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Abstract: The bacterium Wolbachia (order Rickettsiales) is
probably the world’s most successful vertically-transmit-
ted symbiont, distributed among a staggering 40% of
terrestrial arthropod species. Wolbachia has great poten-
tial in vector control due to its ability to manipulate its
hosts’ reproduction and to impede the replication and
dissemination of arboviruses and other pathogens within
haematophagous arthropods. In addition, the unexpected
presence of Wolbachia in filarial nematodes of medical
and veterinary importance has provided an opportunity
to target the adult worms of Wuchereria bancrofti,
Onchocerca volvulus, and Dirofilaria immitis with safe
drugs such as doxycycline. A striking feature of Wolbachia
is its phenotypic plasticity between (and sometimes
within) hosts, which may be underpinned by its ability
to integrate itself into several key processes within
eukaryotic cells: oxidative stress, autophagy, and apopto-
sis. Importantly, despite significant differences in the
genomes of arthropod and filarial Wolbachia strains, these
nexuses appear to lie on a continuum in different hosts.
Here, we consider how iron metabolism may represent a
fundamental aspect of host homeostasis that is impacted
by Wolbachia infection, connecting disparate pathways
ranging from the provision of haem and ATP to
programmed cell death, aging, and the recycling of
intracellular resources. Depending on how Wolbachia and
host cells interact across networks that depend on iron,
the gradient between parasitism and mutualism may shift
dynamically in some systems, or alternatively, stabilise on
one or the other end of the spectrum.

Introduction

Wolbachia, an a-proteobacterium in the order Rickettsiales, has

stimulated intense research interest in recent decades for four main

reasons. First, it is a remarkably prevalent symbiont of inverte-

brates that has been described as driving a ‘‘pandemic’’ across

terrestrial habitats, with an estimated 40% of arthropods (i.e., .1

million species) infected worldwide [1]. Second, Wolbachia
employs a range of reproductive manipulations to drive itself by

vertical transmission through arthropod populations, which could

be exploited for the control of pests of medical, veterinary, or

agricultural importance [2,3]. Third, Wolbachia is an obligate

mutualist of several filarial parasites that have a major medical or

veterinary impact (e.g., Wuchereria bancrofti, Onchocerca volvu-
lus, and Dirofilaria immitis), and elimination of these symbionts

using antibiotics can sterilise or even kill the nematode host [4,5].

Finally, recent research has demonstrated that Wolbachia can

interfere with the dissemination and transmission of coinfecting

microorganisms in arthropods, including arboviruses and other

pathogens in mosquitoes [6]. Thus, for these latter two charac-

teristics in particular, the biology of Wolbachia is highly relevant to

the control of neglected tropical diseases.

The identification of endobacteria in filarial parasites as

Wolbachia in the mid-1990s [7] had a far-reaching impact on

the study of these symbionts, as clearance of the infection with

antibiotics had dramatic, deleterious effects on the nematodes [4].

Importantly, obligate host–Wolbachia relationships had not been

observed in any arthropod system at that time. However, it is now

known that in a small, but diverse, selection of arthropod hosts,

Wolbachia is essential for a wide range of reproductive processes.

These include egg hatching in the collembolan Folsomia candida
[8], oogenesis in the parasitic wasp Asobara tabida [9], nymphal

development in the bedbug Cimex lectularius [10], and mate

discrimination in Drosophila paulistorum [11]. Moreover, for both

obligate and facultative Wolbachia symbioses, the lines between

parasitism and mutualism have become increasingly blurred

(Figure 1). For instance, in some populations of Asobara japonica,

Wolbachia induces a type of parthenogenesis called thelytoky and

has become indispensable for the production of female offspring

[12]. Conversely, other populations of A. japonica reproduce by a

second form of parthenogenesis, arrhenotoky, and do not require

Wolbachia. In the facultative association of Wolbachia strain wPip

with the mosquito Culex pipiens, crosses between an infected male

and an uninfected female, or a male and a female carrying

different variants of wPip, are rendered infertile by a phenomenon

termed ‘‘cytoplasmic incompatibility.’’ However, despite this

reproductive parasitism phenotype, the presence of wPip can also

benefit C. pipiens by reducing mortality associated with Plasmo-
dium relictum infection [13]. Finally, the discovery of transfers of

Wolbachia DNA into the nuclear genomes of nematodes that lack

live, cytoplasmic infections suggests that either transient encoun-

ters with Wolbachia can leave their mark on the host genome, or

that mutualistic relationships can break down over evolutionary

timescales [14,15].

