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Micromachines is instituting the Best Paper Awards to recognize outstanding papers
published in the journal. We are now pleased to announce the winners of the “Microma-
chines 2022 Best Paper Awards”.

Papers published in 2020 were preselected by the Micromachines Editorial Office on
the basis of the number of citations and downloads from the website. The winners from
the nominations were determined by an award committee, the Editor-in-Chief, together
with the Editorial Office. The following five top-voted papers, in no particular order, have
won the Micromachines 2022 Best Paper Awards:

1. Research Article

Size Sorting of Exosomes by Tuning the Thicknesses of the Electric Double Layers
on a Micro-Nanofluidic Device

By Satoko Fujiwara, Kyojiro Morikawa, Tatsuro Endo, Hideaki Hisamoto and Kenji
Sueyoshi (Figure 1).
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pose to sort their size by controlling their electrokinetic migration in nanochannels in a 
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layers in the nanochannels. This approach was demonstrated experimentally for exo-
somes smaller than 250 nm. Using different running-buffer concentrations (1 × 10−3, 1 × 
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Synopsis of the paper by the authors:
Exosomes, a type of extracellular vesicle with a diameter of 30–150 nm, perform

key biological functions such as intercellular communication. Recently, size sorting of
exosomes has received increasing attention in order to clarify the correlation between
their size and components. However, such sorting remains extremely difficult. Here, we
propose to sort their size by controlling their electrokinetic migration in nanochannels in a
micro-nanofluidic device, which is achieved by tuning the thickness of the electric double
layers in the nanochannels. This approach was demonstrated experimentally for exosomes
smaller than 250 nm. Using different running-buffer concentrations (1 × 10−3, 1 × 10−4,
and 1 × 10−5 M), most of the exosomes larger than 140, 110, and 80 nm were successfully
cut off downstream of the nanochannels, respectively. Therefore, the proposed method is
applicable for the size sorting of exosomes [1].
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2. Research Article

Additive Manufacturing of Sub-Micron to Sub-mm Metal Structures with Hollow
AFM Cantilevers

By Giorgio Ercolano, Cathelijn van Nisselroy, Thibaut Merle, János Vörös, Dmitry
Momotenko, Wabe W. Koelmans and Tomaso Zambelli (Figure 2).
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clinical utilization. Herein, we present a novel wireless biopsy CE employing active five-
degree-of-freedom locomotion and a biopsy-needle punching mechanism for the histo-
logical analysis of the intestinal tract. A medical biopsy punch is attached to a screw mech-
anism, which can be magnetically actuated to extrude and retract the biopsy tool for tissue 
extraction. The external magnetic field from an electromagnetic actuation (EMA) system 
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We describe our force-controlled 3D-printing method for layer-by-layer additive mi-

cromanufacturing (µAM) of metal microstructures. Hollow atomic force microscopy can-
tilevers are utilized to locally dispense metal ions in a standard three-electrode electrochem-
ical cell, enabling a confined electroplating reaction. The deflection feedback signal enables
the live monitoring of the voxel growth and the consequent automation of the printing
protocol in a layer-by-layer fashion for the fabrication of arbitrary-shaped geometries. In a
second step, we investigated the effect of the free parameters (aperture diameter, applied
pressure, and applied plating potential) on the voxel size, which enabled us to tune the
voxel dimensions on the fly, as well as to produce objects spanning at least two orders of
magnitude in each direction. As a concrete example, we printed two different replicas of
Michelangelo’s David. Copper was used as the metal, but the process can in principle be
extended to all metals that are macroscopically electroplated in a standard way [2].

