. Recent studies have confirmed that DEX exerts the
protective actions on various organ injuries [4]. Interestingly, clinical studies have revealed
that DEX lowers the incidence of delirium in ICU compared to other sedatives [5]. Moreover,
an animal model study indicated that DEX reduces the lipopolysaccharide (LPS)-induced
neuroinflammation in the mouse brain and the cytokine-related changes in the disease
behavior [6]. DEX also reduces the severity of lidocaine-induced spinal cord injury in rats
by suppressing the expression of pro-inflammatory cytokines IL-1β and IL-18 [7].

In the present study, we examined the effects of DEX on LPS-induced inflammatory re-
actions by human microglial HMC3 cells, focusing on the activation of signaling molecules
(p38 MAPK, ERK1/2 and IκB) and the nuclear translocation of NF-κB.

2. Results
2.1. Effect of LPS and DEX on the Viability of HMC3 Cells

HMC3 cells were incubated with or without 1000 nM DEX for 30 min, and then
stimulated with or without 100 ng/mL LPS for 24 h. Thereafter, the LDH activity of the
culture supernatants was assessed. The incubation of HMC3 cells with LPS and/or DEX
did not affect the viability of HMC3 cells assessed by the LDH activity compared to that
without LPS and DEX.

2.2. Effect of DEX on LPS-Induced p38 MAPK and ERK1/2 Activation

First, we evaluated the effect of DEX on the phosphorylation of p38 MAPK. HMC3 cells
were incubated with or without 1000 nM DEX for 30 min and then stimulated with or with-
out 100 ng/mL LPS for 15 min. The stimulation of HMC3 cells with LPS slightly increased
the phosphorylation of p38 MAPK, and DEX marginally suppressed the LPS-induced phos-
phorylation of p38 MAPK. Interestingly, DEX partially suppressed the phosphorylation of
p38 MAPK in unstimulated HMC3 cells (Figure 1A).
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Figure 1. Effect of DEX on LPS-induced p38 MAPK and ERK1/2 activation. HMC3 cells were
incubated with 1000 nM DEX for 30 min and further incubated with or without 100 ng/mL LPS for
15 min. Thereafter, the phosphorylation of p38 MAPK (A) and ERK1/2 (B) was analyzed by Western
blotting. Phosphorylated p38 MAPK and ERK1/2 was normalized with total p38 MAPK and ERK1/2
and is expressed as a ratio to that of LPS-stimulated HMC3 cells without DEX. Representative images
of Western blotting are shown above the graphs. Data are the means ± SD of 3 separate experiments.

Next, we evaluated the effect of DEX on the phosphorylation of ERK1/2. In contrast to
p38 MAPK, the stimulation of HMC3 cells with LPS (100 ng/mL) did not essentially increase
the phosphorylation of ERK1/2, and DEX (1000 nM) did not affect the phosphorylation of
ERK1/2 in LPS-stimulated and unstimulated HMC3 cells (Figure 1B).
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2.3. Effect of DEX on LPS-Induced IκB Activation and Translocation of NF-κB

Furthermore, we evaluated the effect of DEX on phosphorylation of IκB. HMC3 cells
were incubated with or without 1000 nM DEX for 30 min and then stimulated with or
without 100 ng/mL LPS for 15 min. The stimulation of HMC3 cells with LPS significantly
increased the phosphorylation of IκB (p < 0.05), and DEX suppressed the LPS-induced
phosphorylation of IκB (p < 0.05). Interestingly, DEX significantly suppressed the phospho-
rylation of IκB in unstimulated HMC3 cells (p < 0.05) (Figure 2A).
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Figure 2. Effect of DEX on LPS-induced IκB activation and translocation of NF-κB. HMC3 cells were
incubated with 1000 nM DEX for 30 min and further incubated with or without 100 ng/mL LPS for
15 min. Thereafter, the phosphorylation of IκB (A) and translocation of NF-κB (B) were analyzed by
Western blotting. Phosphorylated IκB was normalized with total IκB and expressed as a ratio to that
of LPS-stimulated HMC3 cells without DEX (A). Translocation of NF-κB was normalized with histone
H3, and expressed as a ratio to that of LPS-stimulated HMC3 cells without DEX (B). Representative
images of Western blotting are shown, above the graphs. Data are the means ± SD of 3 separate
experiments. Data are compared between without and with LPS in the absence of DEX, between
without and with DEX in the absence of LPS, and between without and with DEX in the presence of
LPS. * p < 0.05.

