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Recently, epidermal growth factor receptor (EGFR) was a key molecule in investigation of lung cancer, and it was a target for a new
therapeutic strategy, based on molecular analyses. In this review, we have summarized some issues considering the role of EGFR in
lung cancer, its coding gene, and its promoter gene polymorphisms (SNPs) -216G/T and -191C/A in non-small-cell lung cancer
(NSCLC). The position of the SNPs indicates their significant role in EGFR regulation. The accumulation of knowledge
regarding SNPs lately suggests their significant and important role in the onset of carcinogenesis, the prediction of the onset of
metastases, the response to therapy with TKI inhibitors, and the onset of toxic effects of the applied therapy. Based on this, we
suggest further studies of the relationship of clinical significance to SNPs in patients with lung tumors.

1. Non-Small-Cell Lung Cancer

Over the years, many scientific reports referred to lung
cancer as “the leading cause of death” worldwide [1–6].
Non-small-cell lung cancer (NSCLC) is the most common
form of lung cancer and accounts for about 85% of all
cases of cancer [7–10]. Classical chemotherapy has been a
major option for this type of tumor for many years, but
the mortality remained high. For this incurable disease,
the hope seems to lie in preventive medicine, i.e., various
education strategies about risk factors, introduction of
new programs for early cancer screening and early diag-
nostics, and providing equal chances for proper treatment
to all patients [6, 8].

Carcinogenesis is a multistep process that usually takes
many years to develop, as there are several mechanisms that
prevent it, including the immune system, antioxidative sys-
tem, and DNA repair mechanisms [11, 12]. The recent devel-
opment of new techniques and methods has increased the
knowledge of molecular mechanisms during carcinogenesis
[13–15]. These mechanisms, including increased gene ampli-
fication and protein expression, abnormal cell activation,

allelic disbalance, and epigenetic mechanisms [13–20], might
be just the top of the iceberg for all undiscovered interactions
and signaling networks that are present in cancer cells. Studies
in animal transgenic mice have shown that during carcino-
genesis, one of the important molecules is epidermal growth
factor receptor (EGFR) [13, 20].

2. Epidermal Growth Factor Receptor

Epidermal growth factor receptor (EGFR), usually being
overexpressed in many cancers, such as non-small-cell lung
cancer and colorectal and breast cancers [21], has drawn
scientists’ attention early. It is a transmembrane protein with
the N-terminal extracellular-ligand binding domain, trans-
membrane lipophilic domain, and C-terminal intracellular
tyrosine kinase (TK) domain. The binding of ligand to the
extracellular domain leads to formation of homo- or hetero-
dimers within the EGFR family and a subsequent activation
of the TK domain. In normal cells, it is a trigger molecule
for many important processes, including growth, develop-
ment, and differentiation. In altered cells, it conducts many
abnormal messages through a signaling network cascade,
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leading to carcinogenesis [22]. Binding of the adaptor pro-
teins such as Grb2 and Shc induces activation of three main
signaling pathways Ras/MAPK, PI3K/Akt, and JAK/STAT,
which in altered cells lead to uncontrolled proliferation,
angiogenesis, inhibition of apoptosis, invasion, metastasis,
and immortalization [13, 23, 24]. These key molecules of sig-
naling cascades might also be affected by gene mutations,
altering the process of carcinogenesis [13, 20, 25, 26].

In nontransformed cells, EGFR activation triggers
inhibitory mechanisms including dephosphorylation and
inactivation with inducible feedback inhibitors, acting as
tumor suppressors [27]. There are three main mechanisms
that lead to EGFR activation in malignant cells: increased
EGFR expression, increased ligand production, and the
presence of EGFR-activating mutations [21]. In NSCLC
with overexpressed EGFR, the inhibition of the receptor
signaling has been introduced as a targeted treatment, with
tyrosine kinase inhibitors (TKIs), such as gefitinib and
erlotinib, rendered optimal in carriers of EGFR-activating
mutations [21, 28, 29].