3. Research Article

A Robotic Biopsy Endoscope with Magnetic 5-DOF Locomotion and a Retractable
Biopsy Punch

By Manh Cuong Hoang, Viet Ha Le, Kim Tien Nguyen, Van Du Nguyen, Jayoung
Kim, Eunpyo Choi, Seungmin Bang, Byungjeon Kang, Jong-Oh Park and Chang-Sei Kim
(Figure 3).
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Synopsis of the paper by the authors:
Capsule endoscopes (CEs) have emerged as an advanced diagnostic technology for

gastrointestinal diseases in recent decades. However, with regard to robotic motions,
they require active movability and multi-functionalities for extensive, untethered, and
precise clinical utilization. Herein, we present a novel wireless biopsy CE employing
active five-degree-of-freedom locomotion and a biopsy-needle punching mechanism for the
histological analysis of the intestinal tract. A medical biopsy punch is attached to a screw
mechanism, which can be magnetically actuated to extrude and retract the biopsy tool for
tissue extraction. The external magnetic field from an electromagnetic actuation (EMA)
system is utilized to actuate the screw mechanism and harvest biopsy tissue; therefore, the
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proposed system consumes no onboard energy of the CE. This design enables the observa-
tion of the biopsy process through the capsule’s camera. A prototype with a diameter of
12 mm and length of 30 mm was fabricated with a medical biopsy punch with a diameter
of 1.5 mm. Its performance was verified through numerical analysis, as well as in vitro
and ex vivo experiments on porcine intestine. The CE could be moved to target lesions
and obtain sufficient tissue samples for histological examination. The proposed biopsy CE
mechanism utilizing punch biopsy and its wireless extraction–retraction technique could
advance untethered intestinal endoscopic capsule technology at clinical sites [3].
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Synopsis of the paper by the authors:
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interaction and healthcare monitoring. The relatively low flexibility, unbalanced sensitivity,
and sensing range of the tactile sensors hinder the accurate tactile information perception
during robotic hand grasping of different objects. This paper developed a fully flexible
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the proposed bilayer interlaced bumps can be used to convert external pressure into the
stretching of graphene composites. The fabricated tactile sensor exhibits high sensing
performance, including relatively high sensitivity (up to 3.40% kPa−1), a wide sensing
range (200 kPa), a good dynamic response, and considerable repeatability. Then, the tactile
sensor was integrated with the robotic hand finger, and the grasping results indicated the
capability of using the tactile sensor to detect the distributed pressure during grasping
applications. The grasping motions and properties of the objects can be further analyzed
through the acquired tactile information in time and spatial domains, demonstrating the
potential applications of the tactile sensor in intelligent robotics and human–machine
interfaces [4].

5. Research Article

A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device
By Yaoyao Jia, Yan Gong, Arthur Weber, Wen Li and Maysam Ghovanloo (Figure 5).
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Synopsis of the paper by the authors:
Towards a distributed neural interface, consisting of multiple miniaturized implants,

for interfacing with large-scale neuronal ensembles over large brain areas, this paper
presents a mm-sized free-floating wirelessly powered implantable opto-electro stimulation
(FF-WIOS2) device equipped with a 16-channel optical and 4-channel electrical stimu-
lation for reconfigurable neuromodulation. The FF-WIOS2 is wirelessly powered and
controlled through a three-coil inductive link at 60 MHz. The FF-WIOS2 receives stimula-
tion parameters via an on–off keying (OOK) while sending its rectified voltage information
to an external headstage for closed-loop power control (CLPC) via a load-shift keying
(LSK). The FF-WIOS2 system-on-chip (SoC), fabricated using a 0.35 µm standard CMOS
process, employs switched-capacitor-based stimulation (SCS) architecture to provide the
large instantaneous current needed for surpassing the optical stimulation threshold. The
SCS charger charges an off-chip capacitor up to 5 V at 37% efficiency. At the onset of
stimulation, the capacitor delivers charge with a peak current in the 1.7–12 mA range to a
micro-LED (µLED) array for optical stimulation or 100–700 µA range to a micro-electrode ar-
ray (MEA) for biphasic electrical stimulation. Active and passive charge-balancing circuits
are activated in electrical stimulation mode to ensure stimulation safety. In vivo experi-
ments conducted on three anesthetized rats verified the efficacy of the two stimulation
mechanisms. The proposed FF-WIOS2 is potentially a reconfigurable tool for performing
untethered neuromodulation [5].
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