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Constipation is a common and typically multifactorial childhood complaint,

and the clinical management of childhood functional constipation (FC) is

challenging. A randomized, single-blind, placebo-controlled, multi-center

clinical trial was conducted in 92 children (47 from Beijing, China and 45 from

Shanghai, China) aged 4–12 with FC according to Rome III criteria. Children

were assigned to receive a probiotic chewable tablet (5 × 109 CFU/day,

n = 47), consisting of Lactobacillus acidophilus DDS-1 R© and Bifidobacterium

animalis subsp. lactis UABla-12TM or placebo (n = 45), twice daily for

4 weeks, followed by a week follow-up period. Results suggested that the

probiotic group showed a faster and more pronounced normalization of

stool frequency over the intervention period (3.15 vs. 1.83) when compared

to placebo group (2.51 vs. 1.87). Meanwhile, the percentage of subjects with

hard defecation decreased from 43 to 14% in the probiotic group, while the

percentage of subjects with normal defecation increased from 56 to 80% in

the probiotic group, further confirming the normalization of stools habits.

This randomized controlled trial demonstrated the potential of a probiotic

chewable tablet containing L. acidophilus DDS-1 R© and B. Lactis UABla-12TM

as a daily probiotic dosage form for children with FC.
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Introduction

The global prevalence of functional constipation (FC) is
approximately 10–15%, with higher prevalence rates in women
and older individuals (Zhao et al., 2011; Barberio et al.,
2021). The gut microbiota refers to the microbial community
present in the human gastrointestinal tract, consisting of
trillions of bacteria, viruses, fungi, archaea, and eukaryotes.
Although there is no standard definition of a healthy gut
microbiota, it is generally characterized by a microbiota with
high levels of diversity, stability, resistance to stress-related
changes, and high levels of redundancy in metabolic pathways
(Bäckhed et al., 2012).

The intestinal microbiota is mutually constrained and
interdependent to maintain a certain ecological balance.
Further, it helps maintain the structural integrity of the intestinal
mucosal barrier (Jandhyala et al., 2015), and participates in
several physiological processes in the host. Probiotics are
defined as “live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host”
(Hill et al., 2014; Salminen et al., 2021). Probiotics have
been suggested to beneficially modulate FC through a variety
of potential mechanisms. First, they may help support the
intestinal microenvironment by producing organic acids, such
as lactic and acetic acid, which lowers intestinal lumen pH
and may stimulate intestinal motility (Zoppi et al., 1998).
Additionally, certain probiotic strains have been reported to
shorten colonic transit time (Marteau et al., 2002; Waller et al.,
2011). The intestinal microbiota not only regulates intestinal
activity, but also influences and regulates host brain function
and behavior through the gut-brain axis (Tillisch et al., 2013;
Ghouri et al., 2014). In a prior study, a probiotic blend helped
modulate visceral sensory and somatosensory cortical areas
of the brain and had significant and characteristic effects on
intestinal epithelial cells, intestinal immune function and the
enteric nervous system (Khalif et al., 2005).

It has been shown that adults with constipation exhibit a
decrease in Bifidobacterium spp. and Lactobacillus spp. and an
increase in potentially pathogenic bacteria and fungi (Huang
et al., 2018). At present, the treatment options for FC may
include oral medications, enemas, biofeedback, and surgical
treatment. Laxatives and prokinetics are often the first-line
treatment option, but they are for short term use and have
a number of potential side effects. Alternatively, probiotics
and prebiotics are widely administered in the treatment of
FC because of their safety and potential efficacy (Tannock,
2004). There have been several studies on probiotics for FC,
most of which have focused on observing efficacy through
improvements in stool frequency, stool properties, and clinical
symptoms associated with constipation (Dimidi et al., 2014).

A total of 1,182 adult FC patients were included in a meta-
analysis showing that probiotics reduced bowel motility time by
12 h/week and increased stool frequency by 1.3 times/week, and

were associated with the type of probiotic, with Bifidobacterium
bifidum significantly improving symptoms and Lactobacillus
casei Shirota having no benefit (Dimidi et al., 2014). Botelho
et al. (2020) found that multispecies probiotics in capsule form
may modulate the balance of gut microbiota by reducing the
relative abundance of bacteria in patients with constipation
based on a 30-days clinical trial. Functional constipation is a
common childhood complaint and is typically multifactorial.
Clinical management of childhood FC is challenging and more
studies examining the utility of probiotics are warranted. As
such, the aim of the current study was to assess the efficacy of
a probiotic chewable in children with FC (Chmielewska et al.,
2011; Wang et al., 2017).

