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Abstract

Australia and New Zealand share the highest incidence rates of melanoma worldwide.

Despite the substantial increase in public and physician awareness of melanoma in Austra-

lia over the last 30 years–as a result of the introduction of publicly funded mass media cam-

paigns that began in the early 1980s –mortality has steadily increased during this period.

This increased mortality has led investigators to question the relative merits of primary ver-

sus secondary prevention; that is, sensible sun exposure practices versus early detection.

Increased melanoma vigilance on the part of the public and among physicians has resulted

in large increases in public health expenditure, primarily from screening costs and increased

rates of office surgery. Has this attempt at secondary prevention been effective? Unfortu-

nately epidemiologic studies addressing the causal relationship between the level of sec-

ondary prevention and mortality are prohibitively difficult to implement–it is currently

unknown whether increased melanoma surveillance reduces mortality, and if so, whether

such an approach is cost-effective. Here I address the issue of secondary prevention of mel-

anoma with respect to incidence and mortality (and cost per life saved) by developing a Mar-

kov model of melanoma epidemiology based on Australian incidence and mortality data.

The advantages of developing a methodology that can determine constraint-based surveil-

lance outcomes are twofold: first, it can address the issue of effectiveness; and second, it

can quantify the trade-off between cost and utilisation of medical resources on one hand,

and reduced morbidity and lives saved on the other. With respect to melanoma, implement-

ing the model facilitates the quantitative determination of the relative effectiveness and

trade-offs associated with different levels of secondary and tertiary prevention, both retro-

spectively and prospectively. For example, I show that the surveillance enhancement that

began in 1982 has resulted in greater diagnostic incidence and reduced mortality, but the

reduced mortality carried a significant cost per life saved. I implement the model out to 2028

and demonstrate that the enhanced secondary prevention that began in 1982 becomes

increasingly cost-effective over the period 2013–2028. On the other hand, I show that reduc-

tions in mortality achieved by significantly enhancing secondary prevention beyond 2013

levels are comparable with those achieved by only modest improvements in late-stage dis-

ease survival. Given the ballooning costs of increased melanoma surveillance, I suggest the

process of public health policy decision-making–particularly with respect to the public

PLOS ONE | https://doi.org/10.1371/journal.pone.0182349 September 25, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Gilmore S (2017) Melanoma screening:

Informing public health policy with quantitative

modelling. PLoS ONE 12(9): e0182349. https://doi.

org/10.1371/journal.pone.0182349

Editor: Jaymie Meliker, Stony Brook University,

UNITED STATES

Received: December 15, 2016

Accepted: July 17, 2017

Published: September 25, 2017

Copyright: © 2017 Stephen Gilmore. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: No supporting

information files. No further data generated -

information in manuscript is complete.

Funding: The Skin and Cancer Foundation, Victoria,

Australia, provided funding for this work. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The author has declared that

no competing interests exist.

https://doi.org/10.1371/journal.pone.0182349
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182349&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182349&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182349&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182349&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182349&domain=pdf&date_stamp=2017-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182349&domain=pdf&date_stamp=2017-09-25
https://doi.org/10.1371/journal.pone.0182349
https://doi.org/10.1371/journal.pone.0182349
http://creativecommons.org/licenses/by/4.0/


funding of melanoma screening and discretionary mole removal–would be better served by

incorporating the results of quantitative modelling.

Introduction

Melanoma is a major public health concern in Australia and, alongside New Zealand, has the

highest incidence rates worldwide. Public awareness of the skin cancer risk associated with

ultraviolet light exposure increased dramatically following the introduction of the ‘Slip, Slop,

Slap’ campaign in Australia in 1982 [1, 2]. This campaign was also implemented in the United

States. The messages of the campaign were twofold: first, to promote sensible sun exposure

practices; and second, to encourage skin self-awareness with respect to skin cancer. The former

corresponds to primary prevention of melanoma.

Formally, and after Dos Santos Silva [3], the following prevention strategies are defined: (i)

Primary–the prevention of the onset of melanoma; (ii) Secondary–the prevention of symptomatic
melanoma; and (iii) Tertiary–the prevention of premature melanoma death. Secondary preven-

tion is thus synonymous with early detection and largely achieved via physician based mela-

noma screening. Screening can target either the general population or higher-risk subsets and

involves full-body examinations performed regularly. Note that self-screening and encourag-

ing melanoma awareness is also a secondary prevention strategy and will be promoted by pub-

lic health campaigns primarily directed at primary prevention.

Melanoma awareness campaigns are likely to have contributed to the increased numbers of

melanocytic lesions removed by medical practitioners over the last few decades. Indeed, evi-

dence suggests that implementing skin cancer public awareness campaigns increases the exci-

sion rate of benign lesions [4]. While biopsy rates in the United States increased by 50%

between 2002–2008, melanoma rates over the same period only increased by 4% [5]. The

increase in the number of lesions excised over the last three decades is likely to be due to two

factors working in concert: first, an increased presentation rate; and second, a lower threshold

for excision.

Are too many pigmented lesions excised? Controversy has existed over the concept of Num-
ber Needed to Treat (NNT), a term loosely used to describe the number of benign naevi excised

per melanoma excised [6]. For non-dermatologists, its value has been reported as 19.6 [7], 23

[8] and 22 [9]. While there may exist some debate regarding the pigmented lesion diagnostic

abilities of dermatologists and general practitioners [10], it is possible the NNT for dermatolo-

gists may be lower–values of 6.3 [11] and 6.5 [12] have been reported. The controversy regard-

ing the NNT relates to the meaning associated with its numerical value–is it better for it to be

lower or higher? While a high NNT might indicate a practitioner is less likely to miss a mela-

noma, it could also mean that many lesions are removed unnecessarily, with the associated

morbidity and increased costs. On the other hand, a low NNT might mean that melanomas

are missed. Increased surveillance for melanoma coupled to high NNTs may result in large

numbers of lesions removed without any significant reduction in mortality. However, there

exists potential for physicians to optimise the value of their NNTs by either up-skilling and/or

the utilisation of modern technology; for example, telemedicine or machine learning [13].

A corollary to the NNT is the Number Needed to Screen (NNS), a measure that reports on

the number of people that need to be screened for a particular disease to save one life from that

disease. It has been suggested that melanoma does not fare well in comparison with other life-

threatening conditions. Estimates for melanoma extend to 25,000 screening assessments per

Melanoma public health policy modelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0182349 September 25, 2017 2 / 21

https://doi.org/10.1371/journal.pone.0182349


life saved; in comparison, for example, the NNS for colon cancer may be around 800, and for

preventing a cardiovascular death, the number of people needed to be screened for cholesterol

levels may be as low as 480 [14].

Despite the increased public awareness of melanoma, and the large increase in the number

of potential melanomas being excised, the mortality rate from melanoma has not declined

in Australia over the last 30 years. Importantly, however, the incidence rate, while steadily

increasing since 1982, has recently reached a plateau, and, for younger cohorts, is now in

decline [15].

