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Phylogenomic analysis demonstrates a pattern
of rare and long-lasting concerted evolution
in prokaryotes
Sishuo Wang 1,2 & Youhua Chen3,4

Concerted evolution, where paralogs in the same species show higher sequence similarity to

each other than to orthologs in other species, is widely found in many species. However,

cases of concerted evolution that last for hundreds of millions of years are very rare. By

genome-wide analysis of a broad selection of prokaryotes, we provide strong evidence of

recurrent concerted evolution in 26 genes, most of which have lasted more than ~500 million

years. We find that most concertedly evolving genes are key members of important path-

ways, and encode proteins from the same complexes and/or pathways, suggesting coevo-

lution of genes via concerted evolution to maintain gene balance. We also present LRCE-DB,

a comprehensive online repository of long-lasting concerted evolution. Collectively, our study

reveals that although most duplicated genes may diverge in sequence over a long period, on

rare occasions this constraint can be breached, leading to unexpected long-lasting concerted

evolution in a recurrent manner.
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Gene duplication is a key force in driving gene evolution as
evident from the prevalence of duplicated genes in almost
all sequenced species1,2. Traditionally, theories of popu-

lation genetics predict that entirely redundant duplicates cannot
be retained in the genome over time3. Indeed, duplicated genes
that are stably preserved in the genome for a long time often
diverge in sequence, expression or function2,4,5. In some cases,
duplicated genes may display concerted evolution where paralogs
within the same species show more similar sequences than
orthologs in other species, which usually results from gene con-
version or unequal recombination6,7.

Concerted evolution has been found in the evolution of many
genes in both prokaryotes and eukaryotes, and is most often
observed in rRNAs6,7. However, repeated concerted evolution of
protein-coding genes across species is mostly found to occur on
relatively short time scales; the evidence for those that last for
hundreds of millions of years is very rare7–9. For example, the
duration of the concerted evolution of genes derived from the
whole-genome duplication event in budding yeast was estimated
to be around 25Ma (million years)10, with the exception of
ribosomal protein genes, which have likely undergone concerted
evolution since the whole-genome duplication (~100Ma)11.
Wang et al.12 summarized the duration of multiple previously
reported concerted evolution events, and found that most of them
last for no more than 100Ma. One well-documented example of
long-lasting concerted evolution is tuf, the gene coding for the
elongation factor tu, which was found to experience frequent
concerted evolution in a large number of species in Proteo-
bacteria13,14. mtrA, a gene crucial to methanogenesis, was also
observed to have undergone concerted evolution since the
divergence of many methanogens12.

Concertedly evolving paralogs from the same species show
higher sequence similarity to each other than either does to
orthologs in other species, and often form monophyly in the

phylogenetic tree. However, such a pattern could also arise from
lineage-specific gene duplication. To distinguish between these
two scenarios, it is very important to take gene synteny into
consideration to resolve the orthology and paralogy of the
gene7,15. This is because paralogs with shared synteny across
species are unlikely to be derived from independent gene dupli-
cation, and thereby should result from concerted evolution15,16.

To investigate the long-term impact and facilitate the genome-
wide identification of concerted evolution, we developed a com-
prehensive bioinformatic pipeline, iSeeCE, which integrates the
information of both phylogeny and synteny in the analysis. We
applied it to identify long-lasting recurrent concerted evolution in
a broad range of prokaryotes. We analyzed the functions of
concertedly evolving genes, and discussed the potential driving
forces underlying the recurrent concerted evolution over such a
long period. Finally, we developed an online database LRCE-DB
(www.lrgcdb.eu) to provide a user-friendly interface for
researchers to explore the data.

