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A b s t r a c t

Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-
threatening hereditary disease in the USA resulting in chronic kidney disease and the
need for dialysis and transplantation. Approximately 85% of cases of ADPKD
are caused by a mutation in the Pkd1 gene that encodes polycystin-1, a large membrane
receptor. The Pkd1 gene mutation results in abnormal proliferation in tubular epithelial
cells, which plays a crucial role in cyst development and/or growth in PKD. Activation of
the proliferative mammalian target of rapamycin (mTOR) signaling pathway has been
demonstrated in polycystic kidneys from rodents and humans. mTOR inhibition with
sirolimus or everolimus decreases cysts in most animal models of PKD including Pkd1
and Pkd2 gene deficient orthologous models of human disease. On the basis of animal
studies, human studies were undertaken. Two large randomized clinical trials published
in the New England Journal of Medicine of everolimus or sirolimus in ADPKD patients
were very unimpressive and associated with a high side-effect profile. Possible reasons
for the unimpressive nature of the human studies include their short duration, the high
drop-out rate, suboptimal dosing, lack of randomization of ‘‘fast’’ and ‘‘slow progressors’’
and the lack of correlation between kidney size and kidney function in ADPKD. The
future of mTOR inhibition in ADPKD is discussed.

& 2012. The Korean Society of Nephrology. Published by Elsevier. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the
most common life-threatening hereditary disease in the USA. It
affects about 1:400 to 1:1000 people. ADPKD occurs in all racial
and ethnic groups. Most patients with ADPKD develop hyperten-
sion. Massive cystic disease may also lead to chronic pain and
cyst infections. In clinical practice, detection of multiple renal
cysts on ultrasound or CT scan is used to make the diagnosis of
PKD. Precise determination of kidney and cyst volume on MRI
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scanning is used for clinical studies. Approximately 50% of people
with ADPKD develop chronic kidney disease around age 50 years.
ADPKD accounts for about 5% to 10% of end-stage renal failure in
the USA, requiring dialysis and renal transplantation [1]. There is
no effective treatment for ADPKD.

Approximately 85% of cases of ADPKD are caused by a
mutation in the Pkd1 gene that encodes polycystin-1 (PC-1), a
large membrane receptor, and approximately 15% caused by
a mutation in the Pkd2 gene that encodes polycystin-2 (PC-2)
a calcium channel that binds to PC-1. PC-1 and PC-2 have
been localized to the cilia where they function as a mechan-
osensor that mediates flow-dependent calcium entry [2].

It has been determined that inhibitors of cyclic adenosine
monophosphate (cAMP), cyclin-dependent protein kinase,
ublished by Elsevier. This is an open access article under the CC BY-NC-
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tumor necrosis factor-a, sarcoma (Src) a proto-oncogene
tyrosine-protein kinase, the renin-angiotensin-aldosterone
system, and 3-hydroxy-3-methyl-glutaryl-CoA reductase
reduce cyst formation and improve renal function in rat and
mouse models of PKD, which are thus potential therapeutic
targets in PKD. Current developments in the field of PKD
research are very exciting. The results of studies in rat and
mouse models of PKD have been translated to the bedside.
Tolvaptan (a vasopressin V2-receptor antagonist) that inhibits
cAMP, somatostatin, bosutinib (a Src/Abl tyrosine kinase
inhibitor), angiotensin-converting enzyme inhibitors and
angiotensin receptor blockers and statins that reduce cyst
formation and improve renal function in animal models of
PKD are being tested in interventional studies in humans
[3,4]. It is likely that current or future interventional studies
in patients with ADPKD will result in the discovery of an
agent that can slow the growth of the polycystic kidneys and
delay the onset of renal failure.

The mammalian target of rapamycin (mTOR) signaling
pathway is the focus of the current review. Human and
experimental data provide strong evidence that abnormal
proliferation in tubular epithelial cells plays a crucial role in
cyst development and/or growth in PKD [5]. Genetic manip-
ulations that induce the proliferation of tubular epithelial
cells in mice cause cysts to form in the kidney [6,7]. The mTOR
signaling pathway regulates cell growth and proliferation that
are dysregulated in ADPKD. Sirolimus, an mTOR inhibitor, is
an FDA-approved immunosuppressive drug and is a powerful
antiproliferative [8]. In view of the importance of tubular
cell proliferation in cyst formation and the antiproliferative
effects of sirolimus, the hypothesis was developed that
sirolimus would reduce cyst formation and disease progres-
sion in ADPKD via inhibition of tubular cell proliferation. In
Figure 1. mTOR signaling. mTOR exists in association with two differen
regulatory associated protein of mTOR (Raptor), while mTORC2 consists of
mTORC1 pathway, PI3K converts PIP2 into PIP3, which localizes Akt to
inactivated by Akt-dependent phosphorylation. Inactivation of TSC2 results
p70 S6 kinase (p70S6K) and 4E-BP1 via independent pathways that prom
cytosolic protein FK-binding protein 12 (FKBP12) to destabilize the ass
phosphorylation of p70S6K. In the mTORC2 pathway, there is downstream
Akt at Serine 473 by mTORC2 primes Akt for further phosphorylation at Th
addition to inhibition of proliferation, mTOR inhibitors may
also have a therapeutic effect in PKD by affecting vascular
remodeling, angiogenesis, and fibrogenesis [9]. To understand
the mechanism of action of mTOR inhibitors better, the mTOR
signaling pathway will first be discussed in detail.
mTOR signaling pathway and PKD kidney

