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ABSTRACT Resistance to macrolide antibiotics is a global concern in the treat-
ment of Streptococcus pyogenes (group A Streptococcus [GAS]) infections. In Ice-
land, since the detection of the first macrolide-resistant isolate in 1998, three ep-
idemic waves of macrolide-resistant GAS infections have occurred, with peaks in
1999, 2004, and 2008. We conducted whole-genome sequencing of all 1,575
available GAS macrolide-resistant clinical isolates of all infection types collected
at the national reference laboratory in Reykjavik, Iceland, from 1998 to 2016.
Among 1,515 erythromycin-resistant isolates, 90.3% were of only three emm
types, emm4 (n � 713), emm6 (n � 324), and emm12 (n � 332), with each being
predominant in a distinct epidemic peak. The antibiotic efflux pump genes,
mef(A) and msr(D), were present on chimeric mobile genetic elements in 99.3%
of the macrolide-resistant isolates of these emm types. Of note, in addition to
macrolide resistance, virtually all emm12 isolates had a single amino acid substi-
tution in penicillin-binding protein PBP2X that conferred a 2-fold increased peni-
cillin G and ampicillin MIC among the isolates tested. We conclude that each of
the three large epidemic peaks of macrolide-resistant GAS infections occurring in
Iceland since 1998 was caused by the emergence and clonal expansion of pro-
genitor strains, with macrolide resistance being conferred predominantly by in-
ducible Mef(A) and Msr(D) drug efflux pumps. The occurrence of emm12 strains
with macrolide resistance and decreased beta-lactam susceptibility was unex-
pected and is of public health concern.

KEYWORDS Streptococcus pyogenes, molecular epidemiology, antibiotic resistance,
whole-genome sequencing, population genomics, macrolides, beta-lactams

Streptococcus pyogenes (group A Streptococcus [GAS]) is an important human patho-
gen that globally is among the top 10 infectious causes of human mortality, causing

over 700 million infections and almost 520,000 deaths annually (1, 2). GAS causes a
wide spectrum of diseases ranging from prevalent uncomplicated mild infections
such as pyoderma (111 million cases/year) and pharyngitis (616 million cases/year) to
relatively infrequent severe life-threatening invasive infections such as necrotizing
fasciitis/myositis and sepsis (663,000 cases/year causing 163,000 deaths/year) (1, 2). GAS
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produces a myriad of extracellular virulence factors that contribute to adhesion,
degradation and breaching of tissue barriers, subversion and evasion of host innate and
adaptive immune defenses, and systemic intoxication, among many other pathogenic
processes (3–5). Among these, the Emm/M protein encoded by the emm gene is a
major virulence factor with multiple functions, including promoting adherence to
human epithelial cells and inhibiting phagocytosis in the absence of opsonizing
antibodies (6). The M protein is the primary surface antigen eliciting the human
immune response. Diversification in the first 180 nucleotides of the emm gene encod-
ing the hypervariable amino terminus of the M protein is the basis for emm typing, the
most commonly used epidemiological marker of S. pyogenes strain lineages (7). There
are over 250 S. pyogenes emm types listed in the CDC emm database as of 11 September
2019 (8). Importantly, there is no licensed vaccine to prevent S. pyogenes infections (9).

