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A plasmid-encoded peptide from Staphylococcus
aureus induces anti-myeloperoxidase nephritogenic
autoimmunity
Joshua D. Ooi1, Jhih-Hang Jiang 2, Peter J. Eggenhuizen 1, Ling L. Chua 1,14, Mirjan van Timmeren3,

Khai L. Loh 4, Kim M. O’Sullivan1, Poh Y. Gan1, Yong Zhong1, Kirill Tsyganov 5, Lani R. Shochet1,6,

Jessica Ryan1,6, Coen A. Stegeman7, Lars Fugger 8, Hugh H. Reid 4,9, Jamie Rossjohn 4,9,10,

Peter Heeringa 3, Stephen R. Holdsworth1,6, Anton Y. Peleg 2,11 & A. Richard Kitching 1,6,12,13

Autoreactivity to myeloperoxidase (MPO) causes anti-neutrophil cytoplasmic antibody

(ANCA)-associated vasculitis (AAV), with rapidly progressive glomerulonephritis. Here, we

show that a Staphylococcus aureus peptide, homologous to an immunodominant MPO T-cell

epitope (MPO409–428), can induce anti-MPO autoimmunity. The peptide (6PGD391–410) is

part of a plasmid-encoded 6-phosphogluconate dehydrogenase found in some S. aureus

strains. It induces anti-MPO T-cell autoimmunity and MPO-ANCA in mice, whereas related

sequences do not. Mice immunized with 6PGD391–410, or with S. aureus containing a plasmid

expressing 6PGD391–410, develop glomerulonephritis when MPO is deposited in glomeruli.

The peptide induces anti-MPO autoreactivity in the context of three MHC class II allomorphs.

Furthermore, we show that 6PGD391–410 is immunogenic in humans, as healthy human and

AAV patient sera contain anti-6PGD and anti-6PGD391–410 antibodies. Therefore, our results

support the idea that bacterial plasmids might have a function in autoimmune disease.
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Loss of tolerance to the neutrophil enzyme myeloperoxidase
(MPO) leads to anti-neutrophil cytoplasmic antibody
(ANCA)-associated vasculitis (MPO-AAV), an autoimmune

disease that can affect multiple tissues but which often involves
the kidney. In MPO-AAV, patients frequently develop rapidly
progressive glomerulonephritis and are at risk of end-stage kidney
failure1. The other major autoantigen known to be clinically
relevant in AAV is the neutrophil serine protease, proteinase-3
(PR3). MPO-AAV and PR3-AAV, while having some differences,
share similar pathogenic features. In MPO-AAV, tissue injury is
induced not by autoantibodies binding to target tissues such as
the kidney, but by anti-MPO autoantibodies (MPO-ANCA) that
bind to and activate neutrophils causing glomerular neutrophil
recruitment, degranulation, and NETosis2–4. These activated
neutrophils are not only themselves responsible for significant
tissue injury and damage, they also deposit MPO in and around
glomerular capillaries2,4–6. Thus, MPO accumulating in glomeruli
may function as an antigenic target for MPO-specific effector
CD4+ and CD8+ T cells that induce a further wave of cell-
mediated injury3,6–9.

Although it is unclear how tolerance to neutrophil cytoplasmic
antigens MPO and proteinase-3 (PR3) is lost and how disease is
triggered10, like many autoimmune diseases11, both genetic and
environmental factors are probably important12,13. In particular,
infection has been implicated both in clinical studies, and in
in vitro and in vivo experimental work5,14–17. Nasal carriage of
Staphylococcus aureus is associated with an increase in relapse of
disease in granulomatosis with polyangiitis, characterized by loss
of tolerance to PR3 (PR3-AAV)14. Less is known about S. aureus
colonization of people with MPO-AAV. While chronic nasal
carriage is uncommon in those with microscopic polyangiitis and
renal limited vasculitis, usually associated with MPO-ANCA18,
nasal colonization does occur19 and case reports implicate S.
aureus in the development of this condition20–22. There are
several mechanisms by which infections might influence AAV;
superantigens have been hypothesized to have a function23, and
pathogen-associated molecular patterns stimulate antigen pre-
sentation, B cells, and prime neutrophils24. The release of auto-
antigens (including PR3 and MPO) by neutrophils at sites of
infection might also affect the maintenance of tolerance. A further
potential consequence of the uptake of neutrophil-derived auto-
antigens by antigen-presenting cells at sites of inflammation with
innate immune system activation could be the development of
molecular mimicry. As molecular mimicry can lead to T-cell
receptor (TCR) cross-reactivity25–28, a microbial mimotope pre-
sented as a peptide by MHC Class II (MHCII) might activate
TCRs that also recognize PR3 or MPO-derived epitopes presented
by MHCII.

Some evidence supports the involvement of molecular mimicry
in the loss of tolerance to neutrophil antigens in AAV. The
complementary PR3 autoantigenic sequence, implicated in loss of
tolerance to PR3, shares homology with bacterial peptides,
including some from S. aureus29. Another target neutrophil
antigen, lysosomal antigen membrane protein-2 (LAMP-2),
shares sequence homology with the bacterial adhesin FimH, with
FimH immunization of rats inducing anti-LAMP-2 auto-
antibodies and glomerulonephritis30. However, it is not known
whether molecular mimicry has any function in loss of tolerance
to MPO and the resultant development of MPO-AAV.

Here, we demonstrate that molecular mimicry mechanistically
contributes to the loss of tolerance to MPO in AAV. We evaluate
whether microbial-derived peptides, including those from S.
aureus, with sequence homology to the immunodominant
MPO CD4+ T-cell epitope can induce the expansion of naive
CD4+ T cells that recognize MPO, with the subsequent devel-
opment of cross-reactive anti-MPO autoimmunity leading to

glomerulonephritis and AAV. We identify a S. aureus peptide, 6-
phosphogluconate dehydrogenase (6PGD)391–410 derived from a
plasmid-encoded protein that induces cellular and humoral anti-
MPO autoimmunity and experimental anti-MPO glomerulone-
phritis. Thus, molecular mimicry mediated by a bacterial plasmid
capable of horizontal transmission represents a potential
mechanism of loss of tolerance in autoimmune disease.