Results
Identification of long-lasting recurrent concerted evolution.
Much of the difficulty in inferring concerted evolution results
from the lack of gene synteny information and accuracy of
phylogeny. iSeeCE (Fig. 1; full implementation available at
https://github.com/evolbeginner/iSeeCE), presented in this study,
addressed the above challenges by integrating the information of
gene synteny across species to accurately assign the orthology and
paralogy relationships of genes, performing two rounds of phy-
logenetic reconstructions, and automatically parsing the results in
a high-throughput way (see Methods; Fig. 1; Supplementary
Fig. 1). We identified concertedly evolving genes in the unit of
order. We applied iSeeCE to the identification of concerted
evolution in 69 orders of prokaryotes including 682 carefully
selected species (see Methods). Only genes that displayed patterns
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Fig. 1 The schematic diagram detailing the phylogenomic approach of the identification of recurrent concerted evolution in prokaryotes
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of concerted evolution in at least five different species were
considered as genes undergoing recurrent concerted evolution
(see Methods).

In total, we detected 19 and 7 genes that undergo recurrent
concerted evolution in bacteria and archaea, respectively (Tables 1
and 2). tuf and mtrA, the two genes that were previously reported
to have undergone long-lasting recurrent concerted evolu-
tion12,14, were successfully detected using our computational
framework. The vast majority of concerted evolution events
identified here occurred in species from a single order (Tables 1
and 2). Two genes were found to evolve concertedly in two orders
(Tables 1 and 2). One gene (tuf) was found to experience
concerted evolution in species from 29 orders.

Recurrent concerted evolution should start prior to the
divergence of the species where concerted evolution is
detected13,17. For each concertedly evolving gene, we estimated
the minimum duration it has lasted for based on the divergence
time of species provided by TimeTree. The mean and median of
the lasting time of identified concerted evolution are 1018Ma and
496Ma, respectively (Tables 1 and 2). Eight genes have evolved in
a concerted manner for more than 1000Ma. The above results
reveal the longer-lasting effects of concerted evolution on gene
evolution than previously appreciated. Also, the high sequence

identity between paralogs undergoing concerted evolution across
nearly the full length of the gene indicates that the process is still
ongoing in most identified genes (for alignments see www.lrgcdb.
eu/Tree.php).

Concerted evolution of genes in ammonia oxidation pathway.
Intriguingly, all genes involved in ammonia oxidation, the first
step of nitrification, were present in multiple copies with nearly
identical nucleotide sequences in all of the eight analyzed species
from Nitrosomonadales, a group of ammonia-oxidizing bacteria
from Beta-proteobacteria. These genes are encoded by the operon
amoCAB (ammonia monooxygenase), haoAB (hydroxylamine
oxidoreductase), and cycAB (cytochrome c554 and cm552)18. Pro-
ducts of these genes constitute three protein complexes (AMO,
HAO/c554 and cm552) that catalyze the conversion of ammonia
(NH3) to nitrite (NO2-) (Supplementary Fig. 2), enabling
ammonia-oxidizing bacteria to use energy from this reaction and
causing nitrogen to enter the biosphere19. The other two genes,
amoD and amoE (also known as orf5 and orf4), are also con-
sidered to be involved in ammonia oxidation although their
detailed functions are still unknown20. The presence of multiple
copies of the operon amoCAB in the ammonia oxidation pathway

Table 1 Genes undergoing long-lasting recurrent conversion in bacteria

Gene Function Phylum Order No. of
species

Duration
(Ma)

Complex

nuoL NADH-quinone oxidoreductase subunit L Aquificae Aquificales 6 2075 Complex I
Dxs 1-deoxy-D-xylulose-5-phosphate synthase Alpha-proteobacteria Rhodospirillales 5 48 DXS
psbA Photosystem II q(b) protein Cyanobacteria Nostocales, Oscillatoriales 13 2322 PS II
psbD Photosystem II q(a) protein Cyanobacteria Nostocales, Synechococcales,

