OMICS DATA SETS

Transcriptome Sequencing Data of *Bacillus anthracis* Vollum $\Delta htrA$ and Its Parental Strain, Isolated under Oxidative Stress

[®] Theodor Chitlaru,^a Inbar Cohen-Gihon,^a Ofir Israeli,^a Uri Elia,^a Galia Zaide,^a Ma'ayan Israeli,^a Adi Beth-Din,^a Shirley Lazar,^a Sharon Ehrlich,^a [®] Anat Zvi,^a Ofer Cohen^a

^aDepartment of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel

ABSTRACT The high-temperature requirement chaperone/protease (HtrA) is involved in the stress response of the anthrax-causing pathogen *Bacillus anthracis*. Resilience to oxidative stress is essential for the manifestation of *B. anthracis* pathogenicity. Here, we announce transcriptome data sets detailing global gene expression in *B. anthracis* wild-type and *htrA*-disrupted strains following H_2O_2 -induced oxidative stress.

The Gram-positive spore-forming obligate pathogen *Bacillus anthracis* is the etiological cause of anthrax. The lethality of *B. anthracis* is attributed to its exotoxins and its optimal adaptation to tolerate stress constraints encountered in the course of infection (1). Proteomic/serologic surveys of *B. anthracis* (1–3) showed that the secreted protease/chaperone high-temperature requirement (HtrA) (involved in protein synthesis quality control and necessary for tolerance to heat, oxidative, and other stress regimens) belongs to a class of immunogenic vaccine and disease biomarker candidates (4). Virulence-attenuating *htrA* gene disruption was implemented for the development of a live spore vaccine (5–7). Recently, we suggested that HtrA acts as both a protease/chaperone and a pleiotropic factor of gene expression (8). Here, we present transcriptome sequencing (RNA-seq) data sets describing the effect of *htrA* gene disruption on the global gene expression of *B. anthracis* in the presence/absence of H_2O_2 .

B. anthracis parental strain Δ Vollum (acapsular and nontoxinogenic, referred to in this report as wild type [WT]) and an htrA-disrupted strain, in biological triplicate or duplicate cultures (14 sets of data, as detailed in Table 1), were grown in brain heart infusion broth at 37°C to mid-log phase and split into twin cultures in the presence or absence of $3 \text{ mM H}_2\text{O}_2$. Cells were collected from the initial culture before treatment (Table 1, samples 1 and 2) and 10 min after treatment (Table 1, without H_2O_2 , samples 3 and 5; with H_2O_2 , samples 4 and 6). Total RNA was extracted using the RNeasy kit (Qiagen), and residual DNA was digested using RNase-free DNase (Qiagen). RNA-seq was performed in-house (IIBR, Ness Zionna, Israel). Libraries were generated using the TruSeq RNA library prep kit version 2 (Illumina), assessed for correct sizing using a high-sensitivity Bioanalyzer DNA chip (Agilent), quantified by quantitative PCR (qPCR), and normalized to 2 nM. Pooling and clustering of libraries were performed using the Illumina cBot system; 35-bp single-end sequencing was performed on the Illumina Genome Analyzer IIx system with TruSeq sequencing-by-synthesis (SBS) kit version 2 reagents. FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc) was used for quality control of the data. Reads were mapped to the B. anthracis Ames Ancestor reference genome (GenBank accession number NC_007530) using Novoalign, version 3.02.07. The HTSeq software (9), version 0.6, was used to quantify the number of reads mapped to each gene. Sequencing yielded 4.3 million to 11.9 million reads (Table 1) with a mapping percentage that ranged from 89.3% to 99.5%. An analysis of differen-

Citation Chitlaru T, Cohen-Gihon I, Israeli O, Elia U, Zaide G, Israeli M, Beth-Din A, Lazar S, Ehrlich S, Zvi A, Cohen O. 2020. Transcriptome sequencing data of *Bacillus anthracis* Vollum *AhtrA* and its parental strain, isolated under oxidative stress. Microbiol Resour Announc 9:e00618-20. https://doi.org/10.1128/MRA .00618-20.

Editor Irene L. G. Newton, Indiana University, Bloomington

Copyright © 2020 Chitlaru et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Theodor Chitlaru, theodorc@iibr.gov.il.

Received 2 June 2020 Accepted 31 July 2020 Published 27 August 2020

TABLE 1 Summary o	transcriptome samp	les in this study ^a
-------------------	--------------------	--------------------------------