Results
Highly homologous peptides do not induce autoreactivity. To
determine if autoreactivity to the immunodominant MPO CD4+

T-cell epitope, mouse MPO409–428
6, could be induced by

microbial peptides, we performed a protein BLAST (blastp)
search using the core 11-mer sequence of the equivalent human
MPO peptide, 441RLYQEARKIVG451 (mouse MPO peptide
sequence and numbering: 415KLYQEARKIVG425). Sequences
from the Animalia kingdom (taxid:33208) and microbes not
known to colonize humans were excluded. Based on the search
results, we selected the four most homologous sequences (Sup-
plementary Table 1) and because we have demonstrated pre-
viously that a 20-mer peptide induces stronger immunoreactivity
to MPO6 (concordant with MHCII molecules having an open
ended binding groove31), we synthesized 20-mers based on the
four identified sequences. For example, for the Aspergillus
fumigatus HEAT repeat protein831–841 (831RWYQEARKIIF841)
the synthesized 20-mer was 825ISALPQRWYQEARKIIFEAA844.
To determine whether these sequences could induce anti-MPO
autoimmunity we immunized C57BL/6 mice with individual 20-
mers and measured T-cell reactivity to either the immunizing
peptide, MPO409–428, or recombinant mouse (rm)MPO using
interferon-γ (IFN-γ) and interleukin (IL)-17A ELISPOTs and
[3H]-T proliferation assays. While some homologous sequences
induced reactivity to themselves, none induced reactivity to
MPO409–428 or whole rmMPO (Fig. 1a–f), demonstrating that
high sequence homology per se does not result in immunological
cross-reactivity to MPO.

A S. aureus-derived peptide induces anti-MPO autoimmunity.
As S. aureus infections can precede the development of MPO-
AAV20–22, they are related to an overlapping form of vasculitis
(PR3-AAV)14,29 and nasal colonization of S. aureus has been
found in people with MPO-AAV19 we identified a S. aureus-
derived peptide with sequence homology to human MPO441–451

by protein BLAST. The highest scoring S. aureus-derived peptide
containing the previously defined critical MPO441–451 T-cell epi-
tope residues (Tyr443, Arg447, Ile449 and Val450: 441RLY-
QEARKIVG451)6 was selected (BLAST MAX score of 18.0 out of
38.4 compared to human MPO441–451). The identified peptide,
6PGD397–408 (397TDYQEALRDVVA408) was from 6-
phosphogluconate dehydrogenase (6PGD), an enzyme of the
pentose phosphate pathway, and was first described within the
plasmid pSJH101 from the clinically relevant S. aureus strain
JH132. To determine whether this 6PGD397–408 sequence induced
autoimmunity to MPO, we immunized C57BL/6 mice with
6PGD391–410 (391YFKNIVTDYQEALRDVVATG410). Mice
developed reactivity to 6PGD391–410, as well as autoreactivity to
both the immunodominant MPO CD4+ T-cell epitope,
MPO409–428, and to rmMPO (Fig. 2a). MPO409–428-immunized
mice served as a positive control. To determine if exposure to
6PGD391–410 induces in vivo expansion of MPO-specific T cells,
we immunized mice with 6PGD391–410 then enumerated the
number of MPO-specific T cells using an I-Ab tetramer pre-
senting the core mouse MPO T-cell epitope (415KLY-
QEARKIVG425). We compared the total numbers of MPO-
specific T cells from naive mice, OVA323–339 immunized mice and
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MPO409–428 immunized mice using MPO:I-Ab tetramers. Cells
were tetramer enriched using magnetic beads, then gated on live,
CD4+, Dump−, MPO:I-Ab tetramer+ cells. Compared with naive
mice and with mice immunized with OVA323–339, mice immu-
nized with 6PGD391–410 exhibited a ~ 30-fold increase in MPO:I-
Ab-specific CD4+ T cells (Fig. 2b). Thus, 6PGD391–410 induces
expansion of MPO415–425-specific CD4+ cells and pro-
inflammatory autoreactivity to MPO.

Serum from 6PGD391–410 immunized mice bound to fixed
thioglycolate induced peritoneal neutrophils from C57BL/6 mice,
in a perinuclear ANCA (pANCA) fashion (Fig. 3a) but not to
MPO deficient (Mpo−/−) mouse neutrophils, and to whole native
mouse (nm)MPO by enzyme-linked immune sorbent assay
(ELISA) (Fig. 3b), findings that meet the diagnostic criteria for
MPO-ANCA positivity in humans33. Furthermore, purified
serum IgG bound to the clinically relevant human linear B-cell
epitope MPO447–459 (Fig. 3c)34. To demonstrate antibody cross-
reactivity between 6PGD391–410 and MPO409–428, we performed
an inhibition ELISA. Purified serum IgG from 6PGD391–410

immunized mice was pre-incubated with 6PGD391–410, then used
to detect anti-MPO409–428 IgG by ELISA. Serum IgG from S.
aureus 6PGD391–410 immunized mice pre-incubated with S.
aureus 6PGD391–410 had lower antibody titers compared with
serum IgG pre-incubated with blocking buffer only (Fig. 3d).
These cross-reacting antibodies were functionally active, as serum
IgG from 6PGD391–410 immunized mice induced reactive oxygen
species production from LPS-primed bone marrow mouse
neutrophils in vitro as detected by the conversion of

dihydrorhodamine to rhodamine 123 (Fig. 3e). In vivo, passive
transfer of this IgG fraction induced acute neutrophil glomerular
recruitment in LPS-primed C57BL/6 mice, albeit at a low level
(Fig. 3f). These data demonstrate that antibodies specific for S.
aureus 6PGD391–410 cross-react with MPO409–428 and that the S.
aureus-derived peptide induces both anti-MPO T-cell autoreac-
tivity and biologically active MPO-ANCA.