Beta-lactam antibiotics that inhibit peptidoglycan synthesis are the primary anti-
bacterial treatment for S. pyogenes infections, and despite over 75 years of use, no
penicillin-resistant clinical isolate has been reported (10, 11). However, two recent
studies reporting reduced in vitro susceptibility to �-lactam antibiotics among clinical
isolates are of concern (12, 13). Macrolides are secondary alternative antibiotics rec-
ommended for individuals allergic to penicillin. Macrolides, and the mechanistically
similar lincosamides and streptogramins, inhibit protein translation through binding
interactions with the ribosome. Because of drug synergism and the potential benefits
of inhibiting extracellular protein/toxin production, combination antibiotic therapy of a
beta-lactam and a lincosamide (e.g., penicillin and clindamycin) is recommended for
severe invasive S. pyogenes infections. In S. pyogenes, there are two principal mecha-
nisms for acquired macrolide resistance, target site modification, and active efflux (14,
15). Target site modification is mediated by erythromycin rRNA methylases, predomi-
nantly Erm(B) and Erm(TR), which methylate the 23S rRNA and block antibiotic binding
to the ribosome. This modification provides resistance to macrolides, lincosamides, and
streptogramin B and confers the MLSB resistance phenotype. Active efflux is mediated
by proton-dependent membrane-associated pumps that transport 14- and 15-mem-
bered macrolides out of the bacterial cell (but not 16-membered macrolides, lincos-
amides, or streptogramins), conferring the M resistance phenotype. Although the
macrolide efflux activity was initially attributed to Mef(A) (16), recent mef(A) and msr(D)
gene knockout and knock-in experiments demonstrate that Msr(D) is the functionally
predominant macrolide efflux transporter in S. pyogenes strains of multiple emm types
(17, 18). Macrolide resistance genes are not part of the GAS core chromosome but are
acquired and encoded largely on a diverse set of integrative conjugative elements and
chimeric mobile genetic elements (MGE), such as those formed by the integration of an
ARG-encoding transposon into a prophage (19–22). Resistance to macrolides at low
frequency can also spontaneously arise via mutations in the 23S rRNA and in ribosomal
proteins L4 and L22, encoded by genes rplD and rplV, respectively (14).

Since the first reports of macrolide-resistant GAS in England in the late 1950s (23),
resistance has disseminated worldwide, and its prevalence has been reported to vary
profoundly geographically (i.e., between countries/regions at a point in time) and
temporally (i.e., in the same country/region over time) (15, 24). In many instances, an
increase in the prevalence of resistant isolates clearly corresponded with increased
antibiotic usage, consistent with the influence of antibiotic selective pressure (25).
However, in some cases, precipitous changes in resistance prevalence have occurred in
association with a change in the predominant GAS clone or mechanism of resistance
but independent of any perceived change in antibiotic usage (26). In Iceland, erythro-
mycin susceptibility testing was performed on at least 100 GAS isolates per year, and
the first macrolide-resistant isolate was not detected until early 1998. Over the next
year, the monthly proportion of macrolide-resistant GAS precipitously increased from
0% in March 1998 to 56% in March 1999 (27). Among 367 erythromycin-resistant GAS
isolates collected through July 1999, 99% were M resistance phenotype. T-antigen
typing of 30 isolates collected from July to December 1998 revealed 3 T-types, T8 (73%),
T6 (17%), and T28 (10%). Among 67 isolates compared by SfiI restriction pulsed-field gel
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electrophoresis (PFGE), 58 had the same banding pattern (27). The finding that the
majority of the isolates were T8 and of a single PFGE pattern suggested that the 1999
epidemic wave was likely mono- or pauci-clonal in nature. Of note, over the same time
frame (c.a. 1998 to 2001), a significant increase in macrolide-resistant GAS also occurred
in Spain (28) and in Toronto, Canada (29). A second modest peak of increased
macrolide-resistant GAS in Iceland occurred in 2004, followed by a third, larger and
rapidly arising peak in 2008 (30). Here, we present whole-genome sequencing-based
molecular epidemiological characterization of all available S. pyogenes erythromycin-
resistant isolates (n � 1,515) collected in Iceland from 1995 to 2016. Emphasis is placed
on the three predominant emm types (4, 6, and 12) causing the three successive
epidemic peaks of macrolide-resistant infections.

MATERIALS AND METHODS
Bacterial isolates. A total of 15,217 GAS strains were isolated from patient specimens submitted to