Intuitively one might expect that increased rates of surveillance can only lead to the desir-

able outcome of more lives saved since more early melanomas will be removed. Although phy-

sician-detected melanomas are thinner than those detected by patients [16], the potential

difficulties in melanoma diagnosis are well documented [17]. Current evidence is insufficient

to draw conclusions regarding the effects of melanoma surveillance on mortality [18, 19]. This

lack of conclusive evidence suggests that the detection of early melanoma may not be critical.

Indeed, it is possible that early melanomas will eventually declare themselves as changing

lesions and thus can be excised before they have metastasized. There exist three main reasons

why secondary prevention strategies are possibly limited in effectiveness. First, there will exist

limits to the fraction of the population that will be screened. Second, even if screening is lim-

ited to high-risk individuals, and a large proportion of these individuals are screened, it is

known that a significant fraction of melanoma deaths are due to melanomas that present in an

advanced state; in contrast to the usual slowly developing lesions where early detection may

not be critical, the more aggressive tumours demand early detection. However, because of

their rapid evolution the latter may not be detected with regular screening. And finally, the

progression of appropriately treated thin melanoma to advanced disease will occur in 5% of all

patients [20].

Over-diagnosis confounds the relationship between incidence and mortality, and increases

morbidity without any impact on mortality. For many types of human cancers it appears that

over-diagnosis rates are problematic [21]. With respect to melanoma, it is likely that many

excised lesions, diagnosed as melanoma, would not have otherwise eventually led to death

[22].

Is it possible to quantify the cost–including disentangling the factors that influence the

NNS–of saving a life from the effects of advanced melanoma by secondary prevention? Is it

possible to quantify the effects of secondary and tertiary prevention with respect to melanoma

mortality rates? Is it possible to predict what might happen to incidence and mortality rates if

current melanoma surveillance strategies are maintained, enhanced, or abandoned? Due to

the existence of feedback loops and non-linear interactions between various factors, the ques-

tions raised above cannot be answered in the affirmative solely by intuition. In contrast, quan-

titative modelling may yield robust answers. In the spirit of the recommendations of Basu et al
[23], here I develop a relatively simple–but not too simple–Markov model of melanoma epide-

miology based on Australian incidence and mortality data.

I first develop an accurate representation of Australian melanoma incidence and mortality

rates over the period 1982–2013, and an accurate representation of projected incidence and

mortality rates over the period 2013–2028. Using these models as baseline, the primary aim of

the analysis is to determine, both retrospectively and prospectively, quantitative estimates

regarding the effects (and costs) of different levels of secondary prevention with respect to inci-

dence and mortality. (By analogy, a climate model may be set up to accurately capture the

post-industrialisation rise in average global temperature. By re-running the model without the

known increase in atmospheric carbon dioxide levels, it is possible to estimate the impact of

this greenhouse gas on global temperature rise). An enhanced level of secondary prevention,
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for example, would invoke a detection strategy that utilised increased screening frequency

and/or the use of additional screening aids, such as full-body photography. Secondary aims

include estimating the effects on mortality with variation in the effectiveness of tertiary preven-

tion; to directly compare mortality rates with respect to enhanced secondary versus enhanced

tertiary prevention; and finally, to determine the relationship between over-diagnosis levels

and melanoma incidence.

The model thus achieves its goals–it can suggest what may happen (or what has happened)

given certain scenarios or public health policy decisions. It is likely to be applicable in Western

countries where the increased incidence of melanoma over the past three decades mirrors the

Australian data. In their summary of the available evidence pertaining to the effectiveness of

melanoma screening–prepared for the US Preventative Services Task Force and published in

the Annals of Internal Medicine–Wolff et al write: “Given the lack of direct evidence, modelling
studies using available indirect evidence, including cost-effectiveness studies, may provide some
information on the usefulness of screening as a preventative strategy.” [18].

Methods

Markov models

Markov models are a class of deterministic dynamical system models where the next state of

the system is uniquely determined by its previous state. A simple Markov model is, for exam-

ple, a weather model where the states of the system are given by ‘sunny’, ‘rainy’, or ‘cloudy’,

and the state of tomorrow’s weather only depends (in a probabilistic manner) on its state

today. Markov models are thus fully described by a transition matrix that defines the states of

the system and the transition probabilities between states. They have been used widely in sci-

ence; recently Markov models are becoming increasingly popular in modelling biological pro-

cesses, including cancer evolution [24, 25].

The model

Can melanoma evolution be considered Markovian? It can: in this case the states of the system

are defined according to the stage of disease, while the probability of transitioning to a new

state, or remaining in the same state, depends, in a probabilistic manner, only on the current

state. Although it is clear that past events can affect the present in cancer evolution, the sto-

chasticity inherent in Markov models allows for heterogeneity, with respect to individuals, in

the rates of tumour evolution. Some individuals will thus transition more quickly than others:

these individuals, for example, could be considered those with more aggressive disease where

past events (such as poor prognosis mutations) can and do influence present events. The

model presented here is constructed by first defining the states of the system:

1. Baseline

2. Undiagnosed Stage 1: invasive melanoma less than 2mm thick

3. Undiagnosed Stage 2 or 3: invasive melanoma greater than 2mm thick or melanoma of

any thickness with local lymph node involvement

4. Undiagnosed Stage 4: distal lymph node and/or organ involvement

5. Diagnosed (and thus treated) Stage 1: as above

6. Diagnosed (and thus treated) Stage 2 or 3: as above

7. Diagnosed (and thus treated) Stage 4: as above

Melanoma public health policy modelling
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8. Death

These states are in accordance with standard staging definitions [26]. The baseline state rep-

resents the Australian population at large and can comprise individuals without melanoma, or

those with a diagnosis of in-situ melanoma (where the latter is defined as Stage 0). Stage 1 is

defined as thin invasive melanoma. A novel feature of the model is the introduction of states

where the diagnosis has not been made (States 2, 3 and 4 above); in these cases the individual

is not aware (or perhaps in denial) that melanoma may be present. Importantly, these individ-

uals will not have had any treatment–for example, excision of the primary lesion in Stage 1 dis-

ease–hence their prognoses will differ from their treated counterparts.

The mean-field approximation

The model is set up as a ‘mean-field’ model; that is, the differences between individuals are

smoothed out, and averages are used. The model does not take into account details such as age

or inherent individual or group risk of progression or death. For example, individuals without

melanoma and those with in-situ melanoma are grouped together in the baseline cohort.

Although they are at different risk for developing undiagnosed Stage 1 disease, averages are

used in the model. (Since publicly available melanoma incidence data refer to invasive mela-

noma, there exists no data on the incidence of in-situ melanoma. To include in-situ melanoma

as a separate state in the model would therefore add inaccuracies and complexity, the latter

rendering it less tractable). While the risk death from causes other than melanoma–or the risk

of developing melanoma–is higher in a 80 year old individual when compared with a 20 year

old individual, and while the risk of developing melanoma in any given year is higher in a red-

head with freckles in comparison to an individual of Middle Eastern descent, including such

details would greatly increase the number of states and render the model intractable.