To identify if the S. aureus-derived 6PGD protein is
immunoreactive in healthy humans and in AAV patients, we
measured IgG antibodies specific for the S. aureus pSJH101 6PGD
protein by ELISA in sera from a Groningen cohort of healthy
human subjects, 31 MPO-AAV patients and 30 PR3-AAV
patients. We found detectable levels of S. aureus 6PGD-specific
IgG in all three groups (Fig. 4a) implying that S. aureus pSJH101
6PGD is an immunogenic protein in humans. Furthermore, sera
exhibited reactivity to the pSJH101 JH1 S. aureus 6PGD391–410

sequence by ELISA (Fig. 4b), demonstrating the immunogenicity
of this sequence in humans. There were no significant differences
in antibody titers between groups. To identify whether
6PGD391–410 can cross-react with anti-MPO antibodies in acute
MPO-AAV, a Monash cohort of 15 patients with acute, active
MPO-AAV was assessed (Supplementary Table 2). Purified IgG
from these patients was assessed by inhibition ELISA by pre-
incubation with 6PGD391–410, then antibodies to human
MPO435–454 (the homologous sequence to mouse MPO409–428)
were examined by ELISA. Of the 15 patients, five showed a
significant reduction in anti-human MPO435–454 titers after
incubation with 6PGD391–410 (Fig. 4c).
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Fig. 1 Microbe-derived peptides with closest sequence homology to MPO409–428 do not induce cross-reactivity to MPO. C57BL/6 mice (n= 5 each group)
were immunized with peptides, either a OVA323–339 (negative control), bMPO409–428 (positive control), c Treponema vincentii-derived hypothetical protein,
HP167–186, d Aspergillus fumigatus-derived HEAT repeat protein, HRP825–844, e Helicobacter pylori-derived RNA polymerase factor sigma-54, RPF163–182, or
f Bacteroides sp.-derived chloramphenicol O-acetyltransferase, COA104–123, then, T-cell recall responses measured ex vivo by restimulating draining lymph
node cells with either the immunizing peptide, MPO409–428 or recombinant mouse MPO (rmMPO) by [3H]-thymidine proliferation assays (top row), and
ELISPOT for IFN-γ (middle row) or IL-17A (bottom row). Each dot represents the response from one mouse, error bars are the mean ± s.e.m. Data are
representative of two independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 by Kruskal–Wallis test. Source data are provided as a Source Data file
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S. aureus clonal specificity for the 6PGD397–408 mimotope. This
particular 6PGD397–408 sequence is unique to the Staphylococcus
genus. S. aureus makes up the majority of publicly available
staphylococcal genomes and the 6PGD397–408 sequence of interest
predominates in a clinically relevant S. aureus clonal complex
(CC) known as CC5, to which the JH-1 strain belongs35,36. We
assessed the multi-locus sequence type of 136 of the
143 sequenced S. aureus strains containing the 6PGD397–408

mimic sequence and found that 115 (85% of those typed) of them
were CC5. S. aureus CC5 strains have been described in Asia,
America, Australia, Africa, and Europe35–37. There are 2544
publicly available CC5 S. aureus genomes, indicating that ~ 5% of
sequenced CC5 strains contain the 6PGD397–408 sequence. To
assess the specificity of the CC5 related 6PGD397–408 sequence in
inducing cross-reactivity to MPO, we selected the four 6PGD
variants most homologous to the pSJH101-derived S. aureus
sequence (Supplementary Table 3), commonly found in
sequenced S. aureus genomes. While each 6PGD peptide induced
T-cell reactivity to itself, remarkably, none induced cross-reactive
anti-MPO T-cell responses (Fig. 5a–f). Mice immunized with
these variants did not develop MPO-ANCA, either by indirect
immunofluorescence on mouse neutrophils (Fig. 6a) or by ELISA
(Fig. 6b). When we measured anti-MPO447–459-specific IgG in
purified serum IgG, detectable levels of IgG were found only in
Variant 1, but not in any of the other 6PGD peptide variants
(Fig. 6c). Therefore, while the variant sequences of this S. aureus

6PGD-derived peptide are immunogenic, it is only the JH1,
pSJH101 6PGD397–408 sequence that induces anti-MPO T-cell
responses and MPO-ANCA. To exclude the possibility that the
orthologous, but dissimilar mammalian 6PGD sequence
(6PGD394–413) itself represented a new autoimmune target, mice
were immunized with mouse 6PGD394–413. This sequence did not
induce cross-reactivity to MPO409–428 or whole MPO (Supple-
mentary Fig. 1).

Immunization with 6PGD391–410 leads to anti-MPO nephritis.
To determine if the loss of tolerance to MPO induced by S. aureus
JH1-derived pSJH101 6PGD391–410 could result in anti-MPO
glomerulonephritis, we used our established model of T-cell-
mediated anti-MPO glomerulonephritis9,38. In this model,
C57BL/6 mice immunized with MPO lose tolerance to MPO but
do not develop ANCA of sufficient pathogenicity to induce glo-
merulonephritis. Therefore, MPO is deposited within the glo-
merulus via neutrophils transiently recruited by injection of low
dose of heterologous anti-mouse basement membrane globulin.
In this context, effector MPO-specific T cells recognize MPO
peptides and mediate glomerular injury6,8,9. MPO-immunized
mice develop glomerulonephritis with pathological albuminuria
and segmental glomerular necrosis. Using this protocol, mice
immunized with the S. aureus JH1-derived pSJH101 6PGD391–410

peptide developed glomerulonephritis of similar severity to MPO-
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immunized mice with elevated albuminuria, glomerular seg-
mental necrosis, and inflammatory cell infiltrates (Fig. 7). Fur-
thermore, the pSJH101 6PGD391–410 immunized mice developed
MPO-ANCA and T-cell reactivity to rmMPO, detected by mea-
suring dermal delayed type hypersensitivity to rmMPO. A further
group of mice was immunized with the Variant 3 peptide of
6PGD391–410 (Supplementary Table 3), chosen because, of the
four variants it was found most frequently in sequenced strains of

S. aureus. As hypothesized, mice immunized with Variant 3 of
6PGD391–410 did not develop disease (Fig. 7), demonstrating the
relative specificity of the JH1 pSJH101 6PGD391–410 sequence in
nephritogenic anti-MPO autoimmunity.