Moreover, we evaluated the effect of DEX on the nuclear translocation of NF-κB, a
target molecule of IκB. Stimulation with LPS apparently increased the nuclear translocation
of NF-κB, and DEX markedly suppressed the LPS-induced translocation of NF-κB. Impor-
tantly, DEX significantly suppressed the nuclear translocation of NF-κB in unstimulated
HMC3 cells (p < 0.05) (Figure 2B).

2.4. Effect of DEX on LPS-Induced IL-6 and IL-8 Production and COX-2 Expression

Furthermore, we evaluated the effect of DEX on IL-6 and IL-8 production by LPS-
stimulated HMC3 cells. HMC3 cells were incubated with or without 1000 nM DEX for
30 min, and then stimulated with or without 100 ng/mL LPS for 24 h. Stimulation of
HMC3 cells with LPS significantly increased the production of IL-6 (p < 0.01) and IL-8
(p < 0.05), and DEX partially suppressed the LPS-induced the production of IL-6 and IL-8
(Figure 3A,B). Interestingly, DEX significantly suppressed the production of IL-6 and IL-8
by unstimulated HMC3 cells (p < 0.05).
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Figure 3. Effect of DEX on LPS-induced IL-6 and IL-8 production and COX-2 expression. HMC3 cells
were incubated with 1000 nM DEX for 30 min, and then stimulated with 100 ng/mL LPS for 24 h.
The culture supernatants were collected. The production of IL-6 (A) and IL-8 (B) was measured by
ELISA and expressed as a ratio to that of resting HMC3 cells without LPS and DEX. Data represent
the mean ± SD of six experiments. Data are compared between without and with LPS in the absence
of DEX, and between without and with DEX in the absence of LPS. * p < 0.05, ** p < 0.001. After the
incubation as described above, the cells were lysed in RIPA buffer containing a protease inhibitor
cocktail, and expression of COX-2 was analyzed by Western blotting. The expression of COX-2 was
normalized with tubulin and expressed as a ratio to that of LPS-stimulated HMC3 cells without DEX.
Data are the means ± SD of 3 separate experiments. #: HMC3 cells incubated with LPS (100 ng/mL)
and DEX (100 nM), which was excluded from calculation of the data (graph) shown in (C).

Finally, we evaluated the effect of DEX on the COX-2 expression in LPS-stimulated
HMC3 cells. Stimulation of HMC3 cells with LPS (100 ng/mL) apparently increased the
expression of COX-2, and DEX substantially suppressed the LPS-induced the expression of
COX-2. However, DEX did not affect the expression of COX-2 in unstimulated HMC3 cells
(Figure 3C).

3. Discussion

There is increasing evidence that inflammation in the CNS contributes to the onset
of neurodegenerative diseases and the progression of cognitive dysfunction. Importantly,
neuroinflammation is associated with POD [8–12]. Microglia, the glial cells that sup-
port neurons, are thought to play a central role in neuroinflammation by producing and
releasing inflammatory cytokines in response to infection, tissue damage, and neurodegen-
eration [13,14]. Furthermore, uncontrolled levels of microglial inflammation are involved
in the pathogenesis of neurodegenerative diseases [15], and the overwhelming inflam-
mation caused by infections or traumatic stimuli leads to neurodegeneration and nerve
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destruction [16]. DEX is a sedative with the action of an alpha 2-adrenergic receptor agonist
and reduces the incidence of delirium in patients in ICU compared to other sedatives [17].
Moreover, some anti-inflammatory drugs and their efficiency on neural cells such as glial
cells involving astrocytes were reported [18–20]. In the present study, we examined the ef-
fects of DEX on LPS-induced inflammatory reactions by human microglial HMC3 cells [21],
focusing on the activation of signaling molecules (p38 MAPK, ERK1/2 and IκB) and the
nuclear translocation of NF-κB.