Population and methods

Study population

The study was conducted in accordance with the ethical
principles that have their origins in the Declaration of
Helsinki and its subsequent amendments. The clinical trial
was registered on clinicaltrials.gov under registration number
ChiCTR2000038603, and was conducted according to the
CONSORT 2010 Statement.

Children, aged 4–12 years with FC were enrolled. The
included participants met the requirements of Rome III criteria
for FC based on self-reporting over the past 3 months, with
symptom onset beginning within the previous 6 months.
Additionally, participants were required to have an average stool
type of <3 on the Bristol stool scale (BSS), as assessed over
a 2-week run-in period and agreed to maintain their current
level of physical activity throughout the trial period. Exclusion
criteria included type I or type II diabetes, cancer, neurological
disorders, immunocompromised conditions, major diseases of
the cardiovascular, renal, hepatic, gastrointestinal, pulmonary or
endocrine systems, a history of gastrointestinal complications
(such as inflammatory bowel disease and ulcers) or abdominal
surgery, a history of heavy drinking or an allergy or sensitivity
to the test product ingredient. The use of antibiotics, probiotics,
fiber supplements or prebiotic fiber/enriched foods were
prohibited within 4 weeks prior to screening and during
the trial. All participants provided their voluntary, written,
informed consent prior to their inclusion.

Study design

A randomized, single-blind, placebo-controlled, multi-
center clinical trial research design was used in this study for
42 days. The trial was divided into four periods, observation
period (1 week), intervention period 1 (weeks 1 and 2),
intervention period 2 (weeks 3 and 4), and follow-up period
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(1 week). After completing the first week of testing, all children’s
feedback data were verified, based primarily on pictures of bowel
movements and the number of assisted bowel movements.
After confirmation of eligibility, probiotic chewable tablets and
placebo were distributed for follow-up testing. No intervention
was performed during the observation period. During the
intervention period, a chewable probiotic tablet or placebo
was administered twice a day, once in the morning and once
in the evening, for 4 weeks. Weekly stool frequency was
recorded, stool morphology was evaluated via BSS, stool pictures
were kept, and stool samples were collected from the subjects
for extraction of total DNA for high-throughput biological
analysis of 16S bacteria. The names of the 16S ribosomal
deoxyribonucleic acid (rDNA) sequencing groups are shown in
Table 1.

Study product

The probiotic chewable tablets contained two strains:
L. acidophilus DDS-1 R© and Bifidobacterium animalis subsp.
lactis UABla-12TM. The probiotic chewable tablets, which each
contained not less than 5 × 109 CFU/tablet, were formulated
with lyophilized probiotic blend, 1% hydroxymethyl cellulose
and 1% magnesium stearate, and prepared by a tablet press.
Placebo chewable tablets did not contain probiotic blend,
but otherwise were identical in mass, taste, appearance and
odor. Both probiotic and placebo chewable tablets met all
quality specifications, including potency and bacterial culture
purity, microbiological analysis, color, appearance, weight
specifications/variation and disintegration at the time of
manufacture and at the end of the clinical study.

Outcome assessments

Stool frequency was recorded and stool morphology was
assessed, via the BSS, throughout the 4-week intervention
period. Stool samples were collected with the help of a parent
or guardian. Children defecated on test strips to avoid contact
of stool with urine. Stool samples were collected with sampling
tubes and immediately placed in a 4◦C environment for storage

and transported frozen throughout until completion of 16S
rDNA sequencing.

Microbial profiling analysis

DNA was extracted from fecal samples and the quality
of the extracted genomic DNA was examined by 1% agarose
gel electrophoresis. DNA was subsequently amplified using
fusion primers for the 16S v3v4 region, and specific primers
with 5′ barcode were synthesized. The PCR amplification
products were purified and recovered from magnetic beads,
quantified by Quant-iT PicoGreen dsDNA Assay Kit, and the
samples were mixed in the appropriate ratio according to the
quantification results. Sequencing libraries were prepared by
TruSeq DNA HT Sample Prep Kit, and the final fragments of
the libraries were optimized by 2% agarose gel electrophoresis.
MiSeq Reagent Kit V3 was used for sequencing. The raw
data were filtered to optimize the sequences. The resulting
sequences were compared with the Greengenes database, the
sequences with >97% similarity were assigned to the same
operational taxonomic unit (OTU), and strain abundance was
calculated using random sampling of sequenced sequences,
and dilution curves were constructed using the number of
sequences sampled versus the number of OTUs they could
represent, and Wilcoxon signed-rank test for alpha diversity
analysis, Principal coordinates analysis (PCoA), phylum level
and genus level analysis. The sequence data have been deposited
in the Sequence Read Archive (SRA) database at the National
Center for Biotechnology Information (NCBI) under accession
number PRJNA862261.