Oscillatoriales, Chroococcales
20 2594 PS II

ftsH ATP-dependent zinc metalloprotease FtsH Deinococcus-Thermus Deinococcales 5 439 FtsH
eftA Electron transfer flavoprotein subunit alpha Beta-proteobacteria Burkholderiales 10 936 ETF
eftB Electron transfer flavoprotein subunit beta Beta-proteobacteria Burkholderiales 9 936 ETF
amoA Ammonia monooxygenase subunit A Beta-proteobacteria Nitrosomonadales 8 449 AMO
amoB Ammonia monooxygenase subunit B Beta-proteobacteria Nitrosomonadales 8 449 AMO
amoC Ammonia monooxygenase subunit C Beta-proteobacteria Nitrosomonadales 8 449 AMO
amoD Hypothetical protein Beta-proteobacteria Nitrosomonadales 8 449 N/A
amoE Hypothetical protein Beta-proteobacteria Nitrosomonadales 8 449 N/A
haoA Hydroxylamine reductase Beta-proteobacteria Nitrosomonadales 8 449 HAO/c554
haoB Hydroxylamine oxidation protein HaoB Beta-proteobacteria Nitrosomonadales 8 449 N/A
cycA Cytochrome c554 Beta-proteobacteria Nitrosomonadales 8 449 HAO/c554
cycB Cytochrome cm552 Beta-proteobacteria Nitrosomonadales 8 449 Cyt cm552

fla Flagellin Gamma-proteobacteria Alteromonadales 8 1733 Filament
tkt Transketolase Gamma-proteobacteria Vibrionales 6 124 TKT
tuf Elongation factor Tu 6 phyla 29 orders 221 3936 –

Protein functions are obtained from public databases (PDB, UniProt, BRENDA, MetaCyc, etc.) and literature
Ma million years

Table 2 Genes undergoing long-lasting recurrent conversion in archaea

Gene Function Phylum Order No. of species Duration (Ma) Complex

mtmB Monomethylamine methyltransferase MtmB Euryarchaeota Methanosarcinales 7 496 MtmB-MtmC
mtmC Monomethylamine corrinoid protein MtmC Euryarchaeota Methanosarcinales 6 496 MtmB-MtmC
mtbB Dimethylamine methyltransferase MtbB Euryarchaeota Methanosarcinales 8 496 MtbB-MtbC
mtbC Dimethylamine corrinoid protein MtbC Euryarchaeota Methanosarcinales 6 496 MtbB-MtbC
mtrA Tetrahydromethanopterin S-methyltransferase

subunit A
Euryarchaeota Methanomicrobiales,

Methanococcales
12 1943 Mtr

glnB Nitrogen regulatory protein P-II Euryarchaeota Methanococcales 5 1943 GlnB
N/A Archaeal histone Euryarchaeota Methanococcales 5 1183 Archaeal histone

Protein functions are obtained from public databases (PDB, UniProt, BRENDA, MetaCyc, etc.) and literature
Ma million years
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in Nitrosospira sp. NpAV, a species from Nitrosomonadales, was
first noticed by Norton et al. (1996), and was attributed to recent
duplication due to the lack of genomic data available21. Through
comprehensive analysis of the genomic context of eight Nitro-
somonadales genomes, we found that the operons amoCAB,
haoAB, and cycAB were surrounded by conserved gene synteny
(Figs. 2, 3; Supplementary Fig. 3). This result ruled out the pos-
sibility that the observed topology of the phylogeny results from
recent duplication in each species, as convergent duplication in
the syntenic regions among different species is unlikely to hap-
pen7,15. Instead, the above results indicated that duplication of
the nine genes occurred before the divergence of all or some of
the species in the order Nitrosomonadales. Hence, these findings
demonstrate recurrent concerted evolution of all genes partici-
pating in ammonia oxidation, which, to the best of our knowl-
edge, represents the first case of concerted evolution of all genes
of an entire pathway over such a long time. In addition, the
extremely high sequence similarity between paralogs (Supple-
mentary Fig. 4) indicates that the process of concerted evolution
is still ongoing.

Concertedly evolving genes are involved in important
pathways. Another interesting example of genes that undergo
long-lasting concerted evolution is psbA and psbD, two homo-
logous genes that comprise the reaction center of photosynthesis
II (PS II) complex in cyanobacteria22. We found that most

cyanobacteria species carried two copies of psbD. Genomic con-
text analysis revealed two types of psbD with conserved synteny
across species (Fig. 4; Supplementary Fig. 5). Phylogenetic ana-
lysis showed that paralogs from the same species often clustered
in the same clade (Fig. 4; Supplementary Fig. 5). A similar pattern
was also observed for psbA in Nostocales and Oscillatoriales
(Supplementary Fig. 6a, b). These findings strongly indicated
recurrent concerted evolution of psbA and psbD in cyanobacteria.
Additionally, most species in the other two cyanobacterial
lineages (Chroococcales and Synechococcales) possessed multiple
copies of psbA with nearly identical sequences that clustered
together in the gene tree without synteny detected (Supplemen-
tary Fig. 6c, d). It is possible that psbA paralogs evolved in a
concerted manner in Chroococcales and Synechococcales but the
synteny of their neighboring genes were disrupted due to genomic
rearrangement.