Following the cell activation, IκB, an inhibitory molecule of NF-κB, is phosphorylated
and degraded, and NF-κB translocates to the nucleus and promotes the expression of in-
flammatory mediators such as COX-2, cytokine and chemokines [22,23]. Mitogen-activated
protein kinases (MAPKs) are a family of serine/threonine kinases with at least three major
subfamilies, including p42/44 MAPKs (also called extracellular signal-regulated kinases:
ERK-1 and ERK-2) and p38 MAPKs [11]. MAPKs are activated by nerve damage and
inflammation. Interestingly, it has been reported that MAP/ERK signaling modulates the
development of cognitive and emotional function and is involved in pathological and neu-
rodegenerative processes [24]. Thus, in the present study, to elucidate the anti-inflammatory
action of DEX, we examined the effects of DEX on LPS-induced inflammatory reactions
by human microglial HMC3 cells, focusing on the activation of signaling molecules (p38
MAPK, ERK1/2 and IκB) and the nuclear translocation of NF-κB.

The present results indicate that LPS stimulation induced the phosphorylation of IκB
and p38 MAPK but not ERK, and the translocation of NF-κB as well as the IL-6/-8 produc-
tion and COX expression in HMC3 cells. These results suggest that IκB phosphorylation,
NF-κB translocation and p38 MAPK phosphorylation, but not ERK phosphorylation, are
involved in the IL-6/-8 production and COX expression by LPS-stimulated HMC3 cells.
Furthermore, we evaluated the action of DEX on the LPS-stimulated HMC3 cells. The
results indicated that DEX inhibits the LPS-induced phosphorylation of IκB and p38 MAPK,
and translocation of NF-κB as well as the IL-6/-8 production and COX expression in HMC3
cells. Thus, DEX likely inhibits IL-6/-8 production and COX expression by LPS-stimulated
HMC3 cells via the suppression of signaling mediated by IκB phosphorylation, NF-κB
translocation and possibly p38 MAPK phosphorylation.

Interestingly, in unstimulated cells, DEX inhibits IκB phosphorylation, NF-κB translo-
cation and p38 MAPK phosphorylation as well as IL-6/-8 production. These results suggest
that DEX suppresses IL-6/-8 production in unstimulated cells via the inhibition of IκB
phosphorylation, NF-κB translocation and p38 MAPK phosphorylation. In contrast, the
IκB phosphorylation, NF-κB translocation and p38 MAPK phosphorylation are unlikely
involved in the expression of COX-2 in unstimulated cells, since DEX suppressed the IκB
phosphorylation, NF-κB translocation and p38 MAPK phosphorylation but not COX-2
expression. Thus, DEX is expected to suppress the low level of cytokine production by
unstimulated microglial cells.

It has been reported that serum IL-6 and 8 levels were associated with delirium
severity [25]. Moreover, a proinflammatory molecule COX-2 is also upregulated and
induces prostaglandin E2 (PGE2), which promotes neuroinflammation and impairs mem-
ory function [26–28]. Interestingly, DEX inhibits LPS-induced production of PGE2 in
microglia [29,30]. The present study has indicated that DEX, which lowers the incidence of
delirium, suppresses inflammatory signals and suppresses the expression of inflammatory
molecules not only in LPS-stimulated cells but also in unstimulated cells. Thus, it can be
speculated that DEX may ameliorate neuroinflammation-mediated delirium by exhibiting
anti-inflammatory action on microglial cells possibly via the suppression of inflammatory
signaling and inflammatory molecule production.

The proposed model of the possible mechanism for the action of DEX against LPS-
induced inflammatory response in human microglia HMC3, is shown in Figure 4.
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DEX suppressed the IL-6 and IL-8 production by LPS-stimulated HMC3 cells as well as the phos-
phorylation of p38 MAPK and IκB and the nuclear translocation of NF-κB. 3; partial inhibition: �;
significant inhibition.

In conclusion, our observations suggest that DEX exhibits the anti-inflammatory action
on not only LPS-stimulated but also unstimulated microglial cells via the suppression of
inflammatory signaling and cytokine production.