These considerations point to a remarkable malleability in

Wolbachia–host interactions, and it is this characteristic of

Wolbachia that appears to set it apart from other heritable

symbionts. In this review, we do not intend to examine the

Citation: Gill AC, Darby AC, Makepeace BL (2014) Iron Necessity: The Secret of
Wolbachia’s Success? PLoS Negl Trop Dis 8(10): e3224. doi:10.1371/journal.pntd.
0003224

Editor: Mathieu Picardeau, Institut Pasteur, France

Published October 16, 2014

Copyright: � 2014 Gill et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Funding: ACG was supported by a Veterinary Academic Clinical Fellowship from
the Institute of Infection & Global Health, University of Liverpool http://www.liv.
ac.uk/infection-and-global-health/athena-swan/initiatives/. BLM acknowledges
funding support from the European Commission (contracts INCO-CT-2006-
032321 and HEALTH-F3-2010-242131) http://cordis.europa.eu/fp7/home_en.
html. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests
exist.

* E-mail: blm1@liverpool.ac.uk

PLOS Neglected Tropical Diseases | www.plosntds.org 1 October 2014 | Volume 8 | Issue 10 | e3224

http://creativecommons.org/licenses/by/4.0/
http://www.liv.ac.uk/infection-and-global-health/athena-swan/initiatives/
http://www.liv.ac.uk/infection-and-global-health/athena-swan/initiatives/
http://cordis.europa.eu/fp7/home_en.html
http://cordis.europa.eu/fp7/home_en.html
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0003224&domain=pdf


mechanics of vertical transmission by Wolbachia, nor the many

hypotheses that have been developed to account for its ability to

manipulate arthropod reproduction. Instead, we will survey the

fundamental cellular processes that are known to be affected by

Wolbachia infection and will focus on the intriguing interactions of

this symbiont with iron-dependent pathways (Box 1), highlighting

how manipulation of iron metabolism could underpin Wolbachia’s

unmatched success in both arthropods and filariae.

Haem and Iron Metabolism

A universal feature of all Wolbachia genomes sequenced to date

[16–28] is the presence of all but one of the enzymes required to

synthesise the iron-containing cofactor haem. This porphyrin is

required for several essential cellular processes, including aerobic

Figure 1. Selected examples of phenotypes resulting from natural Wolbachia symbioses. Wolbachia produces a large spectrum of
phenotypes in their hosts ranging from parasitic to mutualistic traits existing as either facultative relationships or associations that have evolved to
become obligate. Reproductive parasitism by Wolbachia is well recognised. For example, in the ladybird Adalia bipunctata, infection results in death
of infected males during development to the benefit of female siblings (male killing) [72]; in the woodlouse Armadillidium vulgare, infection causes
development of infected genetic males into females (feminisation) [73]; and in the mosquito Culex pipiens, Wolbachia strain wPip produces
cytoplasmic incompatibility (CI), in which crosses between infected males and uninfected females result in embryonic death. Wolbachia symbioses
may also provide benefits to the host, such as increases in fecundity and longevity in Drosophila melanogaster [74]. In some species, mutualistic traits
coexist with reproductive phenotypes, such as in Culex pipiens, where the CI-inducing strain wPip also provides protection from mortality associated
with Plasmodium relictum [13]. In some host species, all individuals are infected and this association is often mutualistic, as in the bedbug Cimex
lectularius in which Wolbachia supplies essential B vitamins [10], or in the filarial parasite Onchocerca ochengi, where the presence of the bacteria is
associated with the vertebrate host mounting an ineffective immune response [75]. However, in the parasitic wasp Asobara tabida, strain wAtab3 is
essential for oogenesis, making the relationship obligatory without any known benefits to the host [43].
doi:10.1371/journal.pntd.0003224.g001

Box 1. Methods

A literature search was performed in the Medline and Web
of Science databases to identify original research articles
that provided an insight into the effect of Wolbachia
infection on iron metabolism, autophagy, apoptosis, and
oxidative stress. The search term ‘‘Wolbachia’’ was used in
combination with any of the following: ‘‘iron,’’ ‘‘autopha-
gy,’’ ‘‘apoptosis,’’ ‘‘programmed cell death,’’ ‘‘oxidat*,’’ and
‘‘antioxidant.’’ In addition, recent relevant articles outside
the Wolbachia field on haem synthesis, ferritins, and the
interplay between iron, autophagy, oxidative stress, and
apoptosis were identified by combining the respective
search terms, but with ‘‘Wolbachia’’ omitted.
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energy production, since it acts as a prosthetic group for most

enzymes of the electron transport chain (Figure 2). Accordingly,

an exogenous source of haem is necessary for complete

development in the nematode Caenorhabditis elegans [29]. The

missing haem synthesis gene in Wolbachia is protoporphyrinogen

oxidase, encoded by hemG or hemY in other bacteria [30].