mTOR exists in association with two different complexes:
mTORC1 and mTORC2. mTORC1 consists of mTOR and reg-
ulatory associated protein of mTOR (Raptor), while mTORC2
consists of mTOR and rapamycin-independent companion of
mTOR (Rictor).

The mTORC1 pathway involves the following major players:
insulin-like growth factor-I (IGF-1), serine/threonine kinase
Akt (also known as protein kinase B), tuberous sclerosis
complex 1 and 2 (TSC1/2), mTOR, and the serine/threonine
kinase p70 S6 ribosomal protein kinase (p70S6K) [10,11,12]
(Fig. 1). IGF-I is a major regulator of the mTOR pathway via
signaling to PI3K/Akt/mTOR. Phosphoinositide-3-kinase (PI3K)
converts the lipid phosphatidylinositol (4,5)-bisphosphate
(PIP2) into phosphatidylinositol (3,4,5)-trisphosphate (PIP3),
which localizes Akt to the membrane. The TSC1 (hamartin)
and TSC2 (tuberin) complex is inactivated by Akt-dependent
phosphorylation. Inactivation of TSC2 results in activation of
mTOR via the Ras-related small GTPase (Rheb). mTORC1 is a
complex that is made up of mTOR and Raptor. mTOR phos-
phorylates both p70S6K and eukaryotic initiation factor
4E-binding protein (4E-BP1) via independent pathways.
Increased p70S6K and 4E-BP1 act independently to promote cell
proliferation (cell growth and cell cycle progression). The mode of
action of sirolimus is to bind the cytosolic protein FK-binding
t complexes, mTORC1 and mTORC2. mTORC1 consists of mTOR and
mTOR and rapamycin-independent companion of mTOR (Rictor). In the
the membrane. The TSC1 (hamartin) and TSC2 (tuberin) complex is
in activation of mTOR via the GTPase, Rheb. mTOR phosphorylates both
ote cell proliferation. The mode of action of sirolimus is to bind the
ociation between mTORC1 and raptor, preventing the downstream
signaling to the AGC kinases Akt, PKCa, and SGK1. Phosphorylation of
reonine 308.
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protein 12 (FKBP12) in a manner similar to tacrolimus. While the
tacrolimus-FKBP12 complex inhibits calcineurin, the sirolimus-
FKBP12 complex inhibits the mTORC1 pathway. The binding of
mTORC1 inhibitors to FKBP destabilizes the association between
mTORC1 and raptor, preventing the downstream phosphoryla-
tion of p70S6Kinase [13].

mTORC2 consists of mTOR and Rictor [14–16] (Fig. 1).
Upstream signaling of mTORC2 is not yet well described.
mTORC2 activity may be stimulated directly or indirectly by
growth factors [17]. In IGF-1 stimulated cells, mTORC2 signal-
ing is increased [18,17,19]. The best characterized down-
stream substrates of mTORC2 are the AGC kinases Akt,
protein kinase C-alpha (PKCa) and serum glucocorticoid-
induced protein kinase 1 (SGK1). Phosphorylation of Akt at
Serine473 by mTORC2 primes Akt for further phosphorylation
at Threonine308 in the catalytic domain. Loss of Rictor results
in complete loss of Akt Serine473 phosphorylation. Knockout
of mTORC2 does not affect mTORC1 suggesting that mTORC2
activates a pool of Akt that is not upstream of mTORC1 [15].
Akt regulates cell survival, proliferation, and growth. PKCa,
another mTORC2 substrate, is ubiquitously expressed in
many tissues and plays a role in actin cytoskeleton organiza-
tion, cell proliferation, and tumor progression [20]. SGK1 is a
recently discovered mTORC2 substrate [16]. The phosphory-
lation of SGK1 on Serine422 and SGK1 activity are inhibited in
fibroblasts from mice lacking mTORC2 but still possessing
mTORC1 activity. SGK1 regulates cancer cell proliferation.