the Department of Clinical Microbiology, Landspitali University Hospital, from 1995 to 2016. The
laboratory receives invasive (e.g., blood and cerebrospinal fluid [CSF]) isolates from the whole country
and acts as the primary laboratory for other GAS cultures for about 75% of the country. Macrolide-
resistant isolates were stored in glycerol broth at – 85°C (invasive isolates) or –20°C (noninvasive isolates).
The majority of the samples (�60%) were collected from patients from the Reykjavík capital region.
According to Iceland Statistics (hagstofa.is/en), the populations of Iceland and Reykjavík in 1995 were
267,809 and 158,597, respectively. In 2016, the population of Iceland was 332,529 and the population of
the Reykjavík region was 209,500. Information regarding the 15,217 isolates (e.g., sample origin,
geographic place of collection, date of collection, antibiotic susceptibility, patient residence, and patient
age and gender) was recorded in the Laboratory Information System at the Department of Clinical
Microbiology. Since 1998, all GAS detected in the department have been collected and stored frozen.
Isolates, except those from urine samples, were tested for erythromycin susceptibility using the disk
diffusion method based on CLSI criteria (31), and after June 2012, based on methods and criteria from
EUCAST (32). Isolates were considered to be the same strain if they were collected twice or more �7 days
apart from the same patient. When antibiotic-resistant susceptibilities were inconsistent between isolates
taken from the same patient, the isolate from the more invasive infection sample was used. Isolates were
grown on tryptic soy agar with 5% sheep blood (Benton Dickson) or with 5% horse blood (Oxoid) at 37°C
and 5% CO2.

Whole-genome sequencing. All viable GAS isolates that tested resistant to the macrolide antibiotic
erythromycin (n � 1,575) within the collection were sent to the Center for Molecular and Translational
Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Meth-
odist Research Institute (Houston, Texas) for whole-genome sequencing. Genomic DNA extraction and
multiplexed library preparation were performed as previously described (33). Paired-end, 150-nucleotide-
long sequencing reads were obtained using an Illumina NextSeq 500 sequencer. Sequence data
preprocessing (i.e., artifact and adapter trimming, quality filtering, and base call error correction) and de
novo assembly for each isolate were done as previously described (33).

Initial genetic typing and gene content profiling. The multilocus sequence type (MLST), emm type,
and antibiotic resistance gene content were determined for each isolate from the sequencing reads
relative to publicly available reference databases using SRST2 software (34) as previously described (33).
Mobile genetic element typing was determined relative to a published database of S. pyogenes phage
and integrating conjugative element (ICE)-encoded integrase and virulence factor genes using SRST2 as
previously described (35). The pbp2x gene was identified in and retrieved from isolate genome assem-
blies using blastn and bedtools-getfasta, respectively.

Polymorphism discovery. Sequence reads were mapped to relevant reference sequences using
SMALT (https://www.sanger.ac.uk/tool/smalt-0/), and polymorphisms between the aligned reads and the
reference sequences were identified using FreeBayes (36). Polymorphisms were filtered on the basis of
call consensus (�70%), mapped quality (�Q30), and coverage depth (�10-fold) using VCFlib (www
.github.com/ekg/vcflib#vcflib). Specifically, for emm4 isolates, core chromosomal single nucleotide poly-
morphisms (SNPs) were called relative to the genome of strain MGAS10750 (20), emm6 isolates to
MGAS10394 (19), and emm12 isolates to MGAS9429 (20). SNPs were annotated, and the effects of variants
were predicted using SnpEff (37). Polymorphisms in the chimeric elements encoding mef(A) and msr(D)
among emm4, emm6, and emm12 strains were called relative to �29862, �29961, and �29854,
respectively.

Phylogenetic inference and population structure. Concatenated SNP sequences used for evalu-
ation of genetic relationships among isolates were generated using Prephix and Phrecon (www.github
.com/codinghedgehog). To limit phylogenetic inferences to primarily vertically inherited core chromo-
somal SNPs, mobile genetic element (phage and ICE)-encoded regions were excluded and regions of
horizontal transfer and recombination were identified and excluded using Gubbins (38). Phylogeny
among isolates was inferred with the neighbor-joining method using SplitsTree (39), and phylograms
were generated with Dendroscope (40). Genetic distances among the isolates were calculated using
MEGA7 (41).