Although Wolbachia does contain genes with hemY-like domains

[27], they are truncated by a frameshift mutation in some strains

[26], and their function in haem synthesis has not been proven

experimentally. However, complementation experiments have

recently confirmed the existence of a further protoporphyrinogen

oxidase, HemJ, in the a-proteobacterium Rhodobacter sphaeroides
[31] and in the c-proteobacterium Acinetobacter baylyi [32]. This

gene has a homologue in most proteobacteria [31], including all

sequenced Wolbachia strains, providing the missing link for de

novo haem synthesis (Figure 3).

The concurrent absence of most haem synthesis enzymes in

filariae gave rise to the hypothesis that Wolbachia has a vital role in

providing this nutrient to the filarial host [16]. However, it has

been shown that in adult Onchocerca ochengi tissues, the

expression of Wolbachia haem biosynthesis enzymes is low, both

at the protein and transcript levels. This makes an essential role for

the provision of this metabolite by Wolbachia less likely, at least in

this lifecycle stage [27]. It should also be noted that, in common

with most bacteria, retention of the haem synthesis pathway is not

unusual amongst the Rickettsiales [30]. At the same time, the

pathway is universally absent from nematode genomes [33],

including Wolbachia-negative species such as the filarial parasite

Loa loa [33], suggesting that this species must take up haem from

its hosts. It therefore seems possible that Wolbachia-containing

filariae are also able to obtain haem from an exogenous source.

There is evidence that Litomosoides sigmodontis [34] and O.

Figure 2. Iron metabolism and related pathways in Wolbachia. Iron uptake through the Wolbachia outer membrane may occur through a
nonspecific outer membrane porin (OMP), from where it is transported across the periplasm by ferric binding protein (FBP), part of an iron ATP-
binding cassette transporter system (Fe ABC-T) that moves iron into the bacterial cytosol. A major destination for iron within the bacterial cell is
respiratory chain proteins, which contain iron in the form of iron–sulphur clusters (Fe-S) and haem: NADH dehydrogenase I (NDH-I), succinate
dehydrogenase (SDH), cytochrome C reductase (CcR) and cytochrome C oxidase (CcO). The numbers of each of these cofactors per monomer are
indicated on the relevant proteins. Wolbachia may export ATP generated via the electron transport chain to the host cytoplasm, possibly through a
major facilitator superfamily transporter (MFS) in the inner membrane. Electron leakage from the respiratory chain generates hydrogen peroxide
(H2O2). Most of this is removed by antioxidants, but some diffuses into the lysosomal compartment, where it reacts with iron to produce hydroxyl
radicals. This highly reactive molecule damages the lysosomal membrane and, if sufficiently severe, apoptosis of the host cell results.
doi:10.1371/journal.pntd.0003224.g002
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volvulus [35] ingest erythrocytes from their vertebrate hosts,

which would provide a rich source of haem. Further, the presence

of iron-containing storage granules in the intestinal epithelium of

O. volvulus [36] indicates the digestion of iron-containing

proteins, most likely haemoglobin.

Nevertheless, an ability to take up haem would not preclude

provision by Wolbachia, particularly at times in the lifecycle when

demand is high, as is likely to be the case during moulting and

embryogenesis in filarial nematodes [16]. There are precedents for

provision of haem by an endosymbiont to its host: certain species

of insect trypanosomatids can be cultivated in haem-deficient

media if their endosymbiotic bacteria are intact. However, the

addition of haem (or its immediate precursor) becomes necessary

for growth when the symbionts are removed by antibiotic

treatment [37]. Whether Wolbachia provides haem to filariae is

more difficult to prove because of the obligatory nature of the

symbiosis. Several studies have set out to further characterise the

importance of haem with the use of inhibitors. Inhibition of the

haem synthesis enzyme 5-aminolevulinate dehydratase (ALAD;

Figure 3) results in adverse effects in both Brugia malayi [38] and

L. sigmodontis [39]. These results would support an essential role

for Wolbachia haem synthesis for survival of the filarial host.