State transitions

The possible state transitions of the model are shown in Fig 1A as a directed graph while the

transition matrix is shown in Fig 1B. Note from Fig 1A that not all transitions are possible (for

example, transitioning from diagnosed Stage 4 disease to Baseline) and that it is possible for

individuals to skip Stage 2/3 (for example, transitioning from diagnosed Stage 1 to diagnosed

Stage 4 –this corresponds to a patient who has had a thin invasive melanoma excised, but re-

presents with metastatic disease). Note that there are no transitions from baseline to diagnosed

invasive disease. In general, this feature accounts for the arbitrarily short but non-zero time

patients may exist in the invasive but undiagnosed state. The important features of the transi-

tion matrix (Fig 1B) are (i) in each row the probabilities sum to 1; (ii) the model comprises

eleven parameters (transition probabilities); (iii) three of those probabilities are time-depen-

dent; (iv) the cycle time is one year; (v) the transitions from death to Baseline occur with prob-

ability 1 and act to keep the population constant; and (vi) death can occur at any stage with

low probability from causes other than melanoma (these latter transitions have been omitted

from the graph in Fig 1A to avoid clutter).

Transition probabilities

Usually the probabilities in the transition matrix of a Markov model are invariant in time;

however, in the following I introduce a dynamic model–in this case some of the probabilities

of the transition matrix can change continuously in time. In contrast to models with fixed

transition probabilities, dynamic models will never reach their stationary states; they will be

out-of-equilibrium dynamical systems.

Melanoma public health policy modelling
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The values and their ranges (if applicable) of all eleven probabilities are shown in Table 1.

There are three time-dependent parameters present, denoted I(t), D(t) and O(t) (see Fig 1B). I
(t) denotes the probability, per year, of developing (undiagnosed) Stage 1, Stage 2/3 or Stage 4

disease given the baseline state, where I(t) is partitioned among the three transitions depending

on their respective likelihoods. Note from Fig 1B that the transition to undiagnosed Stage 1 is

overwhelmingly more likely than a direct transition to Stage 4. Yet the latter can occur, albeit

with low probability (for example, when an individual with previously known or unknown in-
situ melanoma or leptomeningeal melanosis develops metastatic melanoma). D(t) denotes the

probability, per year, of having a diagnosis made of Stage 1 disease given the presence of undi-

agnosed Stage 1 disease. The value of D thus quantifies the level of secondary prevention.

Larger values correspond to an enhanced detection strategy (explained in the Introduction)

and thus a greater probability of diagnosis of Stage 1 disease given undiagnosed Stage 1 disease.

Finally, O(t) denotes the probability of having a diagnosis of Stage 1 disease but immediately

transitioning to the baseline state. O(t) thus represents the concept of over-diagnosis, where

melanoma is diagnosed but the lesion has no life-threatening potential.

Why are the aforementioned parameters chosen as time-dependent, while the others are

fixed? I(t), which I call the intrinsic incidence, must increase such that the diagnostic incidence–
which is a property of the model’s output–increases. Indeed, the diagnostic incidence of mela-

noma in Australia, reported at the AIHW website, has increased over the period 1982–2013

[15]. D(t) has also increased over the period 1982–2013; this reflects the effects of public health

campaigns on the behaviour medical practitioners and the public with respect to diagnostic

vigilance. Finally, O(t), the probability of over-diagnosis, is a time-dependent variable since

over-diagnosis rates are thought to have significantly increased over the past few decades [21].

Fig 1. (a) State transitions represented by a directed graph. (b) The associated transition matrix. In both (a)

and (b) undiagnosed (U) and diagnosed (D) disease are shown in yellow and light blue respectively. An

iteration of the model corresponds to 1 year. Note the rows sum to 1 since the probability of transitioning to the

same state is given by 1 minus the sum of all other entries for that row. The diagonal entry for Stage 1 in

yellow thus represents the finite probability that an individual can remain with undiagnosed disease for many

years, in keeping with the observation that some patients will not present in a timely manner [28], or their

doctor may not make an early diagnosis [29]. This phenomenon increases the likelihood that he or she may

transition directly to undiagnosed later-stage disease.

https://doi.org/10.1371/journal.pone.0182349.g001
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An important parameter is the ratio of the probability of progression of undiagnosed and

diagnosed Stage 1 disease to later-stage disease, denoted by p, and given by r/(r/p), where r is

the probability of progression, per year, of transitioning from undiagnosed Stage 1 disease to

undiagnosed Stage 2/3 disease, and r/p is the probability of progression, per year, of transition-

ing from diagnosed Stage 1 disease to diagnosed Stage 2/3 disease. Note from Fig 1B and

Table 1 that r/3 is the probability of transitioning from undiagnosed Stage 1 disease to undiag-

nosed Stage 4 disease, while r/3p is the probability of transitioning from diagnosed Stage 1

disease to diagnosed Stage 4 disease. The latter observation reflects the plausible assumption

that transitioning to Stage 2/3 is more likely than transitioning directly to stage 4, irrespective

of whether Stage 1 disease is undiagnosed or diagnosed. The value of p thus quantifies the

decreased likelihood of progression of Stage 1 disease with treatment, where the latter is usu-

ally a wide local excision. All probabilities of progression from Stage 1 disease (both undiag-

nosed and diagnosed) are thus determined by the values of r and p.

The parameter q represents the probability of transitioning, per year, from diagnosed Stage

4 disease to death. Although p and q are not defined as time-dependent functions, various

Table 1. The eleven parameters of the model.

Description Value(s) Justification Ref.

I(t) Probability of developing

undiagnosed invasive melanoma

0.00031–0.00052 Fitted to data AIHW*, 2016

D(t) Probability of diagnosis of Stage 1 given undiagnosed Stage 1 0.01–0.10 Delay in diagnosis

data

Ref. 28

O(t) Probability of overdiagnosis

given Stage 1 diagnosis

0.00–0.10 Plausible range Ref. 21

r Probability of undiagnosed Stage 1

progressing to undiagnosed Stage 2/3

0.00375 Fitted to data

p Ratio of the probability of

undiagnosed versus diagnosed

progression of Stage1 to later-Stage

2, 5, 15, 50, 125 Plausible range

q Probability of death given Stage 4 0.185, 0.23, 0.30,

0.37

Fitted to data; 5

year survival data

Ref. 29

d Probability of death from causes

other than melanoma

0.006 Fitted to whole-

population data

AIHW*, 2016

t4 Probability of progression from

undiagnosed Stage 2/3 to diagnosed

Stage 2/3

0.2 Plausible value;

value not critical

t5 Probability of progression from

undiagnosed Stage 4 to diagnosed

Stage 4

0.9 Plausible value;

value not critical

t6 Probability of progression from

undiagnosed Stage 2/3 to

undiagnosed Stage 4

0.1 Plausible value;

Value not critical

t7 Probability of progression from

diagnosed Stage 2/3 to diagnosed

Stage 4

0.168 Fitted to data; 5

year survival data

MIA**, 2016

*Australian Institute for Health and Welfare [15].