Construction of isogenic strain with the PBP2X-Met593Thr variant. Strain MGAS27213-L601P,M593T
was constructed from MGAS27213-L601P by allelic exchange using previously described methods with
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modifications (42). Overlap extension PCR was used to introduce the Met593Thr substitution into pbp2x
of MGAS27213-L601P. Primers pbp2x-5=fwd (CAATTGTACAAAACCGTTACGATCCAAG) and pbp2x-5=rev
(TAGTAACATACATCAAAAAGTCTGGTTTATC) were used to amplify the pbp2x 5= end. Primers pbp2x-T593-
3=fwd (CTTTTTGATGTATGTTACTACGACTAAACCAC) and pbp2x-3=rev (GTGAATACATATCAGTATTTGTGGG
TCATC) were used to amplify the pbp2x 3= end, introducing a single A to C nucleotide change in pbp2x
codon 593. Primers pBBL740-fwd (GTAACGGTTTTGTACAATTGCTAGCGTAC) and pBBL740-rev (AAATACT
GATATGTATTCACGAACGAAAATC) were used to amplify and linearize suicide plasmid pBBL740 by
inside-out PCR. The pbp2x 5=-end and 3=-end amplicons were spliced with the linearized pBBL740
amplicon using a NEBuilder HiFi kit (New England Biolabs). The resultant spliced plasmid was trans-
formed into parental strain MGAS27213-L601P, and single crossover transformants were selected by
plating on Todd-Hewitt broth supplemented with yeast extract (THY) agar with 10 �g/ml chloramphen-
icol. Transformants were screened by genomic DNA PCR amplification and Sanger sequencing using
primers pbp2x-5=-fwd and pbp2x-seq (GATGTCTCACCAGGATTCTTTC). Ten confirmed single crossover
transformants were pooled, expanded by outgrowth, and then passaged eight times on THY agar plates
without chloramphenicol to promote double crossover resolution. Chloramphenicol-sensitive isolates
were identified by duplicate plating and screened for the pbp2x-Thr593 allelic exchange by PCR ampli-
fication and Sanger sequencing. The resultant candidate MGAS27213-L601P,M593T-derived strains were
whole-genome sequenced to confirm the lack of spontaneous spurious mutations.

Data availability. Genomic sequencing data for all 1,515 macrolide/erythromycin-resistant isolates
were deposited into the National Center for Biotechnology Information Sequence Read Archive under
BioProject accession number PRJNA614628, and the assembled sequences for composite elements
�29854, �29862, and �29961 were deposited in GenBank under accession numbers MT311967,
MT303952, and MT311968, respectively.

RESULTS
Epidemiological surveillance. In Iceland, 15,217 beta-hemolytic group A carbohy-

drate antigen-positive streptococcal clinical isolates were detected from patients with
noninvasive and invasive infections from 1995 to 2016 (Fig. 1). The majority of the
isolates, 10,010 (66%), were from the upper respiratory tract, nearly all (95%) of which
were from the throat. Of the 15,217 isolates, 1,806 (11,9%) were macrolide resistant,
1,515 (83.9%) of which were stored and viable upon retrieval. Isolation sites included
upper respiratory tract (n � 1,137, 75.0%), skin/wound (n � 214, 14.1%), middle ear
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(n � 92, 6.1%), lower respiratory tract (n � 24, 1.6%), abscess (n � 21, 1.4%), blood
(n � 11, 0.7%), and other 16, n � 1.1%). The proportion of available macrolide-resistant
isolates per year ranged from 35.2% for 2003 to 98.0% for 1999 (Fig. 1).

No macrolide-resistant GAS isolate was identified until July 1998. Following this,
resistant isolates rapidly increased in proportion to a peak of 47.2% of isolates in 1999.
Resistant isolates gradually declined in proportion to 5.0% in 2002. A second more
modest increase in the proportion of resistant isolates peaked at 19.9% in 2004. A third
peak of resistance rose to 44.9% of GAS isolates in 2008 (Fig. 1).

Whole-genome sequencing genetic characterization. To genetically characterize
the cohort, all 1,575 available viable erythromycin-resistant GAS isolates were whole-
genome sequenced to an average 214-fold depth of coverage (range, 18 to 1,859�)
using Illumina paired-end sequencing. Based on the sequence data, 60 of the isolates
were excluded from the investigation for reasons such as the isolate not being S.
pyogenes, being a duplicate, or being contaminated. The retained 1,515 erythromycin-
resistant S. pyogenes isolates and their epidemiological and genetic characteristics are
listed in Table S1 in the supplemental material. Sequence reads for the isolates
assembled on average into 67 contigs summing to 1.82 Mbp with a G�C content of
38.4%, values which are consistent with closed genomes of S. pyogenes.