3. EGFR Gene Regulation

EGFR is located at the short arm of the chromosome 7
(7p11.2), spans about 200 kb, contains 28 exons, and encodes
a protein of 1210 amino acids [30]. Currently, the regulation
of EGFR expression is not completely understood, and differ-
ent factors have been proposed to have a role in the process.
Namely, most of the eukaryotes have regulatory elements for
binding transcription factors (so-called “TATA” and
“CAAT” sequences), located about 30–80 bp upstream of
the start transcription site [31, 32]. EGFRs’ 5′ region differs
from the 5′ region of the most of eukaryotes, as it has less
regulatory elements and high GC content in the promoter
region, providing multiple start sites for the initiation of
RNA transcription [31, 32].

EGFR promoter activation requires transcription factor
Sp1, for which multiple binding sites were discovered [31,
33–37]. EGFR transcription is upregulated by at least three
enhancers that act cooperatively: two of them localized
upstream, i.e., near the start transcription site, and the third
one in introne [38–40]. In the context of EGFR regulation,
different cis and trans elements are reviewed, including
TP53 (so-called “guardian of the genome”), p63, epidermal
growth factor (EGF) responsive DNA-binding protein 1
(ERDBP-1), early growth response factor 1 (Egr-1), EGFR-
specific transcription factor (ETF) (ETR–EGFR), cis-acting
EGF receptor transcriptional repressor, repressor regulatory
element in the first introne of EGFR, transforming growth
factor β (TGF-β), GC-binding factor (GCF), microsatellite
CA sequence, AP1, and AP2 [33, 34, 41–50].

4. EGFR Gene Amplification and
Overexpression in Tumors

Expression of EGFR is a complex process, and it differs in
normal and cancerous cells. Although the genetic mecha-
nism of EGFR protein overproduction is not completely
elucidated, it represents a very common event in different

tumors [21] and is usually associated with a more progres-
sive stage of disease, worse prognosis, and higher mortality
[51, 52]. In the literature, there is a certain controversy
concerning the correlation among EGFR gene amplification,
EGFR overexpression, and the efficacy of the TKI treatment.
Namely, while earlier investigations did not observe clear
relationship between EGFR expression and clinical outcomes
for the NSCLC patients treated with TKI [53, 54], succeeding
studies reported significant association of both high EGFR
gene copy number (due to gene amplification or chromo-
some polysomy) and high protein expression with better
response to gefitinib or erlotinib [55–57].

Some studies showed no correlation between EGFR gene
amplification and protein expression [58, 59], while others
reported the association [60–62]. It was observed that the
amplification of EGFR, as a result of gene rearrangement in
chromosome 7, leads to formation of aberrant RNA [60].
Several studies showed that EGFR amplification, as well as
EGFR-activating mutations, are associated with the increased
iRNA expression and in turn with a better therapy outcome
[55, 63, 64]. Described inconsistency in reports suggests that
EGFR genetic variations might play a role in both NSCLC
carcinogenesis and TKI therapy success.

5. EGFR Variations

The most common EGFR somatic mutations are positioned
in the TK domain, i.e., within exons 18 to 24 [30, 65]. These
mutations are clustered around the EGFR ATP-binding
pocket, affecting ATP affinity and altering sensitivity to TKIs
[65]. Most of them, including E746_A750del and L858R, are
classified as activating or “gain-of-function” mutations and
could be found in NSCLC patients that respond well to
gefitinib or erlotinib [66]. Others, such as T790M, usually
emerge later during the treatment, causing secondary resis-
tance to TKI therapy [67]. Currently, both are considered
pharmacogenetic biomarkers in oncology, which could help
in predicting the outcome of the treatment [68–70]. Yet, even
with the EGFR somatic mutation data, a part of the observed
interindividual difference in clinical response to gefitinib and
erlotinib remains unexplained.