The gene conversion of the two copies of elongation factor tu
(tufA and tufB) was previously described in Proteobacteria,
particularly Gamma-proteobacteria13,14. Here we examined the
phylogeny of tuf with a much broader range of taxa. In addition
to Proteobacteria, species from Aquificae, Acidobacteria, Actino-
bacteria, Chloroflexi, and Deinococcus–Thermus possessed two
duplicates of tuf that had undergone recurrent concerted
evolution. The two copies of tuf genes in different species were
characterized by their different genomic contexts (Supplementary
Fig. 7a). The phylogeny of tuf is basically consistent with the
species phylogeny of bacteria (Supplementary Fig. 7b). These
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findings indicate that tuf was duplicated prior to the emergence of
most extant bacterial lineages, followed by extensive gene
conversions and multiple lineage-specific gene losses. Hence,
the evolution of tuf likely represents the longest-lasting concerted
evolution that has been identified so far (Table 1).

The other seven genes undergoing recurrent concerted
evolution in bacteria also have important functions (Table 1).
Among these genes, three, nuoL, eftA, and eftB, are involved in
energy conversion, the latter two of which constitute the electron
transfer flavoprotein (ETF), a heterodimer that transfers electrons
to terminal respiratory systems23. Two genes, tkt and dxs,
participate in carbohydrate metabolism24,25. ftsH plays a major
role in the degradation and quality control of membrane
proteins26. Encoded by fla, flagellin is the principal component
of bacterial flagellum27.

All of the seven concertedly evolving genes identified in
archaea are from methanogenic species, among which five genes
are involved in methanogenesis (Table 2). In addition to the
previously reported mtrA12, a gene crucial to the hydrogeno-
trophic methanogenesis pathway, we identified recurrent con-
certed evolution in another four genes (mtmB, mtmC, mtbB, and

mtbC) involved in the methylotrophic methanogenesis pathway
(Fig. 5a–d). The methylotrophic pathways for methanogenesis
from monomethylamine and dimethylamine are mainly found in
Methanosarcinales28. They follow a similar route involving an
enzyme system consisting of three proteins: a protein binding the
corrinoid prosthetic group (encoded by mtmC or mtbC), and two
methyltransferases, designated MT1 (encoded by mtmB or mtbB)
and MT2 (encoded by mtbA)29,30. MT1 and the corrinoid protein
form a tight complex and catalyze the transfer of the methyl
group from the substrate to the corrinoid group, the first step of
the whole pathway (Supplementary Fig. 8). These results suggest
the important role of concerted evolution on the evolution of
genes involved in the methane metabolism and energy conserva-
tion in archaea.

Concerted evolution of genes in the same complexes/pathways.
We found that 22 out of 26 genes that showed evidence of long-
lasting recurrent concerted evolution identified in this study
encode proteins in stable protein complexes (Tables 1 and 2).
Intriguingly, among these 22 genes, 17 genes encode proteins that
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are from the same complexes and/or pathways. These genes
include genes involved in the ammonia oxidation pathway
(amoCAB, amoDE, haoAB, and cycAB), genes encoding the
reaction center of photosystem II (PS II) (psbA and psbD), genes
constituting the complex catalyzing methyl transfer from
monomethylamine (mtmBC) and dimethylamine (mtbBC) in
methanogenesis, and genes encoding the two subunits of bacterial
electron transfer flavoprotein (eftA and eftB). These findings
suggest the coadaptation and coevolution of genes encoding
proteins in the same complexes and/or pathways via concerted
evolution of paralogs.