Statistical analysis

GraphPad Prism 8.0 Software was used for the statistical
analysis of stool frequency and BSS value. Data are presented
as the mean ± standard deviation (SD). Student’s t-test was
used for comparisons between two groups. One-way analysis of
variance (ANOVA) followed by Tukey’s post-hoc test was used
to compare differences among three or more groups. Results
of 16SrDNA sequencing used Wilcoxon signed-rank to test the

TABLE 1 Name of 16S rDNA sequencing groups.

Group Intervention content Intervention time Abbreviations

Treatment 1 None 1 week A0

Treatment 2 Probiotic chewable tablet 2 weeks A1

Treatment 3 Probiotic chewable tablet 4 weeks A2

Control 1 None 1 week B0

Control 2 Placebo 2 weeks B1

Control 3 Placebo 4 weeks B2
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significance of differences. Values of p < 0.05 were considered
statistically significant.

Results

Study parameters

A total of 100 children were enrolled. Of these, three
children from the probiotic group in Beijing had incomplete
data, and five children from the placebo group in Shanghai had
incomplete data. Ninety-two children completed the study, with
47 children in the probiotic group (22 from Beijing and 25 from
Shanghai), and 45 children in the placebo group (25 from Beijing
and 20 from Shanghai) the sex radio for probiotic group and
placebo group was 23:24 and 23:22, respectively. Meanwhile, the
average age was 8.4 years in the probiotic group and 8.1 years in
the placebo group (Figure 1).

Stool habits

The study design is shown in Figure 2. During the 7-
day observation period (0-week), all children had fewer than
two bowel movements per week, and there was no significant
difference between the treatment and control groups. At

2 weeks, the number of bowel movements per week increased
significantly in the probiotic group (p < 0.01) compared
to the placebo group, with an average number of bowel
movements of greater than three per week. After 4 weeks the
average number of bowel movements per week was 3.55 in
the probiotic group, corresponding to one bowel movement
every 2 days (Figure 3A). Among the children in the probiotic
group, stool frequency was significantly higher after week 1
(p < 0.05) and week 2 (p < 0.001) compared to week 0.
In contrast, there was no change in stool frequency after
weeks 1 and 2, as compared to week 0, among the children
receiving placebo (p > 0.05). In addition, stool frequency
increased significantly in the probiotic group at both week 2
and week 3, as compared to week 1 (p < 0.05, Figure 3B).
No significant difference was observed in stool frequency
over the same timepoints in the placebo group (p > 0.05;
Figure 3C).

Stool morphology in children was determined via the BSS,
with scores of 1 or 2 and 6 or 7 corresponding to constipation
and diarrhea, respectively, and scores from 3 to 5 corresponding
to normal stools. For each child, the ratio of the number of
occurrences (i.e., constipation, normal, and diarrhea) to the
total number of stools (%) was calculated, and the results are
shown in Figures 3D,E. From week 0 to week 2, the percentage
of normal stools increased from 56 to 80% in the probiotic
group, while the percentage of constipated stools decreased from

FIGURE 1

Participants’ enrollment.
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FIGURE 2

Study design.

43 to 14% (Figure 3D). In the placebo group the percentage
of normal stools was 61% at both weeks 0 and 2, while the
percentage of constipated stools was 37 and 34% at week 0 and
2, respectively (Figure 3E).

Microbial profiling

Alpha diversity analysis
This procedure characterizes richness by Chao1 and

Observed indices and diversity by Shannon and Simpson
indices. The alpha diversity of the treatment and placebo groups
were examined after the observation period (week 0), the
intervention period of 2 weeks (week 2) and the intervention
period of 4 weeks (week 4), respectively. In the probiotic
group, there were no significant differences in strain richness or
diversity at weeks 2 and 4 as compared to week 0 (Figure 4).