S. aureus JH1 with pSJH101 immunization leads to nephritis.
To address a specific role for the S. aureus pSJH101 plasmid-
derived 6PGD391–410 sequence in anti-MPO autoimmunity and
glomerulonephritis in the context of whole bacteria, we immu-
nized mice with either heat-killed S. aureus JH1 strain containing
the pSJH101 plasmid or heat-killed JH1 that had been cured of
the pSJH101 plasmid (Supplementary Fig. 2a) and induced the
same model of glomerulonephritis. Compared to mice immu-
nized with cured heat-killed S. aureus JH1, mice immunized with
S. aureus JH1 containing pSJH101 developed glomerulonephritis
with pathological albuminuria, glomerular focal, and segmental
necrosis and infiltrates of CD4+ T cells, CD8+ T cells and
macrophages (Fig. 8). Mice immunized with S. aureus JH1 con-
taining the pSJH101 plasmid also developed MPO-ANCA and
MPO-specific secretion of IFN-γ and tumor necrosis factor
(TNF) measured in supernatants of cultured splenocytes resti-
mulated with rmMPO (Fig. 8). Therefore, the pSJH101 plasmid
containing the cross-reactive S. aureus 6PGD sequence is
required for anti-MPO cross-reactivity and disease.

Plasmid and strain independent 6PGD induced anti-MPO
immunity. To determine if it is the specific 6PGD sequence that
causes disease independent of other proteins encoded by pSJH101
and independent of the S. aureus strain, we cloned 6PGD con-
taining the mimic 397TDYQEALRDVVA408 sequence into the
inducible vector pALC2073 (that does not otherwise express
6PGD) to create pALC2073-6PGD. We then transformed a
common laboratory S. aureus strain (RN422039, that contains
neither plasmids nor 6PGD 397TDYQEALRDVVA408) with either
pALC2073-6PGD or pALC2073 alone. Enhanced expression of
6PGD was confirmed after the induction of anhydrotetracycline
(Supplementary Fig. 2b). We immunized mice with heat-killed S.
aureus RN4220 expressing 6PGD or heat-killed S. aureus RN4220
with pALC2073 alone, and disease was again triggered by low-
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dose heterologous anti-mouse basement membrane antibodies.
Mice immunized with S. aureus RN4220 with pALC2073 con-
taining 6PGD developed elevated albuminuria, glomerular seg-
mental necrosis, increases in glomerular CD4+ T cells, CD8+

T cells and macrophages, as well as MPO-specific IgG and MPO-
specific splenocyte secretion of IFN-γ and TNF (Fig. 9). Mice
immunized with RN4220 with pALC2073 alone were similar to
OVA-immunized mice (Fig. 9). Therefore, it is the 6PGD
sequence 391YFKNIVTDYQEALRDVVATG410 itself that induces
anti-MPO pathogenic autoreactivity, independent of the S. aureus
strain or plasmid used.

MHCII promiscuous induction of anti-MPO cross-reactivity.
The dominant MPO T-cell epitope MPO409–428, defined in I-Ab

expressing C57BL/6 mice is MHCII promiscuous, as MPO409–428

also induces autoreactivity in BALB/c mice expressing I-Ad/Ed

and in humanized HLA transgenic mice expressing HLA-DR156.
Here, we show that the core MPO T-cell epitope, MPO415–425,
previously defined in C57BL/6 mice is the same in both BALB/c
and HLA-DR15 mice (Supplementary Fig. 3a, b) and the critical
amino acids, defined by alanine substitution, are similar (Sup-
plementary Fig. 3c). To determine if the pSJH101-derived
6PGD391–410 induces anti-MPO cross-reactivity in mice expres-
sing different MHCII molecules, we immunized either BALB/c or
humanized HLA-DR15 transgenic mice with 6PGD391–410 and
measured T-cell reactivity, by [3H]-T proliferation assays and
ELISPOT for IFN-γ and IL-17A, to 6PGD391–410 itself and cross-
reactivity to MPO409–428 and to rmMPO. We found that both
BALB/c and HLA-DR15 transgenic mice developed immunor-
eactivity to 6PGD391–410, and cross-reactivity both to MPO409–428

and to rmMPO (Fig. 10a, b), supporting the notion that pSJH101

6PGD391–410 sequence can be effectively presented and induce
anti-MPO cross-reactivity by a variety of MHCII alleles.

Discussion
Although we know that a critical step in the development of
autoimmune disease is the activation of pro-inflammatory T cells
that react with self-antigens, the steps that precipitate the devel-
opment and activation of these pathogenic T cells are still unclear.
Recently, we have shown that peptide register is a key determi-
nant of the phenotype of the autoreactive T-cell repertoire40.
While molecular mimicry is often flagged as a potential trigger for
the activation of existing autoreactive pro-inflammatory T cells,
fewer studies have formally demonstrated microbial-self-peptide
cross-reactivity, which is often attributable to the lack of under-
standing of the self-antigen that precipitates disease26–28. The
current studies not only identify a mimotope peptide, pSJH101
6PGD391–410 that induces anti-MPO T and B-cell autoimmunity,
they also highlight both the sensitivity of such mimicry, as very
similar sequences to the mimic peptide were unable to induce
cross-reactivity. Importantly our studies demonstrate the poten-
tial for mimicry to be induced by a plasmid-encoded microbial
sequence, identifying a potential new role for bacterial plasmids
in the pathogenesis of disease.