** Melanoma Institute Australia [26].

Note the functions I, D and O are time-dependent variables. The values of I(t) are determined such that the resultant model accurately fits the AIHW data.

The ‘Value(s)’ column reveals the continuous range of values for the time-dependent variables, and the discrete (either single or multiple) values for the

other parameters. All probabilities (values) are per person per year.

https://doi.org/10.1371/journal.pone.0182349.t001

Melanoma public health policy modelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0182349 September 25, 2017 7 / 21

https://doi.org/10.1371/journal.pone.0182349.t001
https://doi.org/10.1371/journal.pone.0182349


plausible values are used for each in the analysis, described below. The parameter d, which is

fixed throughout the analysis, represents the probability, per year, of transitioning from any

state to death, where the cause of death is not melanoma. Likewise, the parameters t4 –t7 are

fixed throughout the analysis and are defined in Table 1.

Methodology

The Results section is divided into four parts. In the first part I investigate the state space of

models for two values of D(0) (the value of D in 1982) and for five values of p. For each of ten

models, I determine conditions on the probabilities that yield an accurate steady state distribu-

tion of state frequencies such that the diagnostic incidence rate and mortality rate match their

respective reported values in 1982. I then determine specific curves I(t) and D(t) such that the

model incidence and mortality rates closely match the reported data over the period 1982–

2013. How is the latter achieved? For each of ten potential models, I define three categories of

monotonically increasing curves D(t) ranging from t = 0 to t = 31 that reflect the increasing

detection likelihood of Stage 1 disease over the period 1982 to 2013. I choose a parabolic con-

cave-up curve, parabolic concave-down curve, a sigmoid curve and a straight line as represen-

tative of the possible trajectories. For each category of curve I choose different values of D(31)

(the value of D in 2013), each representing a different maximal increase. For any D(t) I then

perform a detailed search through the parameter space of parabolic curves I(t), finding a suit-

able I(t) such that the simulated Markov model best fits the incidence and mortality data over

the period 1982–2013. (For curves of the type I(t) = a + bt + ct2 where a is known (baseline) I

search through over 10,000 combinations of values for b and c, where each parameter spans

two orders of magnitude and is partitioned 100-fold. The extreme values of b and c generate

increasingly erroneous models. To minimize the problem of overfitting, I avoid using polyno-

mials of degree 3 or above). The resultant ten models are best-fit models with respect to the

state space of the two chosen values of D(0) and the five chosen values of p.

In the second part I use the model to investigate the years 1982–2013 with respect to varia-

tion in D(t). I disentangle the effects of enhanced secondary prevention with respect to Stage 1

disease, represented by an increasing D(t), in comparison with no increase to D(t).
In the third part I use the model to investigate the years 1982–2013 with respect to the mor-

tality effects of hypothetical improvements in the efficacy of treatment of Stage 4 disease (ter-

tiary prevention) by reducing the value q, and I investigate the effects of different time-

dependent increased levels of over-diagnosis, denoted O(t), with respect to incidence rates.

In the fourth part I extend the Markov model by approximating the projected melanoma

incidence and mortality, given by Whiteman et al, from 2013 to 2028 [27]. I then investigate

the future effects on incidence and mortality by either varying D(t) or by reducing the value of

q from baseline.

Results

Replicating the AIHW data from 1982–2013

For the ten models, the values of D(0) are given by 0.01 and 0.05, while the values of p are

given by 2, 5, 15, 50, and 125. With respect to D(0), values of 0.01 and 0.05 correspond to a one

in one hundred and a one in twenty chance, respectively, per year, of having a diagnosis made

of Stage 1 disease, given the presence of undiagnosed Stage 1 disease. Although the exact value

of D in 1982 is unknown, it is unlikely to be larger than 0.05. Indeed, a large study reported by

Richard et al reveals long delays among individuals in recognising a melanocytic lesion as sus-

picious (greater than 5 years in 37% of the cohort), and further long delays in seeking medical

attention (greater than 1 year in 12% of the cohort) [28]. In other cases, delays may be due the

Melanoma public health policy modelling
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treating physician not making a timely diagnosis [29]. While the value of p is unknown, it is

unlikely to be less than 2 or greater than 125.

I now describe one of the ten models in detail; this model is characterised by D(0) = 0.05

and p = 15. As noted above, the former value corresponds to a one in twenty probability, in

1982, of having Stage 1 melanoma diagnosed given the presence of undiagnosed Stage 1 disease.

The latter value corresponds to a 15-fold increased likelihood that undiagnosed Stage 1 disease

will progress in any year in comparison with diagnosed (and thus treated) Stage 1 disease.

Running the model to steady state to replicate the initial (1982) incidence and mortality

data reveals that some of the parameters are constrained, while others are less constrained.

This finding is captured by the Monte-Carlo sensitivity analysis, corresponding to the year

1982, shown in Fig 2. Note the majority of sensitivity within the model lies with the time-

dependent parameters I(t) and D(t). These functions require fine-tuning to allow the model to

yield accurate output. Likewise, the value of d is fine tuned such that the model output matches

whole-population prevalence and mortality rates (see below). The value of r has a moderate

effect on mortality; its value thus requires fine-tuning to allow the model to replicate mortality

rates. Finally, the value of q has a marked effect on mortality rates but no effect on incidence

rates. Its value, determined by a fit to the data, is given by 0.37, a value that corresponds to a

one in three chance of death from Stage 4 disease per year. Reassuringly, this value of q corre-

sponds to a five-year survival of 12%, a value in close agreement with published data. (Sandru

et al report on a five-year survival for Stage 4 disease between 5–19% [30]). Finally, the values

of the transition probabilities t4 –t7 exhibit very little sensitivity with respect to the model’s

Fig 2. Monte-Carlo sensitivity analysis. (a) Deviations in melanoma incidence. (b), Deviations in

melanoma mortality. (c) Deviations in the prevalence of diagnosed thin melanoma. All deviations are

calculated with respect to the model parameters. For a given parameter, the model was run to steady state for

each of 10,000 normally distributed random values about its 1982 steady state value (with a standard

deviation of 10% of the steady state value) while keeping all other parameters fixed at the values that yield the

1982 steady state (where zero deviation is given by an incidence of 27.08 per year per 100,000 persons, a

mortality of 4.76 per year per 100,000 persons and the prevalence of diagnosed thin melanoma of 3215 per

100,000 persons). Note how the majority of variability within the model is due to variation in the time-

dependent variables I(t) and D(t), with the exception of the value of q which has a disproportionate influence

on mortality.

https://doi.org/10.1371/journal.pone.0182349.g002
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output. While care is taken in choosing plausible values, inaccuracies will not therefore com-

promise the integrity of the model.