4. Materials and Methods
4.1. Materials

Human microglial HMC3 cell lines (CRL-3304) were obtained from the ATCC (Manas-
sas, VA, USA); LPS was obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). Minimal
Essential Medium (MEM), non-essential amino acids (NEAA), sodium pyruvate and fetal
bovine serum (FBS) were all obtained from Gibco BRL Life Technologies (Grand Island,
NY, USA). In addition, phosphate-buffered saline (PBS), radio-immunoprecipitation assay
(RIPA) buffer, sample buffer solution containing reducing reagent for SDS-PAGE (6×),
running buffer solution for SDS-PAGE (10×), protease inhibitor cocktail, Blocking One,
WB Stripping Solutions Strong and Protein Ladder One Multicolor (Broad Range) for SDS-
PAGE were all purchased from Nacalai Tesque (Kyoto, Japan); ELISA kits of IL-6 and IL-8,
BCA (bicinchoninic acid) protein assay reagent kit, enhanced chemiluminescent reagent
(Super Signal West Dura), and NE-PER nuclear and cytoplasmic extraction reagents are
purchased from Thermo Fisher Scientific (Waltham, MA, USA); Mini-PROTEAN® TGX™
Precast Gel and Trans-Blot®, Turbo™ Mini PVDF Transfer Packs were purchased from
Bio-Rad Laboratories (Hercules, CA, USA). LDH cytotoxicity detection kit was purchased
from Takara Bio Inc. (Shiga, Japan).

4.2. Antibodies

The following antibodies were purchased from Cell Signaling Technology, Inc. (Dan-
vers, MA, USA); rabbit anti-phospho-ERK1/2 MAPK (Thr202/Tyr204) antibody (#9101),
rabbit anti-ERK1/2 MAPK antibody (#9102), rabbit monoclonal anti-phospho-NF-κB p65
(Ser536) antibody (#3033), rabbit monoclonal anti-NF-κB p65 antibody (#8242), rabbit
anti-phospho-IκBα (S32) antibody (#2859), rabbit IκBα (44D4) antibody (#44D4), rabbit
monoclonal anti-cyclooxygenase (COX) 2 (D5H5) XP antibody (#12282), and rabbit mon-
oclonal histone H3 antibody (D1H2) XP (#4499). In addition, rabbit anti-phospho p38
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MAPK antibody (Thr180/Tyr182) was obtained from Promega Corporation (Madison,
WI, USA) and mouse monoclonal anti-p38 MAPK (p38/SAPK2) antibody (#612168) was
obtained from BD Biosciences (San Jose, CA, USA). Mouse anti-α tubulin (p38/SAPK2)
antibody (#612168) was obtained from Thermo Fisher Scientific (Waltham, MA, USA), Anti-
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was obtained from Merck Millipore
(Burlington, MA, USA). Horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG
antibody (AP132P) and HRP-conjugated goat anti-mouse IgG/IgM antibody (AP308P)
were obtained from Chemicon International (Temecula, CA, USA).

4.3. Cell Culture

HMC3 cells were incubated in MEM supplemented with 10% heat-inactivated FBS, 1%
(v/v) penicillin/streptomycin, 1% (v/v) NEAA, and 1 mM sodium pyruvate. Cells were
maintained at 37 ◦C in a humidified 5% CO2 atmosphere.

4.4. Cell Treatment and Cytotoxicity Assay

HMC3 cells were plated into 12-well tissue culture plates (1 × 105 cells/well) and
cultured in MEM with 10% FBS for 12 h. Cells were incubated with or without 1000 nM
DEX for 30 min, and then stimulated with or without 100 ng/mL LPS for 24 h, based on the
previously published protocol [31,32]. The culture supernatants were then collected and
centrifuged at 12,000× g for 10 min, and LDH was measured using the LDH cytotoxicity
detection kit according to the manufacturer’s instructions (Takara Bio Inc., Shiga, Japan)
using an xMark™ microplate reader (Bio Rad, Hercules, CA, USA).