In general, genes undergoing long-lasting concerted evolution
play important roles in various biological pathways. This is likely
different from genes undergoing short-term concerted evolution
in prokaryotes, which are often outer membrane protein genes or
are involved in the invasion of the host immune system9,
implying different evolutionary determinants in concerted
evolution on different time scales.

LRCE-DB: an online database to study concerted evolution.
Implemented with the goal of making the data easily accessible to
interested researchers, we constructed an online web resource
LRCE-DB (www.lrgcdb.eu) (Fig. 6a), which is the first online
database designed for concerted evolution to the best of our
knowledge. All data are deposited in MySQL database. The
database web frontend was implemented in PHP5, HTML5, and
CSS3, and was designed for Internet browsers on the basis of
WebKit and derived layout engines. Users can browse genes by
organism through the “Browse” interface. In the “Search” section,
users can search genes of interest by gene name, taxonomy or the
duration of concerted evolution (Fig. 6b). The graphical

visualization of the phylogeny, sequence alignment, and other
related information are available for each concertedly evolving
gene (Fig. 6b). Moreover, users are provided the option to
download the original data in batch by clicking on “Data” in the
main toolbar (Fig. 6a).

Discussion
In this study, we applied rigorous phylogenomic approaches to
identify genes undergoing long-lasting recurrent concerted evo-
lution in a broad range of prokaryotes. We excluded the possi-
bility of independent duplication by integrating the information
of gene synteny15,16,31. We also ruled out the possibility of con-
vergent mutations in paralogs as a result of purifying selection at
the amino acid level. In the case of strong purifying selection on
the coding region of the genes, it would be expected that non-
synonymous sites are similar whereas the synonymous sites are
divergent between paralogs7,32,33. However, we observed high
sequence similarity between paralogs at both synonymous and
non-synonymous sites in most identified concertedly evolving
genes (for alignments see www.lrgcdb.eu/Tree.php). This indi-
cates that recurrent gene conversion is the main driving force that
shapes the concerted evolution of the 26 genes identified in this
study and it is likely ongoing7. Note that the two copies of fla
were tandemly located, suggesting independent tandem duplica-
tion as an alternative possibility. The two copies of mtrA were
also a pair of tandem duplicates. However, since the duplicate of
mtrA has undergone a series of complex evolutionary scenarios
including gene fusion and domain shuffling in all analyzed spe-
cies, the high sequence similarity between mtrA-1 and mtrA-2 is
unlikely to be due to independent tandem duplication in each
lineage, as suggested by Wang et al. (2015)12.
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Most previously reported concertedly evolving genes are found
among species with relatively shallow phylogenetic depth9, which
might overlook the long-term impact of concerted evolution on
gene evolution. Our large-scale phylogenomic analysis suggests
that long-lasting concerted evolution is exceedingly rare, but has

played important roles in a small number of gene duplicates.
While most duplicated genes may escape from concerted evolu-
tion over time, a few genes were found to be subjected to repeated
sequence homogenization lasting for more than ~500Ma. The
findings of this study indicate the extremely long-term impacts of
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concerted evolution on the evolution of duplicated genes, and
extend our understanding of the duration of concerted evolution
to the scale of hundreds of millions of years, much longer than
previously appreciated7,10. Note that the duration of concerted
evolution can be overestimated if concertedly evolving genes are
horizontally transferred rather than vertically inherited following
an ancient duplication before the split of all analyzed species. This

could be the case for eftA and eftB, as genes from species lacking
concerted evolution were nested within those with concerted
evolution, although lineage-specific gene loss as an alternative
hypothesis cannot be rejected.