The 1,515 macrolide-resistant isolates comprised 27 emm types (Table S1 and Fig. 2).
Three emm types, emm4 (n � 713, 47.1%), emm12 (n � 332, 21.9%), and emm6
(n � 324, 21.4%), account for the majority of the isolates (n � 1,369, 90.4%). Analysis of
the epidemic curve by emm type shows that the first wave (years 1998 to 2001) of
macrolide-resistant isolates was composed predominantly of emm4 (74%) with some
emm12 (24%). The second wave (years 2004 to 2005) was composed predominantly of
emm12 (68%) with some emm75 (17%). And the third wave (years 2007 to 2008) was
composed predominantly of emm6 (91%).

Analysis of the antibiotic resistance gene (ARG) content of the cohort identified 17
different ARGs that were present in 21 different combinations (Table 1). One or more
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ARG were detected in 1,471 (97.1%) of the isolates, and no macrolide-resistant gene
was found in 44 isolates of 13 different emm types (Table S1). Previous publications
have shown that emm types 4, 6, 12, and 75 are commonly associated with macrolide
resistance. The most prevalent combination of macrolide resistance genes was mef(A)
and msr(D), conferring the M resistance phenotype, which was found in 1,369 (90.4%)
isolates. Virtually all isolates (1,359/1,369, 99.3%) of the three most prevalent emm types
(4, 6, and 12) encode mef(A) and msr(D) (Fig. 3). Reciprocally, virtually all (1,359/1,369,
99.3%) isolates carrying mef(A) and msr(D) in the cohort are of emm types 4, 6, or 12.
The erm(B) gene was found in 69 (4.6%) isolates (43/69 � emm types 11 and 75), and
the erm(TR) gene was found in 30 (2.0%) isolates (20/30 � emm77). Thus, 99 (6.5%)
of the isolates have an erythromycin rRNA methylase gene conferring the MLSB

phenotype. No isolate was found that encoded both a macrolide efflux and an
erythromycin resistance methylase gene.

Phylogenetic relationships. Within an emm type, the macrolide-resistant mef(A)-
and msr(D)-carrying isolates are closely genetically related, consistent with the isolates
arising from clonal expansion of a recent common progenitor (Fig. 4). The mef(A)- and
msr(D)-carrying emm4 (n � 709), emm6 (n � 322), and emm12 (n � 327) isolates across
the 1.7-Mbp core chromosome differed pairwise on average by only 11.3, 9.2, and 20.8
SNPs, respectively. For each of these emm types, the few erythromycin-resistant isolates
that lacked any detectable ARGs were more genetically distant from the mef(A)- and
msr(D)-carrying isolates and appear to represent infrequent sporadic spontaneous
resistant mutants.

To investigate the context of the mef(A) and msr(D) genes within the isolate
genomes, the de novo-assembled contigs of the emm type 4, 6, and 12 isolates were
searched using BLASTn. For each of these emm types, the mef(A) and msr(D) genes were
found adjacently encoded on transposon Tn1207.1 inserted into a phage forming a
composite MGE like that first described for �10394.4 of macrolide-resistant emm6
strain MGAS10394 (19, 43). These elements were all found integrated at the same site
in the genome disrupting the comEC gene. Full-length de novo assemblies of the
mef(A)- and msr(D)-carrying MGEs were obtained from emm4 strain MGAS29862