There are numerous germline single nucleotide poly-
morpshisms (SNPs) found within EGFR [71], some already
associated with increased risk of certain tumors [72–74] or
with altered response to drug therapy [15, 19, 75–78]. Among
the best studied EGFR SNPs are -216G/T and -191C/A,
whose location within the EGFR promoter region indicates
their potential role in EGFR regulation. Namely, -216G/T
(rs712829) is placed within the transcription factor Sp1 bind-
ing site of the EGFR promoter, and -191C/A (rs712830) 4bp
upstream from one of the start transcription binding site
[32–34, 40, 75] (Figure 1). A low level of linkage disequilib-
rium (LD) that was observed between -216G/T and other
important EGFR SNPs suggests its independent role in gene
regulation, with G to T substitution resulting in significant
increase of both promoter activity and mRNA expression
[40, 79]. On the other hand, tight LD with other variations
and lower effect on EGFR activity have been described for
-191C/A [40, 70].
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6. Ethnicity and Variants of EGFR

Ever since the significance of EGFR variations for the clini-
cal response to therapy of lung cancer has been recognized
[63, 64, 80], they have been the subject of intense research
around the world. Based on the obtained results, modern
classification and diagnostics of the lung cancer are nowa-
days performed based on molecular analysis [81].

It has been observed that EGFR variants occur more fre-
quently in Asia, unlike KRAS mutations, which are more
common in Caucasians [82–84]. This suggests that there
are significant interethnic differences in the molecular basis
of carcinogenesis of the lung cancer. In addition, it was
shown that the frequency of EGFR mutations is also higher
in women, nonsmokers, and patients with adenocarcinoma,
as compared to other types of lung cancer [85]. In our study
from 2016, for the first time in our knowledge, the white
people in the Balkans have described the frequency
-216G/T and -191C/A, we found that the distribution of
these SNPs coincides with their distribution in the whites
from other areas [85]. Another investigation, which was
carried out in a Caucasian population from the Balkan coun-
try, also showed the correlation of EGFR polymorphisms
with the histological type of cancer, with the variant alleles
being the most frequent in adenocarcinoma [86].

On the other hand, the interethnic differences in inci-
dence, mortality, prognosis, and survival of NSCLC are
already known [87–89]. In most cases, these differences can
be associated with a different frequency of EGFR variations
[40, 88–94]. Although many polymorphisms and mutations
of EGFR have been described, the two polymorphisms of
the promoter region, namely, -216G/T and -191C/A, were

shown to be especially important [40], as they convey
ethnicity-dependent genetic susceptibility for lung cancer
[40, 90–94]. The frequencies of EGFR variations in different
ethnic populations are summarized in Table 1.

Based on the previous reports, there are interethnic dif-
ferences in frequency distribution of EGFR promoter SNPs.
Namely, in Caucasians and Afro-Americans, -216G/T is
much more frequent than in Asians [40, 94] while -191C/A
was detected almost only in Caucasians [40] and with
extremely low frequency in East Asians [94–99].

Furthermore, these polymorphisms have been associated
with the localization of tumor metastases. Namely, as the
process of cell proliferation and differentiation is strictly
related to EGFR, tumor metastasis should be affected by
variations in EGFR. In line with the expectations, significant
differences in genotype and allele frequencies of the -216G/T
polymorphism between the patient group with the pleural
metastasis in comparison with the nonmetastasis group have
been observed [100]. Based on these findings, the authors
have concluded that the polymorphism in exon 13 of the
EGFR gene might be one of the molecular mechanisms of
pleural metastasis of lung cancer.

Having in mind the importance of these polymorphisms
for the NSCLC therapy outcome, both ethnic background
and the cancer stage should be considered in making a deci-
sion on a proper treatment approach.

7. TKI and EGFR Variants

Tyrosine kinase inhibitors (TKIs) specifically bind to the
intracellular tyrosine kinase (TK) domain of the EGFR recep-
tor and thereby prevent the transmission of a signal directed
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Figure 1: EGFR gene location on chromosome 7 and functional characteristics of two SNPs -191C/A and -216G/T placed in the EGFR
promoter region.
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to the development of malignancy. In the NSCLC treat-
ment, first-generation TKIs include gefitinib and erlotinib,
the second generation TKI involves afatinib and dacomiti-
nib, and the third generation involves recently approved
osimertinib [101–106].