The recurrent pattern of gene evolution hints that it might not
be a random process, but rather that it is favored by selection13,34.
We speculate that concerted evolution may play a significant role

Fig. 6 Examples of analysis using the LRCE-DB interface. a Homepage of the database. b Search results of concerted evolution in bacteria, and the view
page of concertedly evolving genes (tuf in Acidobacteria)
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in maintaining gene balance in a coadapted macromolecular
complex and/or metabolic pathway. Sequence homogenization of
paralogs as a result of concerted evolution can increase the
concentration of a certain product when all gene copies are
simultaneously expressed35–39. However, for a multisubunit
complex, the alteration of the amount of only one subunit by
concerted evolution might shift the reaction toward the formation
of inactive subcomplexes, resulting in stoichiometric imbalance of
the complex and deleterious effects on the cell40–43. This con-
undrum can be solved if all genes coding for the same complex
undergo concerted evolution, as it can alter the amount of all
subunits concertedly, maintaining the proper concentration of all
subunits of the complex (Supplementary Fig. 9a). Our results
indicate that 17 out of the 26 identified concertedly evolving
genes encode genes from the same complexes and/or pathway
(Tables 1 and 2). In addition, among the remaining nine genes,
six encode proteins that can form homopolymers (dxs, fla, tkt,
ftsH, glnB, and archaeal histone), whose stoichiometric balance
should not be affected by the homogenization of paralogs of
their encoded proteins. This idea can be best illustrated by the
evolution of genes participating in the ammonia oxidation
pathway (Figs. 2, 3; Supplementary Figs. 2, 3). Previous studies
have shown that when one copy of amoA or haoA was
inactivated, the other copies were more highly expressed to
compensate for the loss of the first copy44,45. Also, the growth
rate and the abundance of the AMO mRNA decreased by 25%
and 37%, respectively, when amoA-1 was inactivated in Nitroso-
monas europaea44. The three single haoA mutant strains of
Nitrosomonas sp. Strain ENI-11exibited 68% to 75% reduction of
the wild-type growth rate46. These findings suggest that any single
copy of the concertedly evolving paralogs is functionally impor-
tant for maintaining the right dosage of the product46, and that
concerted evolution may confer selective advantages in response
to fluctuating ammonium availability in natural habitats44.
Concerted evolution, in particular when it occurs only in
coding regions, does not necessarily indicate high similarity in
expression profile between paralogs, as found in yeast ribosomal
proteins genes47. However, note that concerted evolution could
result in the rapid spread of optimized codon usage, which in turn
leads to dosage effects38. Moreover, even an increased dosage in
certain conditions where it is especially important could confer
considerable selective advantages, and drive long-lasting con-
certed evolution36,48,49. This might particularly be the case for
prokaryotes, which are naturally exposed to changing
environments.

Another mechanism that could cause gene imbalance is para-
log interference, the process by which paralogs with divergent
sequences interfere with each other by cross-interaction or
competitive binding50–52. It would be tempting to infer concerted
evolution as a mechanism to escape from paralog interference52

(Supplementary Fig. 9b). This idea is speculative due to the small
number of identified concertedly evolving genes. However, there
are several suggestive points. It was proposed that sequence
homogenization by gene conversion was favored by selection for
genes encoding proteins in ribosomes and nucleosomes in bud-
ding yeast since in tightly interacting complexes any change in
one paralog might lead to deleterious effects in protein-protein
interaction caused by paralog interference16,47. In support of this
idea, 22 out of the 26 identified concertedly evolving genes encode
proteins that are members of stable complexes. Furthermore,
1391 out of 4459 and 1151 out of 5915 genes in Escherichia coli
and budding yeast, respectively, encode products that are mem-
bers of protein complexes (Supplementary Data 2). This, suggests
the potential enrichment of genes coding for members of com-
plexes in genes undergoing long-lasting concerted
evolution16,47,53.

While dosage imbalance and paralog interference affect the
fates of duplicated genes in different ways, both of them can result
in gene imbalance50. Because changes in gene balance follow
directly after sequence homogenization of paralogs, concerted
evolution by gene conversion or unequal crossover can confer
instantaneous benefits by allowing beneficial mutations to rapidly
spread, which does not require convergent mutations in all
copies10,39.

Thus, we suggest that concerted evolution, which is likely the
result of gene conversion followed by adaptive fixation, might be
a mechanism for gene duplicates to maintain gene balance.
Further analysis is needed to test this hypothesis. Our study
focuses on ongoing concerted evolution that occurs across the full
length of the gene. In future, it would be interesting to investigate
cases of concerted evolution that occurred in part of the sequence
over evolutionary time, but that is no longer ongoing54,55. Also,
due to the abundance of genetic recombination and duplicated
genes in eukaryotic genomes, it could be hypothesized that con-
certed evolution might be more common in eukaryotes; thus it
will be interesting to examine whether the patterns found in
prokaryotes hold true in eukaryotes.