PC-1 and PC-2 have been localized to the cilia, but the
connection between the cilia and mTOR signaling was not
previously known. A recent study demonstrates that primary
cilia regulate mTOC1 activity and cell size via the tumor
suppressor protein liver kinase B1 [21]. In this study it was
demonstrated that bending of the cilia by flow is required for
mTOR downregulation and cell size control. It has recently
been demonstrated that abnormalities of the cilia mediate
increased mTOR activity in PKD. In 3-week-old cilia knockout
mice there was a large increase in mTOR activity [22].

An important question is whether there is mTOR activation
in human PKD kidneys. Expression of mTOR pathway mole-
cules was determined in paraffin-embedded liver and kidney
samples from autosomal recessive polycystic kidney disease
(ARPKD) patients and controls [23]. mTOR was strongly
expressed in renal cyst-lining cells and bile ducts from ARPKD
specimens. S6K immunostaining was strong in smaller tubules
and weak both in larger renal cysts and in the bile duct
epithelium. In controls, mTOR and S6K were expressed in
distal tubule segments. 4E-BP1-immunostaining was restricted
to noncystic tubules in ARPKD. Tuberin/TSC2 immunostaining
was negative in all specimens. In another study, human kidney
specimens from ARPKD and normal control children were
evaluated for Akt, mTOR, and S6K [24]. Phosphorylated Akt
as well as activated mTOR and its downstream effector S6K
were strongly expressed in cystic epithelia of all kidney speci-
mens but not in control tissues. These studies suggest that the
activation of mTOR signaling in human PKD kidneys and
provide a rationale for human studies of mTOR inhibitors.
Animal studies of mTOR inhibition in PKD (Table 1)

Rapamycin (sirolimus) is a macrolide that was first
discovered as a product of the bacterium Streptomyces
hygroscopicus in a soil sample from Easter Island, an island
also known as Rapa Nui, hence the trade name rapamycin.
Sirolimus was originally developed as an antifungal agent.
However, this was abandoned when it was discovered that it
had potent immunosuppressive and antiproliferative proper-
ties. Sirolimus is now FDA-approved for the prevention of
organ transplantation rejection. Everolimus and temsirolimus
are FDA-approved for the treatment of renal cell cancer.

In 2005, it was demonstrated that sirolimus decreases
kidney and cyst enlargement and prevents the loss of kidney
function in the male Han:SPRD rat model of ADPKD [25]. Two
subsequent studies in 2006 and 2007 in male Han:SPRD rats
demonstrated that sirolimus or everolimus decreased kidney
and cyst enlargement and ameliorated the loss of kidney
function [26,27]. In 2006 the first studies in mice were
reported. Sirolimus decreased cyst volume in the Oak Ridge
polycystic kidney (orpk) ciliary defect model of ARPKD and bpk
mouse model of ARPKD [28]. As ADPKD patients would
probably require life-long therapy with mTOR inhibitors, male
Han:SPRD rats were treated with sirolimus up to age 1 year
[29]. Chronic sirolimus therapy normalized kidney volume,
renal function, blood pressure and heart weight and reduced
cyst density by 72% [29]. Next, sirolimus was tested in female
Han:SPRD rats that have a milder form of PKD [30]. Rapamcyin
treatment for 9 weeks had no effect on kidney size and
cyst volume density in female Cy/þ rats with PKD [30]. The
lack of effect of sirolimus in females was despite the same
dose, similar blood levels and a similar degree of sirolimus-
induced weight loss as reported in male rat studies. In the
female Han:SPRD rats, sirolimus resulted in an increase in the
pro-proliferative p-Akt Serine 473 [30]. The first studies of
sirolimus in Pkd1 or Pkd2 knockout mouse models were
reported in 2010. Sirolimus 5 mg/kg/day reduced cyst growth
and preserved renal function in mice with PKD resulting from a
conditional inactivation of Pkd1 [31]. Sirolimus 0.5 mg/kg/day
reduced cyst growth, but had no effect on renal function in
Pkd2WS25/- mice an orthologous model of ADPKD caused by a
mutation in the Pkd 2 gene [32]. Next, pulse versus continuous
everolimus treatment was compared in the male Han:SPRD
rat [33]. Both pulse and continuous treatment reduced cyst
volume and improved kidney function. This study suggested
that pulse mTOR inhibition may be as good as continuous
treatment but with a lower side effect profile [33]. In the
autosomal recessive polycystic kidney (pck) rat model, siroli-
mus had no significant effect on of renal and liver cysts [34].
However, in this study, blood levels were very low (0.6 ng/mL)
[34]. In summary of the animal studies, mTOR inhibition
decreases cysts in most animal models including Pkd1 and
Pkd2 gene deficient orthologous models of human disease.