We and others have identified a “molecular hotspot” within
MPO where an immunodominant T-cell epitope and a disease-
associated antibody epitope overlap6,8,34. PR3-AAV is classically
associated with S.aureus14,15 and reports also implicate S. aureus
infections in MPO-AAV19–22. However, despite the presence of
neutrophil-derived MPO at sites of infection in a potentially
“dangerous” immunological context, the links between the loss of
tolerance to MPO and microbial-derived peptides are unclear.
Using a standard and unbiased approach of searching microbial
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proteomes in silico for peptide sequences with the highest
sequence similarities to MPO441–451 we identified a number of
microbial peptides from human pathogens, but experimentally
these sequences did not induce anti-MPO cross-reactivity.
However, when S. aureus-derived peptides sharing the critical
amino acid residues were examined, we identified a plasmid-
derived peptide that induces anti-MPO immunoreactivity in the
context of several different MHCII molecules and that is
immunogenic in humans.

This MPO mimotope, pSJH101 6PGD391–410, is overall less
homologous than the other non-cross-reactive microbial-derived
peptides tested, demonstrating that sequence similarity itself is
not necessarily a predictor of molecular mimicry41. Instead,
specific structural determinants may be more of a contributory
factor that leads to cross-reactivity42. Our experiments, using
similar 6PGD391–410 sequences from a range of S. aureus strains
demonstrated that even single amino-acid substitutions were
sufficient to abrogate anti-MPO cross-reactivity. For example, in
Variant 1, a substitution from glutamic acid (E) to the smaller
aspartic acid (D), and in Variant 2, a substitution from the
negatively charged aspartic acid (D) to the uncharged asparagine
(N), prevented the induction of anti-MPO cross-reactivity,
highlighting the exquisite sensitivity of TCRs to specific peptide
structures.

Using ex vivo restimulation assays, as well as MPO:I-Ab tet-
ramers, we have demonstrated that pSJH101 6PGD391–410 can

induce anti-MPO CD4+ T-cell cross-reactivity. Furthermore, in
addition to cellular immunity, the 6PGD391–410 peptide also
induces autoantibodies to whole nmMPO, to the disease-
associated linear MPO peptide and to an overlapping linear
MPO peptide. The 6PGD391–410 mimotope inhibited autoanti-
body binding to this peptide in mice via a solid phase competitive
ELISA. 6PGD391–410 also inhibited binding to human MPO435–454

(equivalent to mouse MPO409–428) in 5/15 (33%) of humans with
acute MPO-AAV. Collectively, these data confirm a functional
interaction between these overlapping epitopes. Thus, the
pSJH101 6PGD391–410 peptide cross reacts with an MPO T-cell
epitope, but it is also likely to be relevant to these linked B-cell
epitopes. While it is possible that antibodies to 6PGD391–410 serve
as effectors, as for example in the seminal studies of Kaplan and
Meyesarian, and others for streptococcal antigens and acute
rheumatic fever43,44, we suggest that this type of direct reactivity
at an effector level is less likely in MPO-AAV. Cross-reactivity at
a B cell/B-cell receptor level is more likely to be relevant to the
promotion of B-cell autoreactivity via binding of 6PGD391–410 to
the B-cell receptor of potentially autoreactive B cells. This would
promote autoreactive anti-MPO B-cell activation by autoreactive
CD4+ T cells reacting to the same peptide. In this context, the
relative affinities of 6PGD391–410 and MPO409–428 (in humans
MPO435–454) to anti-MPO antibodies and whether 100% inhibi-
tion occurs, is unlikely to be of critical importance. Furthermore,
6PGD391–410 alone is unlikely to have a measurable effect on the
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binding of MPO-ANCA to neutrophils by indirect immuno-
fluorescence, as there are known to be multiple B-cell epitopes in
active MPO-AAV34.

There have been several studies of nasal carriage of S. aureus in
people with PR3-AAV, due in part to sinonasal disease being
common in PR3-AAV14,15,19. However, the potential relationship
between S. aureus and MPO-AAV has been largely unexplored,
though colonization with S. aureus does occur in patients with
this disease19. Most S. aureus strains known to carry the
nephritogenic 6PGD391–410 sequence belong to the CC5 clonal
complex19. In S. aureus carriers with established MPO-AAV, 11%
of isolates were CC5 (healthy controls 5%, PR3-AAV 15%)19.
CC5 is a globally distributed clonal complex of S. aureus found in
both community and hospital settings35,36,45.

It is not yet known in humans whether carriage or infection of
S. aureus strains containing the cross-reactive 6PGD391–410

sequence promotes the induction of MPO-AAV or precipitates
disease relapse. The conditions for 6PGD391–410 recognition to
induce anti-MPO T-cell cross-reactivity may include S. aureus
infection, intermittent colonization or chronic colonization.
Furthermore, while nasal swabs are the most common way of
screening for S. aureus, carriage also occurs on the skin, and in
the throat, vagina, anus, and lower gastrointestinal tract46–48. It is
unlikely that the 6PGD391–410 mimotope is the sole factor that
determines loss of tolerance to MPO, given the frequency of
antibodies to the 6PGD protein and peptide, and the multiple
genetic and environmental factors that contribute to the devel-
opment of MPO-AAV.