I now run the Markov model to 2013, where a single iteration corresponds to one year. The

best fit curves for I(t) and D(t) are shown in Fig 3A and 3B respectively, while the Markov

approximation is shown in Fig 3C and 3D. Note that D(31) is given by 0.10 –this corresponds

to a one in ten chance, in 2013, of having a diagnosis of Stage 1 disease made given the pres-

ence of undiagnosed Stage 1 disease; its value equates to a doubling of this likelihood since

1982. Note that I(t) peaks around 2003 –this precedes the diagnostic incidence peak shown

in Fig 3C by 5 years and demonstrates that the true incidence has reached a plateau and possi-

bly been in decline for over a decade (as of 2016). Note the accuracy of the Markov approxima-

tion: simulated values accurately track the least squares approximation to the reported data

throughout the period 1982–2013 with an error rate less than 4.5% (Fig 3C and 3D). The state

frequencies are also accurate. As of 2010 the number of people living with melanoma diag-

nosed after 2005 is given by 48,937, while the mortality rate from any cause is documented at

~580 persons per 100,000 per year [15]. These data compare favourably with the model results

for D(0) = 0.05 and p = 15 in 2010 (89,500 and 602 per 100,000 persons respectively). The

value of the state frequency of state 5 as of 2010 will take into account all individuals diagnosed

with thin invasive melanoma from 1982 with the exception of those that have progressed or

those that have died from any cause. Hence roughly half of all people living with diagnosed

and treated thin invasive melanoma as of 2010 were diagnosed prior to 2005.

Fig 3. The Markov model for D(0) = 0.05 and p = 15. (a) The true incidence curve I(t) = 0.00031 + 0.00068t –

0.00056t2 (t is rescaled) for the period 1982–2013. Note how this curve peaks around 2003. (b) The detection

likelihood, D(t) = 0.05 + 0.075t – 0.075t2 (t is rescaled) corresponding to the probability of diagnosis of Stage 1

melanoma per year in an individual with hitherto undetected Stage 1 melanoma. Note the incremental increase

over the period 1982–2013. (c) Actual incidence data (orange dots), least-squares curve of best fit to these data

(continuous line), and the Markov approximation (blue dots) over the period 1982–2013. Note the accuracy of the

Markov approximation, and note how this curve peaks later than the true incidence curve given by (a). (d) Mortality

data with the same interpretation as (c). Note the increase in mortality from ~5 persons per year per 100,000 persons

in 1982 to ~6 persons per year per 100,000 persons in 2013. (All actual incidence and mortality data are reported at

the Australian Institute of Health and Welfare website [15]).

https://doi.org/10.1371/journal.pone.0182349.g003
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Varying the detection probability of Stage 1 melanoma for the years

1982–2013

By keeping D(t) fixed at its initial value of 0.05 for the duration t = 0 to t = 31 I now simulate

the years 1982–2013 without an increase in the detection probability of thin invasive mela-

noma (Fig 4A and 4B). Clearly, not increasing the detection likelihood of Stage 1 disease has

two consequences: first, it results in a much lower diagnostic incidence rate; and second, it

results in a higher mortality rate. While a significant fraction of the ‘alarming’ melanoma diag-

nostic incidence rate increase over the past 30 years is simply due to earlier detection, it better

reflects the increase in the true incidence I(t) (Fig 3A). Table 2 shows, for all 10 models, the

Fig 4. The effects of enhanced secondary prevention for the years 1982–2013. (a) Diagnostic incidence

curves. (b) Mortality curves. For both plots, enhanced secondary prevention is represented by the blue dots while

secondary prevention that remains at 1982 levels is represented by the orange dots. Note how a lack of

enhanced secondary prevention results in a lower diagnostic incidence rate but an increased and divergent

mortality rate.

https://doi.org/10.1371/journal.pone.0182349.g004

Table 2. Effects associated with enhanced secondary prevention for the years 1982–2013.

D(0) p Error TE TM EE RM Ratio

0.01 2 0.039 1321 167 434 0.6 654

0.01 5 0.043 1335 166 430 1.6 269

0.01 15 0.042 1328 166 438 2.5 173

0.01 50 0.041 1328 167 435 2.9 149

0.01 125 0.043 1335 166 438 2.9 148

0.05 2 0.030 1310 168 308 1.2 251

0.05 5 0.036 1321 165 304 4.1 74

0.05 15 0.036 1297 167 255 6.7 37

0.05 50 0.037 1294 168 248 9.4 26

0.05 125 0.037 1293 169 244 10.5 23

This Table corresponds to the simulations shown in Fig 4. Results for all 10 models (p = 2, 5, 15, 50 and 125) and D(0) = 0.01 (top 5 rows) and D(0) = 0.05

(bottom 5 rows). Note the accuracy of the Markov approximation to the AIHW data (error column) reflected in the total number of excisions (TE) and the total

mortality (TM). For comparison, the total number of diagnoses from the Australian Institute of Health and Welfare for the period 1982–2013 is 1319, while

the total mortality over the same period is 171. The excess number of excisions due to an increased probability of diagnosis of thin invasive melanoma given

the presence of undiagnosed thin invasive melanoma (compared with keeping the probability of diagnosis of thin invasive melanoma at 1982 levels until

2013) is shown (EE), while the reduced mortality due to increased probability of diagnosis of thin invasive melanoma is shown (RM). Finally, the ratio of EE

to RM is shown (Ratio). Note that, for example, when D(0) = 0.05 and p = 15, enhanced secondary prevention for the years 1982–2013 has led to 255 extra

excisions but 6.7 less deaths. All figures are per 100,000 persons.

https://doi.org/10.1371/journal.pone.0182349.t002
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quantitative results associated with a monotonically increasing D(t) in comparison with a D(t)
that remains at baseline. Note the robustness of the model with respect to the two values of D
(0) and the five values of p and note how the cost (estimated by calculating the ratio of mela-

noma excisions to lives saved) of saving one life from melanoma is larger for D(0) = 0.01 in

comparison with D(0) = 0.05 and varies inversely with p for any D(0). Thus the lowest cost of

saving a life from melanoma occurs when D(0) = 0.05 and p = 125. This corresponds to the sit-

uation where the early detection likelihood is high, and the stakes for doing so are high. In

practice, the exact values of D(t) and p are unknown; however, by interpolation, I can estimate

the number of early invasive melanoma excisions over the period 1982–2013 required to save

one life to be within the range 50 to 120.

Varying the likelihood of death from Stage 4 disease and investigating

the effects of over-diagnosis for the years 1982–2013

How else can lives be saved in melanoma? One possibility is to increase the efficacy in the

treatment of late stage disease. This effect can be implemented in the model by varying the

parameter q, the probability of death per year given the presence of Stage 4 disease. The base-

line probability is given by q = 0.37, and I investigate the effects on mortality rates for the years

1982–2013 with the reduced values q = 0.3, q = 0.23 and q = 0.185. The results are shown in

Fig 5A and 5B. Note the robustness of the results with respect to variation in D(0) and p. Note

if the value of q is reduced to 0.185, corresponding to a 50% reduction in the likelihood of

death from Stage 4 disease (per year), the average mortality rate drops by 0.5 per 100,000 per-

sons per year.