Beta diversity analysis
This procedure was used to observe the differences between

individuals or groups by weighted UniFrac based PCoA and
Permanova method to test the significant differences between
sample groups. As shown in Figure 5A, in the probiotic group,
there was less variability when comparing weeks 0, 2, and 4
(p = 0.969) as compared to the placebo group, which showed
more variability when comparing weeks 0, 2, and 4 (p = 0.045;
Figure 5B).

Microbial community analysis
At the phylum level, in probiotic group, the relative

abundance of Actinobacteria (Bifidobacteria) was higher at
weeks 2 and 4 as compared to week 0, while the relative
abundance of Proteobacteria decreased (Figure 6A). In placebo
group, the relative abundance of Actinobacteria (Bifidobacteria)
remained unchanged throughout the study period, while the
relative abundance of Proteobacteria decreased (Figure 6B).
Additionally, the probiotic group exhibited higher relative
abundance of Clostridiaceae (p = 0.011), Streptococcaceae
(p = 0.031), and Peptostreptococcaceae (p = 0.039) at week

FIGURE 3

Impact of a probiotic chewable tablet on stool habits. (A) Stool
frequency during the observation period and after 4 weeks of
intervention. ∗∗p < 0.01, Student’s t-test. (B) Change in stool
frequency during the observation period and intervention period
for children in the probiotic (treatment) group. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001, Tukey’s post-hoc test. (C) Change in
stool frequency during the observation period and dry period in
children in the placebo (control) group. nsp > 0.05, Tukey’s
post-hoc test. (D) Percentage of stool type, via the Bristol stool
scale (BSS), in the treatment group during the observation and
intervention periods. (E) Percentage of stool type, via the BSS, in
the control group during the observation and intervention
periods.

4 compared to week 0, however, these differences were
not significant when accounting for multiple comparisons
(Figures 7A,B). Figure 7C shows a heat map of the top 20
genera, with the color gradient from blue to red representing
change from less to more. In the probiotic group, the relative
abundance of Bifidobacteria increased after 2 and 4 weeks of
intervention compared to week 0. Interestingly, after 2 and
4 weeks of intervention, the relative abundance of Escherichia-
Shigella decreased in both groups.

Discussion

The present study was a randomized placebo-controlled trial
to assess a probiotic chewable tablet consisting of L. acidophilus
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FIGURE 4

Alpha diversity estimates in probiotic group.

L. acidophilus DDS-1 R© and B. Lactis UABla-12TM in children
with FC living in Shanghai or Beijing. Previously, the two
strains, alone or in combination, were shown to improve
abdominal pain severity and symptomology in irritable bowel
syndrome, support abdominal symptom relief for lactose
intolerance, reduce the severity of atopic dermatitis and reduce
the severity and duration of acute viral respiratory tract infection
in randomized controlled trials (Martoni et al., 2020). Consistent
with previous studies, probiotic treatment led to changes in
constipation symptoms in children meeting Rome III criteria
for FC (Drossman et al., 2009; Barish et al., 2010). Previously,
a cluster analysis and diversity analysis were performed on
sigmoid mucosal microflora and stool samples of constipated
patients, respectively, and found that changes in sigmoid
mucosal microflora were more closely related to constipation
(Parthasarathy et al., 2016). Therefore, it has been suggested that

standardizing the method of measuring intestinal flora may help
in the assessment of intestinal microbiota changes in FC.

The most immediate sign of improvement in constipation is
a change in stool frequency and bowel sensation. In the current
study, children in the probiotic group showed a linear increase
in stool frequency after the first and second weeks (Figure 3B).
By the second week of treatment, children in the probiotic group
showed a clinically relevant effect, with an average of 3.15 bowel
movements per week, which was significantly greater than that
of the placebo group. This was also in line with a meta-analysis
of probiotic studies in adults that demonstrated increased stool
frequency, by an average of 1.3 bowel movements per week,
compared with a placebo. It is noteworthy that stool consistency,
via BSS, showed a similar improvement over the study period.
More specifically, the percentage of constipation-type stools in
the 2 weeks after probiotic treatment decreased from 43 to
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FIGURE 5

Beta diversity analysis. (A) Principal coordinates analysis (PCoA)
analysis in the probiotic (treatment) group. (B) PCoA analysis in
the placebo (control) group.