Although our data do not conclusively prove a role for
6PGD391–410, they suggest that exposure to certain S. aureus
strains may be a precipitating factor in the loss of tolerance to
MPO and the development of MPO-AAV. Our data also
demonstrates that plasmids, acting as mobile genetic elements,
may transfer a tendency to autoreactivity. The transfer of anti-
biotic resistance via plasmids is well known. However, the hor-
izontal gene transfer of the cross-reactive 6PGD that we emulated
by transforming S. aureus RN4220 with pALC2073-6PGD
demonstrates that plasmids harboring cross-reactive peptide
sequences can induce loss of tolerance. In conclusion, our find-
ings identify pSJH101 6PGD391–410 as an MPO cross-reactive
mimotope peptide. 6PGD391–410 is part of a protein that is
immunogenic in humans, can induce loss of tolerance to MPO
and experimental anti-MPO glomerulonephritis and MPO-AAV.
This sequence is derived from a plasmid found in only some
strains of S. aureus, implicating plasmid-derived antigens in the
loss of tolerance to self-antigens.

Methods
Mice. C57BL/6 and BALB/c mice were obtained from the Monash Animal
Research Platform, Clayton, Monash University. Mpo−/− mice49 and HLA-DR15
Tg50 mice were bred at the Monash Medical Center Animal Facility (MMCAF),
Monash Medical Center, Clayton. Mice were housed in the SPF facilities at
MMCAF and experiments were conducted in male mice aged 6–10 week. All
animal studies were approved by the Monash University Animal Ethics Committee
(Committee MMCB) and complied with the Australian code for the care and use of
animals for scientific purposes (2013).

Human samples. Serum samples from AAV patients and healthy subjects (HS)
were obtained from an existing collection of the ‘Groningen cohort of AAV’, and
sera and plasma exchange effluent from Monash patients with acute MPO-AAV
were obtained from the Monash Vasculitis Registry and Biobank. Institutional
review board (IRB) approval was previously obtained from the Medical Ethics
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Kruskal–Wallis test. Source data are provided as a Source Data file
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Committee of the University Medical Center Groningen and the Monash Health
Human Research Ethics Committee, respectively. Written informed consent was
obtained from all patients and HS, and all experiments were conducted in accor-
dance with the guidelines of the Declaration of Helsinki. All patients fulfilled the
Chapel Hill Consensus Conference definitions for the diagnosis of AAV. All patient
samples were confirmed positive for either MPO-ANCA or PR3-ANCA by capture
ELISA and indirect immunofluorescence on ethanol fixed neutrophils51,52.

Peptides and proteins. All peptides were synthesized at > 95% purity, confirmed
by HPLC (Mimotopes). The residue numbers, in subscript, and peptide sequences,
in brackets, of the peptides used are: mouse MPO409–428 peptide (PRWNGEK-
LYQEARKIVGAMV), Treponema vincentii hypothetical protein167–186
(LRKQLKRLYKEARKIQKCIP), Aspergillus fumigatus HEAT repeat protein825–844
(ISALPQRWYQEARKIIFEAA), Helicobacter pylori RNA polymerase factor sigma-
54163–182 (RELDNNELYEEARKIILNLE), Bacteroides sp. chloramphenicol O-
acetyltransferase104–123 (YHEDFETFYQEARKIIDSIP), S. aureus pSJH101-derived
6PGD391–410 (YFKNIVTDYQEALRDVVATG), S. aureus 6PGD391–410 Variant 1
(YFKNIVTDYQDALRDVVATG), S. aureus 6PGD391–410 Variant 2 (YFKNIVT-
NYQEALRDVVATG), S. aureus 6PGD391–410 Variant 3 (YFKNIVTEYQ-
DALRDVVATG), S. aureus 6PGD391–410 Variant 4 (YFKNIVTNY
QDALRDVVATG), Mus musculus 6PGD394–413 (FFKSAVDNCQDSWRRVIS
TGV), and control OVA323–339 peptide (ISQAVHAAHAEINEAGR). Sequences of

the shortened MPO peptides are listed in Supplementary Table 3. Immunizations
to induce CD4+ T-cell responses were performed with 20-mers containing the core
11 amino acids because MHC class II molecules have open-ended binding pockets
and additional amino acids on either side enhances immunoreactivity6. MPO was
produced using a baculovirus system53 and OVA was purchased (Sigma-Aldrich).
Recombinant S. aureus pSJH101 6PGD (Genbank ID: CP000737.1) (GeneArt®,
ThermoFisher Scientific) was produced using the Champion pET101 Directional
TOPO Expression Kit with BL21 Star (DE3) One Shot chemically competent E.
Coli (ThermoFisher Scientific). Expression was confirmed by using anti-V5
monoclonal antibodies by western blotting and purified by 6xHis tag elution using
nickel resins (Promega).

Generation of MPO:I-Ab tetramers. MHCII monomers were produced in High
Five insect cells (Trichoplusia ni BTI-Tn-5B1-4 cells, Invitrogen) using the bacu-
lovirus expression system40,54,55. DNA encoding the I-Ab α- and β-chains and the
mouse MPO415–428 (415KLYQEARKIVGAMV428), fused to the N-terminus of the
β-chain via a flexible linker (SGGSGSGSAS), were cloned into pFastBac Dual
vector and recombinant baculovirus propagated in Sf9 insect cells (Spodoptera
frugiperda, Invitrogen). The C-termini of the I-Ab α- and β-chains contained
enterokinase cleavable Fos and Jun leucine zippers, respectively, to promote correct
heterodimeric pairing. The C-terminus of the β-chain also contained a BirA ligase
recognition sequence for biotinylation and poly-histidine tag for purification,
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immediately following the Jun leucine zipper sequence. MPO:I-Ab monomers were
purified from baculovirus infected High Five insect cell supernatants through
immobilized metal ion affinity (Ni Sepharose 6 Fast-Flow, GE Healthcare), size
exclusion (S200 Superdex 16/600, GE Healthcare) and anion exchange (HiTrap Q,
HP, GE Healthcare) chromatography. MPO:I-Ab tetramers were assembled by the
addition of Streptavidin-PE (BD Biosciences)54,55.