In summary, our large-scale phylogenomic analysis identified
26 genes undergoing recurrent concerted evolution in a broad
selection of prokaryotes, most of which have lasted for more than
~500Ma and are likely still ongoing. We conclude that although
long-lasting concerted evolution is exceedingly infrequent, it has
clearly occurred and might have played significant roles in
maintaining gene balance in many important pathways.

Methods
Selection of species. We carefully selected representative species used in the
analysis based on the genomic data available at RefSeq. For species with multiple
strains, only one strain was kept. For genera with more than five species, up to two
species were chosen randomly as the representative species. Orders with fewer than
six representative species were removed from subsequent analysis. Collectively,
682 species from 69 orders were analyzed in our study, and the information of their
taxonomy and genomic sequences is available at www.lrgcdb.eu/Genome_info.php.

Identification of long-lasting recurrent concerted evolution. We developed a
bioinformatic pipeline iSeeCE (https://github.com/evolbeginner/iSeeCE) to per-
form large-scale identification of concertedly evolving genes based on rigorous
phylogenomic methods (Fig. 1). We identified concerted evolution events in the
unit of order. First, for species of each order, we retrieved protein sequences from
NCBI RefSeq database (last accessed in April 2017) and clustered genes into
families using OrthoMCL v2.0.456. Because the result of OrthoMCL may be largely
affected by the Markov Clustering (mcl) inflation index56, to minimize the bias in
the classification of gene family, mcl was run using different inflation indices (1,
1.5, 2, 4, and 6) in OrthoMCL and the results were merged. Second, for each gene
family, CDS sequences were aligned using MAFFT v7.043b57, and the phylogenetic
tree was constructed with FastTree v2.1.758, which uses heuristic algorithms to
circumvent the low time efficiency in phylogeny reconstruction of large data sets,
for an initial selection. In the initial selection, we selected all gene families where
paralogs from the same species formed a monophyly in at least five species based
on the phylogeny built by FastTree (Fig. 1). Third, for species in the same order, we
identified syntenic orthologs supported by conserved gene synteny across species
using Mauve59, as used in many studies60–63, assisted by custom scripts based on
the best reciprocal BLAST hits64 and manual curation. Typically, at least three
surrounding genes with orthologs across species were needed to support the syn-
teny. Lastly, for each gene family that passed the initial selection, we manually
checked members in the family, and constructed the phylogeny using RAxML
v8.2.465 with 500 bootstrap pseudoreplicates and GTR +GAMMA as the sub-
stitution model (-s input -n output -m GAMMAGTR -# 500 -p 123 -x 123 -f a).

We considered two paralogs from the same species as concertedly evolving
genes if they i) formed a monophyly with bootstrap value of at least 7066, a widely
accepted indication of support for a “real” clade67,68 ii) both have syntenic
orthologs across species. Recurrent concertedly evolving genes were defined only if
paralogs were found to undergo concerted evolution in at least five species. The
species divergence time was estimated by TimeTree69. Phylogenetic trees were
visualized using TreeGraph v2.5.070.

Information of protein complexes. The information of protein complexes of
converted genes was manually collected by searching databases and literature, and
is available in LRCE-DB (www.lrgcdb.eu). Protein complexes of E. coli and S.
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cerevisiae were retrieved from EcoCyc (https://ecocyc.org) and Yeast Complex Web
(http://yeast-complexes.russelllab.org/complexview.pl?rm = download),
respectively.

Computer code. The computational pipeline iSeeCE is available at https://github.
com/evolbeginner/iSeeCE. Other custom scripts are available at figshare under the
DOI: https://doi.org/10.6084/m9.figshare.573246371.

Data availability. The data sets generated and analyzed during the current study
are available in the online database LRCE-DB (www.lrgcdb.eu), as well as figshare
under the DOI: https://doi.org/10.6084/m9.figshare.573246371.
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