Fig 5. The effects of improved efficacy associated with treating late-stage disease and the effects of over-

diagnosis for the years 1982–2013. (a) Average mortality reductions per year per 100,000 persons as a function of

q for all p where D(0) = 0.01 and (b) D(0) = 0.05. Note the robustness of results with respect to both p and D(t) (all

five plots for different values of p are closely superimposed). (c) Excess diagnoses per 100,000 persons as a

function of maximal over-diagnosis proportion for all p where D(0) = 0.01 and (d) D(0) = 0.05.

https://doi.org/10.1371/journal.pone.0182349.g005
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I now provide some quantitative estimates on the effects of over-diagnosis on incidence

rates. Fig 5C and 5D show, for all 10 models, the number of excess diagnoses per 100,000 per-

sons over the period 1982–2013 given a monotonically and linearly increasing over-diagnosis

rate, given by O(t), where O(0) = 0 and O(31) is set to a probability equal to 1%, 3% or 10% of

the probability associated with a diagnosis of Stage 1 disease. Note that, for example, if one in

thirty Stage 1 melanomas were over-diagnosed in 2013 then 10–20 excess diagnoses per

100,000 persons over the period 1982–2013 would have occurred.

Projections for the years 2014–2028

I now extend the Markov model out to 2028 by approximating the incidence and mortality

projections of Whiteman et al [27]. I consider three scenarios: first, the situation where I com-

pare the incidence and mortality associated with a continuation of the scenario presented in

the previous section. I compare the incidence and mortality obtained from a D(t) that remains

fixed at its 2013 level with the incidence and mortality associated with a value of D(t) that

remains fixed at its 1982 level (which has not changed by 2013). Fig 6A and 6B show the case

where D(0) = 0.05 and p = 15, while for all ten models; these data are shown in Table 3. Note

from Fig 6A and 6B that by keeping D(t) at 0.05 –its 1982 level–melanoma incidence remains

lower and the mortality increases in comparison with the ‘business as usual’ approach. By

keeping D(t) at its 2013 level with the incidence and mortality associated with a value of D(t)
that remains fixed at its 1982 level (which has not changed by 2013), the gains made from the

period 1982–2013 are amplified for the years 2013–2028: mortality has decreased dramatically,

and the ratio of melanomas excised to lives saved is significantly reduced (compare Tables 2

and 3).

Second, I consider the situation where D(t) follows its normal trajectory from 1982 to 2013

but is then re-adjusted to its 1982 value and remains fixed at that value until 2028. This sce-

nario is compared with the situation where D(t) is held at its 2013 level until 2028. The former

corresponds to reverting back to 1982 secondary prevention levels. The results are shown in

Table 4 for all ten models. Representative plots for the years 1982–2028 are shown for D(0) =

0.05 and p = 15 (Fig 6C and 6D). Note that from 2013 onwards the incidence rate initially falls

dramatically but subsequently climbs rapidly, while the mortality rate increases. These effects

run counter to the results shown in Table 3: in comparison with the latter, the number of lives

saved is reduced, and the fraction of melanomas excised to lives saved has increased.

Third, I consider the situation where D(t) is maintained at its 2013 level but q is lowered in

2013 and kept at that value until 2028. This scenario corresponds to improvements in the effi-

cacy of treatment of late stage disease. Data for all ten models with respect to four values of q
(0.37, 0.30, 0.23, 0.185) are shown in Fig 7, while representative plots for q = 0.185, D(0) = 0.05

and p = 15 are shown in Fig 6E and 6F. Note from Fig 6F how the mortality rate initially drops

but subsequently climbs rapidly, and from Fig 6E that the incidence remains unchanged.

Discussion

The results presented above help clarify the relationship between true incidence, diagnostic

incidence, and early detection likelihoods. I have shown that the recent slowing of the diagnos-

tic incidence in Australia is due to a peaking of the true incidence at around 2004. There is a

delay of about 5 years between the peaking of the true incidence curve and the diagnostic inci-

dence curve, reflecting the delay between the onset of undetected melanoma, and the diagnosis

of Stage 1 melanoma. Note, however, that this does not mean there is a delay of 5 years in diag-

nosis for every individual who develops melanoma. Shih et al reported on the expected inci-

dence rates of melanoma for the years 1988–2004 without the effects of ‘Slip, Slop Slap’ and
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‘SunSmart’, where the latter began in 1988 [2]. In contrast to the results presented in Fig 4A,

incidence rates were expected to be higher had the public health campaign been non-existent.

What is the cause of this discrepancy? Shih et al did not disentangle the concept of true inci-

dence and diagnostic incidence, and did not take into account the effects of enhanced secondary

prevention with respect to diagnostic incidence. If the public health campaigns, via primary pre-

vention, reduced true melanoma incidence for the years 1982 onwards, then I could have explic-

itly included an absence of primary prevention in the model by suitably upwardly adjusting the

true incidence curve, given by Fig 3A. However, there would be significant guesswork in esti-

mating such a curve; for example, would the peak observed around 2004 disappear? Yet any rise

in true incidence will still be offset by the reduction in diagnostic incidence due to decreased

surveillance such that the overall diagnostic incidence, over the years 1982–2013, would still be

unlikely to be greater than baseline.

Why is the incidence, per 100,000 persons, of melanoma in Australia still not increasing?

While the incidence of melanoma is expected to continue to rise in individuals over 80 years of

age, it is expected to remain stable in the 60 to 79 year-old age group, and fall in individuals

less than 60 years of age [27]. Since melanoma is much more common in the elderly these

opposing effects balance–incidence projections suggest a stable incidence rate overall for the

Fig 6. Expected melanoma incidence and mortality for the years 2013–2028. (a) Extending enhanced

secondary prevention at its 2013 level to 2028 (where incidence is given by the orange dots) compared with a

continuation of 1982 levels (blue dots) reveals a converging diagnostic incidence rate and (b) a divergent

mortality rate. (c) Reverting to the 1982 detection probabilities of Stage I melanoma in 2013 results in a sharp

drop in diagnostic incidence that rebounds rapidly, and (d) a divergent mortality curve. (e) Reducing the risk of

death from late-stage disease in any year by half in 2013 results in no change to incidence and (f) a sharp

drop in mortality that quickly rebounds to baseline levels.

https://doi.org/10.1371/journal.pone.0182349.g006
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next 15 years [27]. However, despite a stable incidence rate, the absolute numbers of new diag-

noses are expected to increase due the combined effects of an aging population and population

growth [27].

Three explanations for the expected decline in incidence in cohorts less than 60 years of age

have been postulated: first, a reduction in ambient ultraviolet light exposure from an early age

as a consequence of the introduction of the aforementioned public health campaigns in the

early 1980s; second, changes in behaviour leading to less ambient ultraviolet light exposure–

such as more time indoors on computers–not attributable to the public awareness campaigns

per se [27]; and third, a changing demographic in Australia where the recent immigration of

Table 3. Expected effects of continuing with enhanced secondary prevention for the years 2013–

2028.