However, a nonspecific effect cannot be ruled out since

Wolbachia-negative species are also affected [38,39]. This is less

marked compared with Wolbachia-positive nematodes, but may be

explained by additional toxic effects of the ALAD substrate [39],

which is likely to accumulate in these species. Disruption of haem

synthesis with another inhibitor, N-methyl mesoporphyrin

(NMMP) which acts on ferrochelatase (Figure 3), has also been

studied. NMMP reduces the motility of B. malayi in vitro, even if

the medium is supplemented with haem [38]. However, the

interpretation of these results is not straightforward since the

genome of not only Wolbachia, but also that of B. malayi, encodes

a functional ferrochelatase that is inhibited by NMMP [40,41].

Furthermore, NMMP causes a similar reduction in motility and

viability of B. malayi, regardless of whether or not they are

pretreated with antibiotics to reduce Wolbachia numbers [41],

implying that the effect of NMMP is largely on the filarial enzyme.

Current evidence is insufficient to draw any definitive conclu-

sions as to whether or not Wolbachia supplies haem to the filarial

Figure 3. The proposed haem synthesis pathway in Wolbachia, showing structural intermediates. Enzymes are represented by red boxes,
which contain the protein name in Wolbachia and the abbreviated enzyme name: ALAS, 5-aminolevulinate synthase; ALAD, 5-aminolevulinate
dehydratase; PBGB, porphobilinogen deaminase; UROS, uroporphyrinogen III synthase; UROD, uroporphyrinogen III decarboxylase; CPO,
coproporphyrinogen III oxidase; PPO, protoporphyrinogen IX oxidase; FC, ferrochelatase. Inhibitors of the pathway are represented by blue boxes,
for which abbreviations used are as in the text.
doi:10.1371/journal.pntd.0003224.g003
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host. However, the ability to produce haem may have far wider

importance in the symbiosis. In other a-proteobacteria such as

Rhizobium, the regulation of iron metabolism is closely linked with

the haem synthesis pathway [42]. Although Wolbachia lacks the

iron response regulator (Irr) that mediates the effects of iron on

gene expression in these bacteria [42], there is evidence that it is

able to regulate the expression of iron-related genes in response to

external stressors [43,44]. This ability may underlie the observed

fitness benefit of Wolbachia infection in insects reared under

conditions of iron limitation [45], as well as iron overload [43,45].

The former is likely to reflect conditions found in the wild,

providing one possible mechanism for the apparent ease with

which Wolbachia invades insect populations in nature.

Iron and Oxidative Stress

When ferroproteins such as cytochromes are degraded by

lysosomes through the process of autophagy, iron accumulates

within the organelle. This iron is potentially toxic to cells, as it

reacts with hydrogen peroxide to produce highly reactive hydroxyl

radicals (the Fenton reaction) leading to lysosomal membrane

permeabilisation and leakage of contents, which damages proteins

and other cellular components (Figure 2) [46]. Cells employ a

number of mechanisms to prevent oxidative damage, and

Wolbachia infection appears to play a part.

In the parasitoid wasp A. tabida, iron overload disrupts

development leading to reduced emergence of adults. However,

this is ameliorated by Wolbachia, which up-regulate transcription

of bacterioferritin [43]. Bacterioferritins are haemoproteins that

act as iron stores and, under high iron concentrations, protect the

cell from redox stress [47]. This could explain the observed

protective effect in this symbiosis and provides a possible basis for

the evolution of dependence of A. tabida on Wolbachia. An

increase in Wolbachia bacterioferritin expression was also observed

in Drosophila simulans flies fed on a high iron diet [43]. Hence,

bacterioferritins may provide a means of combating iron-mediated

oxidative stress in some Wolbachia symbioses, but not in others, as

the gene is absent from several strains, including the endosymbi-

onts of O. ochengi [27] and D. immitis [25].

There is also experimental evidence to suggest that infection with

Wolbachia modulates redox homeostasis by altering the levels of

reactive oxygen species (ROS) and affecting the expression of host

antioxidants, which may have implications for host immunity [48–

52]. However, the processes involved appear to be complex, with

the net result depending on the Wolbachia and host strains being

investigated, as well as other factors including diet. For example, in

Aedes spp. mosquitoes, ingestion of haem leads to a decrease in

ROS levels in the midgut via protein kinase signalling, which has

been associated with decreased resistance to infection and increased

mortality [53]. This decrease in ROS does not occur in Aedes
polynesiensis mosquitoes infected with a native Wolbachia strain,

suggesting manipulation of host cell signalling. However, infection

with a non-native Wolbachia strain fails to produce this effect,

implying that ROS homeostasis may be a process that has evolved

over time in the natural symbiosis with A. polynesiensis [54]. The

ingestion of an iron-rich blood meal clearly has an effect on ROS

homeostasis that is altered by Wolbachia infection, but the

underlying mechanisms remain largely unknown.