Plasmids and Staphylococcus aureus strains. The pSJH101 plasmid was found
within a clinical isolate of S. aureus JH1 (also known as strain A8090)56. To cure the
pSJH101 plasmid from S. aureus JH1, cells were cultured with 0.004% SDS at 45 °C
for 24 h57. To confirm the presence or absence of the pSJH101 plasmid containing
6PGD, PCR was performed on cell lysates using primers specific for: cls2, forward
primer 5′ GCAAGGTACCATGATAGAGTTATTATCCATTGC 3′, reverse primer
5′ GCAAGAGCTCTTAGTGGTGATGGTGATGATGTAAGATAGGTGACAATA
ATTGTG 3′; pSJH101, forward primer 5′ CATTGGCGAATCAACAACAC 3′,
reverse primer 5′ ACTCCACTTTTGGGGGAACT 3′; and the pSJH101-derived
6PGD, which do not amplify the more common 6PGD (Variant 3) present in the

chromosomal DNA of JH1: forward primer 5′TCATCATCTAACAGCGGAAGT3′
and reverse primer 5′ ACCCCGTAAAATTTTGTTGAT 3′.

The 6PGD sequence (derived from pSJH101) was cloned into the tetracycline
inducible pALC2073 plasmid58. S. aureus RN4220, which contains neither
plasmids nor the 6PGD 397TDYQEALRDVVA408 sequence, was transformed by
electroporation with either pALC2073 containing 6PGD or pALC2073 without
6PGD59,60. To confirm expression of 6PGD we performed PCR on cDNA from
cultured S. aureus RN4220 containing pALC2073 with 6PGD with or without
tetracycline, S. aureus RN4220 containing pALC2073 without 6PGD cultured with
tetracycline. As a control for specificity, we performed PCR using chromosomal
DNA of S. aureus RN4220. The primers we used were: forward primer 5′ TCATCA
TCTAACAGCGGAAGT 3′ and reverse primer 5′ ACCCCGTAAAATTTTG
TTGAT 3′ chromosomal DNA of chromosomal DNA of S. aureus RN4220. The
primers we used were: forward primer 5′ TCATCATCTAACAGCGGAAGT 3′ and
reverse primer 5′ ACCCCGTAAAATTTTGTTGAT 3′. For in silico multi-locus
sequence typing (MLST), the software mlst was used to identify the sequence types
(STs) after scanning the genomes of interest61, then STs were grouped into CC in
which each ST in the CC shares at least six identical alleles of the seven loci with at
least one other member of the group62.
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Induction and assessment of T-cell responses. Mice were immunized with 10 µg
of peptide emulsified in Freund’s complete adjuvant (FCA) subcutaneously at the
base of the tail. Ten days later, draining lymph node cells were isolated and cul-
tured in [3H]-T proliferation assays and/or IFN-γ and IL-17A ELISPOTs. Lymph
node cells were cultured in triplicate in supplemented RPMI media (10% vol/vol
FCS, 2 mM L-glutamine, 100 UmL−1 penicillin, 0.1 mgmL−1 streptomycin, 50 µM
2-Mercaptoethanol) at 5 × 105 cells per well in the presence or absence of peptide
(10 µg ml−1) or whole protein antigen (10 µg ml−1) in a humidified incubator at 37
°C, 5% CO2 for 72 h in proliferation assays and 18 h in ELISPOTs. In proliferation
assays, [3H]-thymidine was added during the last 16 h of culture and results
expressed as a stimulation index. For IFN-γ and IL-17A ELISPOTs (eBioscience,
anti-IFN-γ antibodies 551216, 1:250 and 554410, 1:250; anti-IL-17A antibodies
555068, 1:1000 and 555067, 1:1000), spots were developed according to the
manufacturer’s protocol and results expressed as the mean number of spots minus
baseline (media alone). To determine the in vivo expansion of MPO-specific cells,

mice were first immunized with 10 μg of peptide emulsified in FCA sub-
cutaneously at the base of the tail, then, 7 days later, the inguinal, axillary, brachial,
cervical, mesenteric, and periaortic lymph nodes and spleen were harvested. Fol-
lowing, tetramer-based magnetic enrichment63,64, cells were incubated with Live/
Dead fixable Near IR Dead Cell Stain (Thermo Scientific) then stained with anti-
mouse CD4-Pacific Blue (BioLegend, 100531, 1:400) and “dump” antibodies anti-
mouse CD11c (all BioLegend, 117311, 1:100), CD11b (101217, 1:100), F4/80
(123120, 1:100), CD8a (100723, 1:100), B220-Alexa Fluor 488 (103225, 1:100). The
MPO:I-Ab tetramer+ gate was set based on the CD4+ live lymphocyte population
(see Supplementary Fig. 4 for gating strategy).

Induction and assessment of anti-MPO antibody responses. C57BL/6 mice
were immunized with 10 µg of either OVA323–339, MPO409–428, S. aureus pSJH101-
derived 6PGD391–410, S. aureus Variant 1 6PGD391–410, S. aureus Variant 2
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6PGD391–410, S. aureus Variant 3 6PGD391–410 or S. aureus Variant 4 6PGD391–410;
first on day 0 emulsified in (FCA), then boosted on days 7 and 14 emulsified in
Freund’s incomplete adjuvant (FIA). Serum was collected from mice by cardiac
puncture on day 28 and Protein G purified for indirect immunofluorescence on
ethanol fixed neutrophils. Thioglycolate induced peritoneal neutrophils were
obtained from either Mpo+/+ or Mpo−/− C57BL/6 mice, cytospun onto glass slides
then ethanol fixed6,33. Pooled serum IgG was incubated with slides for 1 h, then
anti-mouse IgG detected using a chicken anti-mouse Alexa Fluor 488 secondary
antibody (Molecular Probes, A-21200, 1:200). DAPI was used as a nuclear stain
and fluorescence detected by either fluorescence microscopy or confocal
microscopy.