D(0) p TE TM EE RM Ratio

0.01 2 750 85.7 283 1.9 148

0.01 5 783 87.2 292 4.3 67

0.01 15 769 85.0 290 6.6 43

0.01 50 769 85.0 288 7.6 37

0.01 125 792 87.7 297 7.7 38

0.05 2 727 92.0 113 2.9 38

0.05 5 732 88.7 109 8.8 12

0.05 15 719 87.7 93 15.5 6

0.05 50 719 87.0 89 20.4 4

0.05 125 712 86.2 84 22.1 3

This Table corresponds to the simulations shown in Fig 6A and 6B, thus the comparison is between

secondary prevention strategies maintained at 2013 levels for the years 2013–2028 versus a continuation of

secondary prevention strategies that persist at 1982 levels. Shown are the projected results, interpreted

identically to Table 2. In comparison with the period 1982–2013 (Table 3) note that the ratios of EE to RM are

less. Thus if enhanced secondary prevention is extended beyond 2013 the advantages (compared with

leaving secondary prevention at 1982 levels) become more significant since fewer excisions are required to

save lives.

https://doi.org/10.1371/journal.pone.0182349.t003

Table 4. Expected effects of abolishing increased melanoma surveillance in 2013.

D(0) p TE TM RE EM Ratio

0.01 2 411 85.9 339 0.2 1695

0.01 5 435 87.9 348 0.7 497

0.01 15 420 86.0 349 1.0 349

0.01 50 422 86.3 347 1.3 266

0.01 125 429 87.4 363 -0.3 N/A

0.05 2 473 92.4 254 0.4 635

0.05 5 481 90.4 251 1.7 107

0.05 15 505 90.7 214 3.0 71

0.05 50 509 91.3 210 4.3 48

0.05 125 507 91.0 205 4.8 42

This Table corresponds to the simulations shown in Fig 6C and 6D. Projected model results for the years

2013–2028 where enhanced secondary prevention is abandoned in 2013, versus a continuation of 2013

secondary prevention levels. Abandoning secondary prevention in 2013 results in a significant number of

reduced excisions (RE) but an excess mortality (EM).

https://doi.org/10.1371/journal.pone.0182349.t004
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young people not susceptible to melanoma has led to skewed data [31]. While the consensus

view is that the first explanation is likely to be the most significant, the relative contributions of

each, particularly the latter, are immaterial with respect to our model given its mean-field

nature.

The second effect of the introduction of the public awareness campaigns that began in the

early 1980s is to increase the detection likelihood of Stage 1 melanoma–an effect that I have

shown significantly increases diagnostic incidence rates. Thus, as I noted earlier, part of the

‘alarming’ rise in diagnostic melanoma incidence between 1982 and 2013 is simply due to ear-

lier detection. Has the increase in Stage 1 melanoma diagnoses improved health outcomes?

The answer is yes–I have shown that mortality for the years 1982–2013 is reduced when early

detection increases in comparison with mortality rates associated with no increase to early

detection. But there is a trade-off: the results indicate an estimated 50 to 120 melanomas need

to be removed for every life saved.

Assuming an NNT of 10 and the cost per consultation, excision and pathology to be around

$300 it can be assumed, with some confidence, that the excess cost to save one life from mela-

noma during the period 1982–2013 as a result of enhanced secondary prevention was between

$150,000 and $360,000 Australian dollars. But the NNS needs to be taken into account: the

analysis above only applies to the screening of extreme-risk individuals where, on average, one

pigmented lesion is excised at every consultation. If screening were applied to the general pub-

lic, I can estimate the number of consultations per excision to be approximately 25 (if there are

25 consultations per excision, 10 excisions per melanoma diagnosis (the NNT), and 100 mela-

nomas excised for every life saved (see Table 1), then the NNS equals 25 x 10 x 100 = 25,000.

This value for the NNS has been documented elsewhere [14], and is discussed in the Introduc-

tion). If the cost of each consultation was $50, then the total cost for every excision becomes

300 + (24 x 50) = $1500, such that the cost per life saved over the period 1982–2013 balloons

out to a value between $750,000 and $1.8M Australian dollars. In practice, the number of con-

sultations per excision lay between the extreme values of 1 and 25. It is possible that costs may

be recognised as prohibitive for any values greater than 5 –and particularly so if the NNT is

in fact greater than 10 –suggesting that surveillance strategies can only target moderate to

high-risk individuals if economic considerations are paramount. It is important to note that

regular screening for melanoma will, by default, also involve screening for non-melanoma

skin cancer (NMSC). However, the economic and health benefits of early detection of NMSC,

at the level of the individual, are not as significant in comparison with those associated with

melanoma.

Fig 7. The expected effects associated with improved efficacy in treating late-stage disease for the years

2013–2028. (a) D(0) = 0.01. (b) D(0) = 0.05. Projected reductions in mortality (per year per 100,000 persons) as a

consequence of increased likelihood of surviving the effects of late-stage disease for all values of p. Note the

robustness of results for all 10 models (all the lines representing different values of p are nearly superimposed).

https://doi.org/10.1371/journal.pone.0182349.g007
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Although it is impossible to assign a monetary value to any individuals’ life, I can make

some interesting observations. First, the costs above should be offset against the cost of pro-

ductivity–for example, if death struck at 40 years of age, then at least 25 years of employment

are lost. Loss of productivity can be measured in many ways; governments would consider loss

of income tax revenue an important metric. Over a period of two decades, this would amount

to hundreds of thousands of dollars, given an average annual income in Australia in 2017 of

$70,000 dollars. Second, the costs of prevention should be offset against the projected cost of

treating more advanced melanoma, including Stages 2, 3 and 4. While the costs associated

with the management of Stages 2 and 3 will be substantial, and will include, for example, those

associated with sentinel node biopsy, full body scanning, surgery and radiotherapy, the major-

ity of this cost, will, however, be determined by the costs of preventing death in the latter.

Indeed, with the introduction of more expensive, and more efficacious drugs–a more effica-

cious drug will be more expensive than a less efficacious drug overall because it will keep the

patient alive longer–the total cost per individual, with respect to the treatment of Stage 4 dis-

ease, could easily exceed $150,000 US per annum [32]. Such a sum is, on average, an order of

magnitude larger than the costs associated with the management and treatment of Stages 2

and 3 [32–34]. On the other hand, the question of resource allocation arises. Could the money

be better spent elsewhere? For example, it is likely more lives could be saved if the money were

directed toward, say, indigenous health. Finally, the observation that melanoma is largely an

affliction of the elderly means that while implementing enhanced secondary prevention may

save a persons life from melanoma, it does nothing to prevent death from any other–and statis-

tically more likely–cause.

The argument, however, is in favour of an enhanced secondary prevention strategy when

the projections out to 2028 are taken into account. Indeed, the gains made between 1982 and

2013 are amplified: the total number of excisions begins to approach its 1982 value and the

mortality rates begin to diverge significantly (Fig 6A and 6B respectively) such that the ratio of

Stage 1 melanomas excised to lives saved decreases approximately sixfold (see Tables 2 and 3).