One mechanism by which Wolbachia is likely to contribute to

oxidative stress is through generating ROS as by-products of

aerobic metabolism (facilitated by high levels of lysosomal iron,

Figure 2). Wolbachia retains key pathways for the synthesis of

nucleotides [55], and their component enzymes are highly

expressed by the Wolbachia endosymbiont (wOo) in adult O.

ochengi filariae [27]. This supports the hypothesis that a major

contribution of Wolbachia to the filarial host could be the

provision of nucleotides, and the prominence of ATP synthase

in both the transcriptome and proteome of wOo suggests that the

most important of these is ATP generated via the electron

transport chain (Figure 2) [27]. Accordingly, targeting Wolbachia
with antibiotics results in up-regulation of components of the

mitochondrial respiratory chain in L. sigmodontis [56]. Further-

more, doxycycline treatment of an insect cell line increased

expression of elements of the Wolbachia electron transport chain,

suggesting that the bacterium may be attempting to maintain

adequate levels of energy production. In the same study,

bacterioferritin and ppnK were up-regulated by doxycycline

treatment, whereas Wolbachia genes involved in the assembly of

iron–sulphur clusters were down-regulated, which is consistent

with an attempt to limit oxidative stress [44].

Apoptosis

Another major host cellular process that has been found to be

affected profoundly by Wolbachia is apoptosis. Apoptosis, or

programmed cell death, is an evolutionarily conserved pathway

that has been shown to play an important role in normal

development and survival of a wide range of multicellular

organisms. Oxidative stress can lead to apoptotic cell death by

initiating lysosomal membrane permeabilisation. This process is

thought to be facilitated by lysosomal iron, which encourages the

formation of free radicals (Figure 2) [46]. Several studies have

shown an effect of Wolbachia on apoptosis. In B. malayi, depletion

of the bacteria results in widespread apoptosis in the adult germ

line; thus, an early effect of antibiotics on filaria is disruption of

embryogenesis [57]. Similarly, in Drosophila mauritiana, loss of

Wolbachia results in increased apoptosis in the germarium and

reduced egg production [58], while in A. tabida, ovarian nurse cell

apoptosis is so extensive that the endosymbiont has become

indispensable for survival of the species [59]. In these insects,

apoptosis is an important regulatory mechanism that is tightly

controlled to allow normal oogenesis. However, the removal of

Wolbachia, which occurs at high density in the ovaries, leads to

dysregulation of this process. These observations imply that

Wolbachia has an inhibitory effect on apoptosis. Accordingly, a

major Wolbachia outer membrane protein inhibits neutrophil

apoptosis in vitro [60], and analysis of host gene expression

indicates that Wolbachia suppresses apoptosis in the bacteriome of

a species of weevil [61]. Recent work has shown that the degree of

dependence on Wolbachia for oogenesis in A. tabida varies greatly

between populations and that this correlates with host ferritin

expression [62], indicating that there could be a shared

mechanism for interference with these host functions. Wasps that

were unable to produce any eggs without Wolbachia showed

significant increases in ferritin expression when cleared of their

bacteria, while those with a lesser degree of dependence (i.e., those

that were still able to produce some eggs) did not [62].

Interestingly, the effect of Wolbachia on apoptosis is not always

inhibitory, as the pathogenic laboratory strain wMelPop induces

apoptosis in the ovaries of Drosophila melanogaster [63]. It appears

that the extensive apoptosis seen in the obligate mutualisms

described above is caused by disruption of a complex system of

crosstalk between the host and Wolbachia, the net result of which

is influenced by coevolved host and symbiont factors.

Autophagy

Finally, recent studies have uncovered intriguing interactions

between autophagy and Wolbachia infection. Autophagy is the
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process by which cells sequester defunct or superfluous organelles

and cytosolic components and deliver them to lysosomes for

digestion. As such, autophagy represents an important repair

mechanism that is particularly active during periods of increased

cellular damage such as oxidative stress. As discussed earlier,

autophagy provides a mechanism for scavenging iron from

respiratory chain components, and lysosomes also provide the

necessary acidic environment to liberate iron from ferritin.