ELISAs for anti-MPO and anti-6PGD antibodies . Serum was collected from mice
by cardiac puncture on day 28 and either used for the detection of anti-MPO IgG
antibodies, anti-MPO447–459 IgG antibodies by ELISA and inhibition ELISAs for
the detection of anti-MPO409–428 IgG antibodies. The anti-MPO IgG ELISA was
performed on rmMPO coated, 2% casein/PBS blocked 96-well plates. Anti-
MPO447–459 IgG ELISA was performed on MPO447–459 coated, 2% casein/PBS
blocked 96-well plates. Serum (diluted 1:50 in PBS) or pooled IgG (100 μg ml−1 in
PBS) was incubated for 16 h at 4 °C, then anti-mouse IgG detected using a
horseradish peroxidase (HRP) conjugated secondary antibody (Amersham, NA-
931, 1:2000). For inhibition ELISA, serum IgG (10 μg ml−1) was pre-incubated
with S. aureus pSJH101-derived 6PGD391–410 on a 96-well ELISA plate (coating
concentration 10 μg ml−1), then transferred to an MPO409–428 coated (10 μg ml−1)
96-well ELISA plate.

Human sera were tested for reactivity to 6PGD (HS n= 23, MPO-AAV n= 31
and PR3-AAV n= 30) and to S. aureus pSJH101 6PGD391–410 (HS n= 14, MPO-
AAV n= 26) and PR3-AAV patients (n= 24) by ELISA. The HS groups were
different between assays, and not all samples assayed for whole 6PGD were
available for the S. aureus pSJH101 6PGD391–410 assay. ELISA plates (NUNC
Maxisorp, Thermo Fisher Scientific, Breda, The Netherlands) were coated with 100
μl of 5 μg ml−1 recombinant S. aureus pSJH101 6PGD or 10 μg ml−1 S. aureus
pSJH101 6PGD391–410 peptide diluted in 0.1 M carbonate-bicarbonate buffer (pH
9.6) overnight. Plates were washed with PBS pH 7.4 with 0.05% Tween-20 and
incubated for 1 h at room temperature (RT) with 200 μl 2% bovine serum albumin
(BSA)/PBS per well to prevent non-specific binding. Next, plates were incubated
with 100 μl serum samples (1:50 in PBS 1% BSA, 0.05% Tween-20, 2 h at RT). After
washing, plates were incubated with alkaline phosphatase goat anti-human IgG
(Sigma, St. Louis, USA, A-5403, 1:1000) for one hour at RT and p-nitrophenyl-
phosphate disodium (Sigma) was used as a substrate. Absorbance was measured at
405 nm. For inhibition ELISA, IgG purified from sera or plasma exchange effluent
(50 μg ml−1) was first pre-incubated with S. aureus pSJH101-derived 6PGD391–410

on a 96-well ELISA plate (coating concentration 10 μg ml−1), then transferred to a
human MPO435–454 coated (10 μg ml−1) 96-well ELISA plate.

Induction of mouse anti-MPO glomerulonephritis. C57BL/6 mice were immu-
nized subcutaneously at the tail base with either 20 µg of OVA (control antigen),
20 µg of rmMPO, 100 µg of S. aureus pSJH101 6PGD391–410, 100 µg of S. aureus
Variant 3 6PGD391–410, 10 mg of heat-killed S. aureus JH1, 10 mg of cured heat-
killed S. aureus JH1, 10 mg of heat-killed S. aureus RN4220 transformed with
pALC2073 with 6PGD or 10 mg of heat-killed S. aureus RN4220 transformed with
pALC2073 without 6PGD. Proteins and peptides were injected first emulsified in
Freund’s Complete Adjuvant (FCA) (day 0), then 7 days later emulsified in
Freund’s Incomplete Adjuvant (FIA) (day 7). S. aureus strains were emulsified in
Titermax (Sigma-Aldrich) and injected on days 0 and 7. On day 16, MPO was
deposited in glomeruli by recruiting neutrophils using a low dose of intravenously
injected heterologous anti-mouse basement membrane antibodies9,38,65. Experi-
ments ended on day 20. Albuminuria was determined by ELISA (Bethyl Labora-
tories, E90-134) on urine collected 24 h before the end of experiment. Segmental
glomerular necrosis was assessed on formalin fixed, paraffin embedded, 3 µm thick,
PAS-stained sections and defined as the accumulation of PAS-positive material
with hypocellularity.

CD4+ T cells, CD8+ T cells, macrophages, and neutrophils were detected by
immunoperoxidase staining frozen kidney sections. A minimum of 20
consecutively viewed glomeruli were assessed per animal. The primary mAbs used
were clones GK1.5 (anti-mouse CD4; American Type Culture Collection, 20 μg ml
−1), 53–6.7 (anti-CD8a; BioXcell, 10 μg ml−1), FA/11 (macrophages, anti-mouse
CD68; from GL Koch, MRC Laboratory of Molecular Biology, Cambridge, United
Kingdom, 10 μg ml−1), and RB6-8C5 (neutrophils, anti-Gr-1, 2.5 μg ml−1). MPO-
specific delayed type hypersensitivity was measured by intradermal injection of 10
μg of rmMPO, diluted in PBS, into the left plantar footpad. The same volume of
PBS was administered into the contralateral footpad. DTH was quantified 24 h later
by measurement of the difference in footpad thickness. IFN-γ, TNF, IL-17A, and
IL-6 in rmMPO stimulated splenocyte cultures was measured by cytometric bead
array (BD Biosciences, 560485).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data for Figs. 1, 2, 3b–f, 4, 5b–c, 6–10, and Supplementary Figs. 1-3 are presented
in the Source Data file. Other data that support the findings of this study are available
from the corresponding author upon reasonable request.
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