There are many reasons for obtaining resistance to
drugs used in targeted therapy. In regard to TKIs, one of
the possibilities includes EGFR wild-type allele amplifica-
tion, highlighting the importance of EFGR genotype for
the treatment efficacy [107].

Regarding safety, according to earlier in vitro data,
neither -216G/T nor -191C/A seems to be associated with
cytotoxicity of different TKIs, including erlotinib [79]. These
findings have been supported by few in vivo reports, where
correlation between any of the two EGFR promoter polymor-
phisms and the occurrence of skin rash or diarrhea with
gefitinib treatment was not detected [108, 109]. However,
numerous other studies involving advanced NSCLC patients
on gefitinib therapy demonstrated the opposite. Namely, a
higher response rate and prolonged progression-free and
overall survivals but also significantly higher risk of
treatment-related rash and diarrhea were observed in carriers
of at least one -216T allele [15, 110]. In similar studies on the
role of -216G/T and -191C/A polymorphisms in patients
with advanced NSCLC treated with gefitinib or erlotinib,
variant haplotypes were associated with the clinical benefit,
time to progression, and the overall survival [19, 109]

but also with the gastrointestinal and skin drug toxicities
[17, 111]. The similar association found between -216G/
T variant allele and the successful clinical response to
anti-EGFR monoclonal antibodies such as cetuximab or
panitumumab further supports the proposed role of EGFR
promoter polymorphism in therapy targeting NSCLC
patients [112].

8. Conclusion

EGFR is usually overexpressed in many epithelial cancers;
thus, the inhibition of its signaling pathway has been intro-
duced as a potential very successful treatment of NSCLS.
Yet, there are pronounced interindividual differences in
response to TKIs, with EGFR being among the most impor-
tant determinants. Although EGFR gene amplification, gene
mutation, and chromosome polysomy have all been associ-
ated with TKI therapy success, there is a part of the observed
interindividual difference in clinical response to therapy that
remained unexplained. EGFR SNPs -216G/T and -191C/A
discussed here are located in the promoter region of the
gene, which indicates their potential role in EGFR regula-
tion. The data from in vivo studies involving NSCLC
patients demonstrate that both these SNPs but especially
-216G/T affect efficacy and safety of the TKI treatment,
suggesting their importance in making a decision on a
proper therapy approach.

Table 1: EGFR -191C/A and -216G/T minor allele frequencies in lung cancer patients of different ethnicities.

Minor allele frequency
SNP Caucasians Asians African Americans Publication

rs712830 (-191C/A)

0.136 (6/44) 0.000 (0/46) 0.000 (0/48) Liu et al. [40]

0.114 (37/324) NA NA Cusatis et al. [95]

NA 0.000 (0/54) NA Choi et al. [90]

0.071 (13/184∗) NA NA Liu et al. [15]

0.099 (19/192) NA NA Giovannetti et al. [17]

0.128 (85/662) NA NA Winther Larsen et al. [78]

0.226 (19/84) NA NA Obradović et al. [85]
NA 0.035 (9/260) NA Bashir et al. [96]

rs712829 (-216G/T)

0.318 (14/44) 0.071 (3/46) 0.292 (14/48) Liu et al. [40]

0.444 (144/324) NA NA Cusatis et al. [95]

NA 0.040 (2/54) NA Choi et al. [90]

0.400 (73/184∗) NA NA Liu et al. [15]

0.440 (144/328) NA NA Gregorc et al. [109]

0.401 (77/192) NA NA Giovannetti et al. [17]

NA 0.020 (23/1128) NA Dong et al. [97]

NA 0.050 (14/282) NA Liu et al. [98]

NA 0.056 (8/142) NA Jung et al. [19]

NA 0.283 (361/1276) NA Guo et al. [99]

0.326 (216/662) NA NA Winther Larsen et al. [78]

NA 0.130 (60/460) NA Zhang et al. [110]

0.310 (26/84) NA NA Obradović et al. [85]
NA 0.287 (491/856) NA Guo et al. [100]

NA 0.596 (155/260) NA Bashir et al. [96]

NA: not available; ∗ population mainly Caucasian.
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