Moreover, oxidative damage of autophagocytosed macromole-

cules by intralysosomal iron leads to the production of lipofuscin, a

marker of cellular aging [46]. In one study on the nematode B.
malayi, antibodies directed at an autophagy-related protein

(ATG8a) stained Wolbachia-rich regions. Furthermore, pharma-

cological triggers of autophagy resulted in loss of Wolbachia, while

inhibition of autophagy increased bacterial numbers. Similar

effects on arthropod Wolbachia strains were observed in D.
melanogaster and insect cell lines [64]. Apart from having an

important function in cellular homeostasis, autophagy also

provides eukaryotes with a defence mechanism against pathogen

invasion [65]. Accordingly, genetic inactivation of autophagy in C.
elegans and D. melanogaster leads to dramatically reduced

resistance to bacterial invasion [66,67]. In light of this, the fact

that Wolbachia levels are controlled by autophagy in diverse host

species is perhaps not surprising. Like all would-be invaders, the

bacteria will have had to evolve mechanisms to counteract

autophagy and prevent complete removal from the host cell. In

contrast to Wolbachia, in the closely related bacterium Anaplasma
phagocytophilum, activation of autophagy enhances bacterial

growth and inhibition of the pathway leads to reversibly arrested

bacterial growth [68]. Wolbachia’s strategy for survival is clearly

different. It is likely that the symbiont dampens the autophagic

response in order to survive and replicate intracellularly, but,

unlike Anaplasma, it does not subvert the process. Intuitively, this

would seem more conducive to the infection evolving into a

relatively stable symbiosis and developing mutualistic traits. This

strategy makes sense considering that, in contrast to Anaplasma,

Wolbachia is predominantly vertically transmitted, and its survival

is therefore intricately linked to survival of the host. A study on the

transcriptome of the woodlouse Armadillidium vulgare found that

two autophagy-associated genes were down-regulated in the

ovaries of symbiotic animals, which supports the theory that

Wolbachia actively suppresses autophagy to prevent its elimination

[69]. Interestingly, this mechanism appears to fail in a related

species when transfected with this Wolbachia strain, causing

catastrophic levels of autophagy that result in death of the host

[70]. This suggests that the observed tolerance in A. vulgare, the

natural host of this Wolbachia strain, may be due to adaptive

coevolution.

Conclusions and Future Directions

Although there are significant differences in the genomes of

arthropod and filarial Wolbachia strains and the phenotypes that

they induce in different hosts, there appear to be a remarkable

number of similarities in how Wolbachia interacts with these hosts

at the molecular level. There is evidence that Wolbachia is able to

alter host gene expression [71] and regulate its own transcriptome

in response to external factors [44], but very little is known about

how it achieves this. Future efforts should be directed at

attempting to gain a better understanding of these host–symbiont

interactions, which may ultimately lead to advances in our ability

to manipulate the symbiosis and reduce disease burden in humans

and animals. This process will be facilitated by moving beyond the

traditional separation of Wolbachia associations into mutualistic

and parasitic, but considering them as variations on a theme.

The centrality of iron metabolism to energy production,

oxidative stress, aging, autophagy, and apoptosis adds an

additional level of complexity to the Wolbachia–host symbiosis
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N The interplay between Wolbachia and iron metabolism
occurs across the full range of host phenotypes, from
reproductive parasitism (facultative) to nutrient provi-
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that needs to be considered when interpreting the results of

experiments manipulating any one of these processes. A number of

priorities for future research can be identified, including: (a) the

possible interaction of Wolbachia with lysosomes, and whether

symbiont turnover provides a source of iron to host cells when this

nutrient becomes limiting, (b) the role of Wolbachia in inhibiting or

promoting cellular aging in different hosts, (c) metabolic flux

analysis of aerobic respiration in infected and uninfected cells, and

(d) the potential importance of iron toxicity in antibiotic-mediated

killing of Wolbachia-infected filariae. Finally, it should be noted

that many experiments investigating the role of Wolbachia in the

symbiosis have employed antibiotics to eliminate the bacteria.

However, antibiotics effective against Wolbachia may disrupt

mitochondrial function, which also has critical roles in apoptosis,

autophagy, and iron metabolism [46]. Unravelling the relationship

of the host cell with Wolbachia from that with mitochondria is a

major challenge that needs to be addressed in future studies.
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18. Ellegaard KM, Klasson L, Näslund K, Bourtzis K, Andersson SGE (2013)
Comparative genomics of Wolbachia and the bacterial species concept. PLoS

Genet 9: e1003381.

19. Klasson L, Westberg J, Sapountzis P, Näslund K, Lutnaes Y, et al. (2009) The
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