Sample ^b	Significance	No. of reads	% mapped reads ^c	SRA accession no.	GEO accession no.
1a	WT before treatment with H_2O_2	8,753,632	99.3	SAMN15018196	GSM4568574
1b	WT before treatment with H_2O_2	4,341,085	99.5	SAMN15018194	GSM4568575
2a	$\Delta htrA$ before treatment with H_2O_2	11,953,954	99.2	SAMN15018192	GSM4568576
2b	$\Delta htrA$ before treatment with H_2O_2	8,344,835	99.2	SAMN15018191	GSM4568577
3a	WT in the absence of H_2O_2 (WT noninduced control)	7,481,324	92.5	SAMN15018189	GSM4568578
3b	WT in the absence of $\rm H_2O_2$ (WT noninduced control)	8,944,123	97.2	SAMN15018187	GSM4568579
4a	WT 10 min after treatment with 3 mM H_2O_2	7,716,866	93.3	SAMN15018185	GSM4568580
4b	WT 10 min after treatment with 3 mM H_2O_2	8,398,131	99.2	SAMN15018181	GSM4568581
4c	WT 10 min after treatment with 3 mM H_2O_2	9,706,981	92.0	SAMN15018200	GSM4568582
5a	$\Delta htrA$ in the absence of H ₂ O ₂ ($\Delta htrA$ noninduced control)	8,799,194	95.8	SAMN15018198	GSM4568583
5b	$\Delta htrA$ in the absence of H_2O_2 ($\Delta htrA$ noninduced control)	9,429,758	96.1	SAMN15018203	GSM4568584
ба	$\Delta htrA$ 10 min after treatment with 3 mM H ₂ O ₂	7,632,366	89.3	SAMN15018205	GSM4568585
6b	$\Delta h t r A$ 10 min after treatment with 3 mM H_2O_2	6,270,715	91.2	SAMN15018202	GSM4568586
6с	$\Delta h tr A$ 10 min after treatment with 3 mM $H_2 O_2$	8,221,717	94.3	SAMN15018201	GSM4568587

^a The SRA BioProject number is PRJNA635127. The GEO title of the project is "Transcriptome RNA Sequencing Data Sets of *Bacillus anthracis* Vollum Δ*htrA* and Parental Isogenic Wild-Type Strains under Oxidative Stress Conditions."

^b Biologically duplicated samples are labeled as a and b, and triplicated biological samples as a, b, and c.

^c Percentage of reads mapped to the reference genome of *B. anthracis* Ames Ancestor (NCBI accession number NC_007530). The GEO accession number of the transcriptome series is GSE151208.

tially expressed genes under various conditions was performed using the R package DESeq, version 1.16.0 (10). All analytical software programs were used at their respective default settings.

The analysis revealed the following categories of H_2O_2 -modulated genes: (i) induced upon treatment in both strains (792 genes), (ii) repressed in both strains (868 genes), (iii) uniquely upregulated in the WT strain (271 genes), (iv) uniquely downregulated in the WT strain (221), (v) uniquely upregulated in the mutant (330 genes), and (vi) uniquely downregulated in the mutant (648 genes). Further inspection of these classes of genes will enable a better understanding of the response of *B. anthracis* to oxidative stress in general and the regulatory role of the protein HtrA in particular. Furthermore, this database may facilitate identification of proteins for the future development of countermeasures against *B. anthracis*.

Data availability. The transcriptomic data have been deposited in the NCBI database, and their SRA and GEO accession numbers are provided in Table 1.

REFERENCES

- Chitlaru T, Altboum Z, Reuveny S, Shafferman A. 2011. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol Rev 239:221–236. https://doi.org/10.1111/j.1600-065X.2010.00969.x.
- Shafferman A, Gat O, Ariel N, Chitlaru T, Grosfeld H, Zvi A, Inbar I, Zaide G, Aloni-Grinstein R, Cohen S. 2010. Reverse vaccinology in *Bacillus anthracis*, p 295–306. *In* Shafferman (ed), The challenge of highly pathogenic microorganisms. Springer, Dordrecht, Netherlands.
- 3. Chitlaru T, Shafferman A. 2009. Proteomic studies of Bacillus anthracis. Future Microbiol 4:983–998. https://doi.org/10.2217/fmb.09.73.
- Sela-Abramovich S, Chitlaru T, Gat O, Grosfeld H, Cohen O, Shafferman A. 2009. Novel and unique diagnostic biomarkers for Bacillus anthracis infection. Appl Environ Microbiol 75:6157–6167. https://doi.org/10.1128/AEM .00766-09.
- Chitlaru T, Zaide G, Ehrlich S, Inbar I, Cohen O, Shafferman A. 2011. HtrA is a major virulence determinant of Bacillus anthracis. Mol Microbiol 81:1542–1559. https://doi.org/10.1111/j.1365-2958.2011.07790.x.
- Chitlaru T, Israeli M, Bar-Haim E, Elia U, Rotem S, Ehrlich S, Cohen O, Shafferman A. 2016. Next-generation Bacillus anthracis live attenuated

spore vaccine based on the htrA(-) (high temperature requirement A) Sterne strain. Sci Rep 6:18908. https://doi.org/10.1038/srep18908.

- Chitlaru T, Israeli M, Rotem S, Elia U, Bar-Haim E, Ehrlich S, Cohen O, Shafferman A. 2017. A novel live attenuated anthrax spore vaccine based on an acapsular Bacillus anthracis Sterne strain with mutations in the htrA, lef and cya genes. Vaccine 35:6030–6040. https://doi.org/10 .1016/j.vaccine.2017.03.033.
- Israeli M, Elia U, Rotem S, Cohen H, Tidhar A, Bercovich-Kinori A, Cohen O, Chitlaru T. 2019. Distinct contribution of the HtrA protease and PDZ domains to its function in stress resilience and virulence of Bacillus anthracis. Front Microbiol 10:255. https://doi.org/10.3389/fmicb.2019 .00255.
- Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638.
- Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11:R106. https://doi.org/10.1186/gb-2010-11 -10-r106.