4.5. Preparation of Whole-Cell Lysates and Western Blots Analysis

HMC3 cells were plated into a 12-well tissue culture (1 × 105 cells/well) and incubated
in MEM containing 10% FBS for 12 h. Cells were incubated with or without 1000 nM DEX
for 30 min, and then stimulated with or without 100 ng/mL LPS for 15 min (for p38
MAPK, ERK1/2 and IκB) or 24 h (for COX-2). Thereafter, the cells were washed three
times with ice-cold PBS and lysed in 0.1 mL of RIPA buffer (50 mmol/l Tris-HCl pH 7.6,
150 mmol/l NaCl, 1% Nonidet P40, 0.5% sodium deoxycholate, 0.1% SDS) containing a
protease inhibitor cocktail. The protein concentration of the cell lysates was measured
using the BCA protein assay reagent. Lysates were mixed with sample buffer (62.5 mM Tris-
HCl, pH 6.8, 2% SDS, 10% glycerol, 0.05% bromophenol blue, and 5% 2-mercaptoethanol)
for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and applied
(10–20 µg of protein per lane) to 10% gels (Mini-PROTEAN® TGX™ Precast Gel). Proteins
were then electrotransferred onto polyvinylidene fluoride (PVDF) membranes (Trans-Blot®

Turbo™ Mini PVDF Transfer Packs). The membranes were incubated in Blocking One and
probed with rabbit anti-phospho p38 MAPK antibody, anti-phospho ERK1/2 antibody,
or anti-COX-2 antibody (all at 1:1000 dilution). The membranes were washed and then
probed with HRP-conjugated goat anti-rabbit IgG at 1:10,000 dilution. Detection was
performed using a Super Signal West Dura chemiluminescence substrate, and the signal
was quantified using a LAS-3000 luminescence image analyzer (Fujifilm, Tokyo, Japan)
and multi-gauge software (Fujifilm). Furthermore, the membranes were stripped using
WB stripping solution Strong at 37 ◦C for 15 min. After washing, the membranes were
proved with mouse anti-p38 MAPK antibody, rabbit anti-ERK1/2 antibody, rabbit anti-NF-
κB antibody, or rabbit anti-tubulin (all diluted receptor1:1000), and further probed with
HRP-labeled goat anti-mouse IgG/IgM or HRP-labeled goat anti-rabbit IgG at 1:10,000.
Finally, the signals were visualized and analyzed.

4.6. Preparation of Nuclear Extract and Western Blot Analysis

HMC3 cells were plated into 6-well tissue culture plates (5 × 105 cells/well) and
incubated in MEM supplemented with 10% FBS for 12 h. Cells were incubated with or
without 1000 nM DEX for 30 min and then stimulated with or without 100 ng/mL LPS
for 15 min. Thereafter, the cells were washed three times with ice-cold PBS and detached
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by trypsinization, collected in the medium, and subjected to centrifugation at 300× g for
5 min. Nuclear extract was prepared using NE-PER nuclear and cytoplasmic extraction
reagents kit, according to the manufacturer’s instructions. The cell pellet was suspended in
hypotonic buffer and was centrifuged at 14,000× g for 30 min. After the collection of the
supernatant (cytoplasmic fraction), the pellet (nuclear fraction) was lysed and solubilized
in a lysis buffer containing a protease inhibitor cocktail (nuclear extract). The concentration
was measured with BCA protein assay reagent. Nuclear extract was mixed with sample
buffer for SDS-PAGE and applied to a 10% gel, followed by Western blotting with a rabbit
anti-NF-κB antibody or rabbit anti-histone H3 antibody (both at 1:1000 dilution) and HRP-
conjugated goat anti-rabbit IgG (1:10,000 dilution), as described above.

4.7. Quantification of IL-6 and IL-8

HMC3 cells were plated into 12-well tissue culture plates (1 × 105 cells/well) and
incubated in MEM supplemented with 10% FBS for 12 h. Cells were incubated with or
without 1000 nM DEX for 30 min, and then stimulated with or without 100 ng/mL LPS for
24 h. The culture supernatants were then collected and centrifuged at 12,000× g for 10 min,
and IL-6 and IL-8 were measured using the ELISA kits according to the manufacturer’s
instructions (Thermo Fisher Scientific, Waltham, MA, USA) using an xMark™ microplate
reader (Bio-Rad, Hercules, CA, USA).

4.8. Statistical Analysis

The results are presented as mean ± SD. The significance of differences was determined
by multiple comparison tests and one-way ANOVA using the Tukey–Kramer method for
post hoc testing using GraphPad Prism version 6.0 for Windows (GraphPad Software, San
Diego, CA, USA). Statistical significance was found at p < 0.05.
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