There are other agents besides sirolimus and everolimus
that may inhibit mTOR in PKD. Curcumin, principal curcumi-
noid of the popular Indian spice turmeric, inhibits cystogenesis
by simultaneous interference of multiple signaling pathways
including mTOR [35]. Metformin, a widely-used drug, stimu-
lates AMP-activated protein kinase, resulting in inhibition of
the cystic fibrosis transmembrane conductance receptor and
mTOR and slowing of renal cystogenesis [36]. Slowing of
progression of PKD by 2-hydroxyestradiol in male Han:SPRD
rats is associated with downregulation of p21 and mTOR
expression [37]. mTOR is hyperactivated in Pkd1 null mice
due to failure of the hepatocyte growth factor (HGF) receptor
c-Met to be properly ubiquinated and subsequently degraded
after stimulation by HGF [38]. A c-Met pharmacological inhi-
bitor resulted in inhibition of mTOR activity and reduced
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cystogenesis [38]. Thus there are other drugs besides the
sirolimus-derivatives that may inhibit mTOR and inhibit multi-
ple pathways in PKD with fewer side effects.
Clinical studies of mTOR inhibition in PKD (Table 2)

As a result of the positive studies in rodent models of PKD,
human studies were undertaken. Three initial small studies in
humans suggested that sirolimus could reduce cystic disease
[28,39,40]. Thus larger randomized control studies were under-
taken and the results have recently been published [41,42]. In a
randomized double blind trial, 433 ADPKD patients with a mean
baseline estimated glomerular filtration rate (eGFR) of 53 to
56 mL/min/1.73 m2 were randomized to receive everolimus at
5 mg/day or placebo for 2 years [41]. The primary end point was
total kidney volume (TKV) on MRI scan. The increase in TKV
between baseline and 1 year was lower in the everolimus group
versus the placebo (P¼0.02). The increase in TKV between
baseline and 2 years was lower in the everolimus group versus
the placebo, but did not reach statistical significance (P¼0.06).
The increase in cyst volume was not statistically different
between the groups. The increase in parenchymal volume was
less in the everolimus group. The mean decrement in eGFR was
more in the everolimus group but did not reach statistical
significance different between the groups. Drug specific adverse
events were higher in the everolimus group. The dropout rate
was 33% in the everolimus-treated group. The results of the
study are summarized in Table 3.

The second study was an 18-month open-label, rando-
mized, controlled trial in which 100 patients with a mean
baseline eGFR of 91 to 92 mL/min/1.73 m2, received either
sirolimus (target dose 2 mg/day) or placebo. The median
increase in TKV was not different between the groups. The
GFR did not differ between the groups. Sirolimus treated
patients had a higher incidence of gastrointestinal side effects.
A suboptimal dose of sirolimus was used as the achieved dose
was 25% lower than the intended dose of 2 mg/d. The mean
serum sirolimus level was 4.1 to 4.9 ng/mL. The results of the
study are summarized in Table 4.
Why were the human studies on mTOR inhibition
in ADPKD unimpressive?

The human studies suggest that the use of mTOR inhibitors
in ADPKD patients may be more complicated than was
expected [43]. There are multiple reasons for the unimpressive
effect of mTOR inhibitors in the human studies:
(1)
 The relationship between kidney and cyst volume and
the decline in GFR is complex. Kidney size does not
correlate with eGFR decline. PKD kidneys are massive
before there is a significant decline in GFR. Thus GFR
may not change even if TKV changes significantly.
A 2-year period may be too short to detect changes
in eGFR. Also sirolimus may have effects on glomerular
hemodynamics that may influence GFR.
(2)
 In the everolimus study there was a 33% drop-out rate
[41]. The high dropout rate may have decreased the
power of the trial to detect significant differences
between the groups [44].



Table 3. Everolimus in patients with ADPKD [41]

Everolimus Placebo P

Increase in TKV—Year 1 (mL) 102 157 0.02
Increase in TKV—Year 2 (mL) 230 301 0.06
Baseline eGFR (chronic kidney disease Stage 3) 53 56
Decrease in eGFR (mL/min/1.73m2)-year 2 8.7 7.7 0.15
Any serious adverse event (%)
e.g anemia, leukopenia, thrombocytopenia, stomatitis,
hyperlipidemia, acne, angioedema.