Even with the assumption of an NNT of 50, the projected cost of saving a life from melanoma

plummets to $400,000 at maximum (if, for example, the screening targeted a high-risk group

where there were, on average, 3 consultations per excision). The question regarding the utility

of enhanced secondary prevention strategies can be answered in the affirmative with confi-

dence only if such a detection strategy is maintained beyond 2013 and the projected benefits

are taken into account.

There exists an interesting symmetry, in the output of the model, between the effects of

over-diagnosis and improvements in the efficacy of treating late-stage disease. While over-

diagnosis increases incidence rates, it has no effect on mortality; on the other hand, improve-

ments in the efficacy of late-stage disease improve mortality rates (at least in the short-term)

while having no effect on incidence rates. The benefits of extending any given life-saving strat-

egy beyond 2013 are apparent: while halving the likelihood of death from late-stage disease in

any given year from 1982–2013 results in an average mortality reduction of 0.5 persons per

year per 100,000 persons; doing the same for the period 2014–2028 results in an average mor-

tality reduction of 0.8 persons per year per 100,000 persons. Paradoxically, by 2028 mortality

rates associated with a significant improvement in the efficacy of late stage disease roughly

equal the rates seen with no improvement in the efficacy of late stage disease. However, this

statistic simply reflects the larger pool of patients alive with late stage disease by 2028.

I have shown that an over-diagnosis rate that increases from zero to 3 per 100 life-threaten-

ing melanomas over the period 1982 to 2013 will result in 10–20 excess excisions per 100,000

persons over the same period. For the Australian population as a whole, the result is not

trivial: it equates to approximately 4000 excisions that have no impact on survival. Since the
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management of Stage I melanoma involves wide re-excision of the primary lesion, repeated

follow-up appointments and increased anxiety, attempts should be made to address the over-

diagnosis problem [35]; indeed, the biology needs to be better understood [21]. Perhaps

advances in molecular diagnostics will, in the near future, be able to distinguish morphologi-

cally similar life-threatening disease from its non life-threatening counterpart.

Given that melanoma incidence rates are projected to be stable or perhaps slightly in

decline, would it be a sensible option to save public money by abandoning current secondary

prevention efforts? It certainly makes no sense to abandon the public health message regarding

sensible sun exposure, given that this campaign is at least in part very likely to be responsible

for the recent stabilization of melanoma incidence. Furthermore, it has been shown that the

melanoma awareness programs implemented in Australia are cost-effective in terms of pri-

mary prevention [2]. But what does it cost to save a life with primary prevention? Shih et al
estimate the implementation of the ‘SunSmart’ campaign has prevented 1000 skin cancer

deaths over the years 1988–2003 in Victoria, Australia [2]. The total campaign expenditure

over that period was approximately $3.44 per capita [2]. Thus with an average population of

4.5 million persons [36], and assuming 900 of those lives saved would have died from mela-

noma, these data suggest that to save one life from melanoma with primary prevention costs

approximately $17,000 Australian dollars (which would equate to approximately $24,000

in 2017 given an average annual inflation rate since 2003 of 2.5% (tradingeconomics.com

(accessed July 2017))). In contrast, I have shown that secondary prevention of death from mel-

anoma carries a significant price tag. For the years 2013–2028, if the detection probabilities

of Stage 1 melanoma are reduced to and kept at 1982 levels, and when p = 15 (the ratio of the

likelihood of progression of untreated versus treated Stage 1 disease), for every life saved, the

number of excess melanoma diagnoses is likely to be over 100, resulting in a cost of $800,000

Australian dollars (if the NNT is 20 and the level of secondary prevention resulted in, on aver-

age, 3 consultations per lesion excised). This large cost differential suggests secondary preven-

tion strategies are wasteful and should be abandoned. However, there are problems associated

with a sole reliance on primary prevention. First, it is clear that primary prevention strategies

will have minimal impact on preventing melanoma deaths in a large proportion of the current

population already at significant risk for developing melanoma (from previous sun exposure

practices). Second, and as discussed previously, the promotion of primary prevention increases

the NNT, which, paradoxically, is the major cause of ballooning secondary prevention costs.

Finally, additional arguments have been provided that suggest the best method to reduce mela-

noma deaths is to focus on secondary prevention [37]. Despite these caveats, the continuation

of primary prevention campaigns will, over time, as younger cohorts of sun-savvy individuals

replace the population, lead to a significant reduction in the overall population risk for mela-

noma. The role of secondary prevention will then become less important. The costs of second-

ary prevention of melanoma are high. The methodology presented here should be taken as a

first step in the process of providing decision-makers with useful information. Whether such

information would actually lead to the withdrawal of public funding for discretionary mole

removal is unknown; however, with quantitative evidence to hand, and with the ability to vary

the values of input parameters, at least informed decisions–such as no change to current pol-

icy, or shifting a proportion of funding from secondary to primary prevention–can be made.

Finally, the motto ‘prevention is better than cure’ encapsulates conventional wisdom. But

does it apply to melanoma? For the years 2013–2028 I can compare the expected number of

deaths by simulating two alternative scenarios: first, by maintaining or enhancing 2013 second-

ary prevention levels while simultaneously not improving the likelihood of survival per year

from the effects of late-stage disease; and second, by abandoning 2013 secondary prevention

strategies while simultaneously improving the likelihood of survival in late-stage disease. What
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do I find? For the case D(0) = 0.05 (the initial probability of a diagnosis of Stage 1 disease per

year given the presence of undiagnosed Stage 1 disease) and p = 15 (see above), there are 88

expected deaths per 100,000 persons by maintaining the secondary prevention strategy; in con-

trast, abandoning secondary prevention and halving the likelihood of death in any year from

the effects of late-stage disease results in only 77 expected deaths per 100,000 persons. Dou-

bling the likelihood of early detection of melanoma in 2013 and maintaining this detection

rate until 2028 without changing the probability of death in any year from late-stage disease

leads to 83 expected deaths per 100,000 persons. The likelihood of death in any year from late-

stage disease needs only to be reduced from 0.37 to 0.30 (a reduction of 19 per cent) to equal

the mortality associated with maintaining (as opposed to abandoning) the 2013 secondary pre-

vention strategy. This analysis highlights an important and perhaps counterintuitive point:

incremental improvements in the treatment of late-stage disease will, in the foreseeable future,

have a comparable–and possibly greater–effect on mortality rates in comparison with those

propelled by heightened surveillance and diagnostic vigilance. Yet mortality rates per se are

not necessarily the only concern. The overall costs are similar–it was noted above that the pro-

jected cost of secondary prevention of melanoma death is of the order $400,000 dollars; on the

other hand, the cost, per patient, of temporarily preventing death (over a number of years) in

Stage 4 disease will also run into the hundreds of thousands of dollars. Funding considerations

should include the potential effects of quality of life measures (either improvements or a dete-

rioration) with respect to treatment of Stage 4 disease, and the observation that prevention is a

‘cure’, while Stage 4 treatment is currently palliative.
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