14%. Combining stool frequency and consistency, the most
noticeable improvement in the probiotic group was observed
over the first 2 weeks, followed by a diminishing effect vs.
placebo after the third week.

Previous studies have reported a correlation between certain
gut microbes and constipation, particularly in terms of transit
time (Bouvier et al., 2001; Khalif et al., 2005; Jandhyala et al.,
2015). Our sequencing results showed that in the probiotic
group, there was no significant difference in strain richness
or diversity over the study period (Figure 4), regardless of
their stool frequency. The α and β diversity did not differ
between the three intervention time periods in the probiotic
group (Figures 4, 5A, respectively). Interestingly, we observed
an increase in alpha diversity in the stools of the placebo
group (Figure 4), with a PCoA analysis revealing a difference
between and weeks 2 and 4 as compared to week 0. The
significance of this increase is uncertain, as an increase in
microbial diversity may be considered beneficial for human
gut health (De Filippo et al., 2010; Qin et al., 2010; Kang
et al., 2013). In the context of this study, a larger number of
participants would likely be needed to better understand this
observation. We did not observe significant differences in

FIGURE 6

Analysis of phylum taxa abundance. (A) Phylum taxa abundance
in the probiotic (treatment) group. (B) Phylum taxa abundance in
the placebo (control) group.

microbial profiling of participants with constipation vs. normal
stool profiles. Previous studies have reported either higher or
lower levels of bifidobacteria in stool samples from constipated
patients compared to healthy subjects (Khalif et al., 2005).
In the current study, the probiotic group showed an increase
in the relative abundance of Actinobacteria (Bifidobacteria),
while a decrease in the relative abundance of Proteobacteria
(Figure 6A). In the placebo group, the relative abundance
of Actinobacteria (Bifidobacteria) remained unchanged,
while the relative abundance of Proteobacteria decreased
(Figure 6B). Fecal samples of the probiotic group exhibited
higher relative abundance of Clostridiaceae, Streptococcaceae,
and Peptostreptococcaceae at endpoint compared with baseline,
however, these differences were not significant when accounting
for multiple comparisons (Figure 7A). Previously, it has been
reported that lactobacilli levels were significantly lower in
adults with constipation as compared to healthy controls
(Khalif et al., 2005). However, lactobacilli levels were similar
when comparing children with and without constipation
(Zhu et al., 2014; Jandhyala et al., 2015). Potentially, differences
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FIGURE 7

Analysis of Family and Genus taxa abundance. (A) Genus taxa
abundance in the probiotic group. (B) Genus taxa abundance in
the placebo group. (C) Heat map of top 20 genera.

between studies may be attributed to the techniques used to
identify microorganisms and in the difficulty of simulating the
gastrointestinal environment (Hugenholtz, 2002).

Khalif et al. (2005) observed few differences in the gut
microbiota between healthy and constipated individuals, unless
constipated subjects with severely prolonged transit times were
considered in the comparison. Symptom-based diagnoses, such
as the Rome III criteria, may not be sufficient to distinguish
between normal and constipated subjects regarding differences
in gut microbiota. However, the Bristol stool score has been
shown to correlate well with transit time, and we did not observe
differences based on this parameter. Using delayed/difficult
defecation, symptom frequency, and painfulness as definitions
of constipation, Zhu et al. (2014) found differences in beta
microbial diversity between obese children with and without
constipation. Increasing studies have demonstrated that the
occurrence of FC is closely associated with the imbalances of gut
microbiota (Cao et al., 2017; Ohkusa et al., 2019). Meanwhile,
the deficient motor-propulsive pattern of the intestine seems to
be an important cause of constipation. It has been confirmed
that gut microbiota can affect intestinal motility directly,
through the release of metabolic products such as short-chain
fatty acids (SCFAs), or indirectly through the regulation of
the immune system (Dimidi et al., 2017; Su et al., 2020; Yang
et al., 2021). Thus, the reconstruction of intestinal microbial
community and the improvement of intestinal motility would
be effective in alleviating constipation symptoms.

Conclusion

In summary, this randomized controlled trial assessed
a probiotic chewable containing L. acidophilus DDS-1 R© and
B. animalis subsp. lactis UABla-12TM for its effect on bowel
habits and microbial profile simultaneously. The product was
well tolerated and its effects on stool frequency and consistency
indicate a potential benefit as a daily probiotic dosage form for
children with FC.
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