80 50 0.002

Table 4. Sirolimus in patients with ADPKD [42]

Sirolimus Placebo P

Increase in TKV 1 (mL) 99 97 Not significant
Baseline eGFR (No chronic kidney disease) 92 91
Decrease in eGFR (mL/min/1.73 m2) 0.2 3.5 0.07
Any serious adverse event (%): 50 50
Gastrointestinal side effects e.g. mucositis, diarrhea. 94 52

Table 2. mTOR inhibition in human ADPKD

Drug dose levels

(ng/ml)

Study design Duration

of treatment

No of

patients

Outcome Adverse events Ref

Sirolimus Retrospective, Kidney

transplant patients Sirolimus

vs. no sirolimus

24–40 mo 7 Reduction in kidney volume Not reported [28]

Sirolimus (mean

levels: 14.3)

Retrospective, Kidney

transplant patients Sirolimus

vs. Tacrolimus

19 mo 16 Reduction in liver cyst

volume, trend towards

reduction in kidney cyst

volume

Increased LDL [39]

Sirolimus 3 mg/d

(trough levels:

10–15, SIRENA study)

Retrospective crossover study,

Mean baseline eGFR 76 mL/

min

1 y 21 TKV increased less and cyst

volume stable on sirolimus

Increased total and LDL

cholesterol and triglycerides.

aphthous ulcers, acne, edema

[40]

Everolimus 5 mg/d

(trough levels: 3–8)

Randomized double blind

trial, Mean baseline eGFR 53–

56 mL/min

2 y 433 Slowed increase in TKV at 1 y

Did not slow progression of

eGFR

Anemia, leukopenia,

thrombocytopenia, stomatitis,

hyperlipidemia, acne,

angioedema

[41]

Sirolimus 2 mg/d

(mean levels:

4.1–4.9)

Randomized open label trial,

Mean baseline eGFR

91–92 mL/min

18 mo 100 No change in TKV or eGFR Mucositis, diarrhea [42]

TKV, total kidney volume.
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(3)
 In the sirolimus study, the dose of sirolimus was
suboptimal with blood levels of 4.1 to 4.9 ng/mL [42].
(4)
 Most rats and mouse models develop early and severe
disease while PKD is slower and more chronic in
humans. The slow progression of ADPKD in humans
may make it difficult to find differences in a short
period of time.
(5)
 It is possible that the dose of an mTOR inhibitor
required to inhibit mTOR in tubular cells may be
higher than the dose required to inhibit mTOR in
blood mononuclear cells [43]. In this regard, biopsy
of a transplanted kidney from a transplant patient on
sirolimus failed to demonstrate mTOR inhibition in
tubular cells in the kidney [45]. However, the side
effect profile of everolimus and sirolimus in PKD
patients may limit the dose that patients can tolerate.
(6)
 In the everolimus study, the mean baseline eGFR was
53 to 56 mL/min/1.73 m2. In these patients, the disease
may have been too advanced for therapy to yield
a functional benefit [43]. Processes such as chronic
interstitial fibrosis, that may be independent of mTOR,
may cause the GFR decline in the later stages of ADPKD
[43].
(7)
 The rate of progression of total kidney volume before
treatment was not known, so that there may not have
been a balanced randomization between slow and fast
progressors [46].
(8)
 Increased phosphorylation of pAkt Serine 473, a marker
of mTORC2 signaling has been demonstrated in PKD
in rodents [30,31]. The rapalogues, sirolimus, and
everolimus, bind to FKBP12, which directly binds and
inhibits mTORC1, not mTORC2. Sirolimus does not
directly target mTORC2-dependent Akt-induced prolif-
eration [47]. Target of rapamycin kinase inhibitors
(TORKs) selectively bind to the ATP-binding site in
the mTOR catalytic domain and thereby block both
mTORC1 and 2. It is possible that more complete
suppression of the mTOR signaling network by the
new TORKs will give a better antiproliferative response
than sirolimus in PKD. The potential clinical use of
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TORKs is demonstrated by five Phase I/II clinical studies
of the TORK AZD8055 (AstraZeneca) in patients with
various advanced solid tumors (see clinicaltrials.gov).
The future of mTOR inhibition in PKD

mTOR signaling and mTOR inhibition in animals and
humans requires further study. In animal models of PKD,
mTOR kinase inhibitors or TORKs that inhibit both mTORC1
and 2 need to be tested. In humans, it is possible that high
dose pulse treatment, starting in adolescence or in combina-
tion with other therapies that reduce cyclic AMP levels or
reduce fluid secretion, may be needed in the future. mTOR
inhibitors with a better safety profile need to be developed.
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