TABLE 1 Antibiotic resistance genes and profiles

ARG no. ARG profilea No. of isolates

1 mef(A), msr(D) 1,361
2 erm(B), tet(M) 45
3 None (possible spontaneous 23s rRNA or ribosomal

protein mutants)
44

4 erm(TR), tet(O) 20
5 ant(6)-Ia, aph(3�)-III, erm(B), tet(M) 9
6 aph(3�)-III, erm(B), sat4A, tet(M) 7
7 erm(TR) 6
8 ant(6)-Ia, aph(3�)-III, erm(B), sat4A 5
9 mef(A), msr(D), tet(M) 4
10 erm(TR), tet(M) 2
11 catQ, msr(D), spw, tet(M) 2
12 tet(O) 1
13 mef(A), msr(D), tet(O) 1
14 erm(TR), tet(T) 1
15 catA9, erm(TR), tet(M) 1
16 erm(B) 1
17 catQ, mef(A), msr(D), spw, tet(M) 1
18 ant(6)-Ia, aph(3�)-III, catA9, erm(B) 1
19 ant(6)-Ia, aph(3�)-III, catA9, erm(B), tet(M) 1
20 aadD, mef(A), msr(D) 1
21 aadD, ant(9)-Ia, aph-Stph, mef(A), msr(D), spc 1
aThere were 17 detected antibiotic resistance genes: aadD, ant(6)-Ia and ant(9)-Ia � aminoglycoside O-
adenyltransferase; aph(3�)-III and aph-Stph � aminoglycoside O-phosphotransferase; catA9 and catQ �
chloramphenicol acetyltransferase; erm(B) and erm(TR) � erythromycin rRNA methylase; mef(A) and
msr(D) � macrolide efflux; sat4A � streptothricin acetyltransferase; spc and spw � streptomycin
3�-adenyltransferase; tet(M), tet(O), and tet(T) � ribosomal protection.
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(�29862; 52,479 bp, 57 coding DNA sequences [CDSs]), emm6 strain MGAS29961
(�29961; 57,866 bp, 57 CDSs), and emm12 strain MGAS29854 (�29854; 52,542 bp, 58
CDSs). The sequences of these elements share a high degree of identity (�98%) with
each other and with �10394.4 (Fig. S1).

Accurately detecting SNPs in phages in the S. pyogenes genome is problematic,
as most isolates are polylysogenic, which frequently causes cross-mapping of reads
and erroneous overcalling of SNPs in phage. Despite this, mapping the whole-
genome sequencing reads of the erythromycin-resistant isolates to the mef(A)- and
msr(D)-carrying MGEs detected relatively few SNPs. The 709 emm4 isolates differed
pairwise by 0.4 SNPs determined relative to �29862, the 322 emm6 isolates by 4.6
SNPs relative to �29961, and 326/328 (99%) emm12 isolates by 0.95 SNPs relative
to �29854. The finding that the isolates of the same emm type have mef(A)- and
msr(D)-carrying composite MGEs that are nearly sequence invariant is again con-
sistent with the macrolide-resistant isolates stemming from recent clonal expan-
sions.

Comparison of S. pyogenes genomes has identified strain-to-strain differences in
MGE content stemming from the dynamic gain and loss of ICEs and phages as the
largest source of genetic diversity. As a third measure of relatedness, the MGE content
of the isolates was assessed by sequence read mapping relative to a database of known
S. pyogenes MGE-encoded integrases (n � 31) and virulence factors (n � 19). This
comparison process generates a 50-allele present/absent genotype. Among the 322
erythromycin-resistant emm6 isolates, 309 (96%) have the same inferred MGE content
(Table S2), as do 309 of the 327 (95%) emm12 isolates. Among the 709 erythromycin-
resistant emm4 isolates, 690 (97%) have the same inferred MGE-encoded virulence
factor content, although they differed more extensively in the detected MGE integrase
gene content. Results of the analysis of MGE-encoded gene content was consistent
with the SNP data for the core chromosome and the mef(A)- and msr(D)-carrying
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FIG 3 Antibiotic resistance genes and their proportions according to emm type, colored as indicated. The six most prevalent ARG content
combinations account for 98.5% of the 1,515 erythromycin-resistant isolates.
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composite MGEs. Our data demonstrate that the erythromycin-resistant emm type 4, 6,
and 12 isolates are within their respective emm types, each closely genetically related,
consistent with the isolates of each emm type stemming from recent clonal expansions.

Potential for altered beta-lactam antibiotic susceptibility. Recently, it was shown
that many S. pyogenes clinical isolates with nonsynonymous (amino acid substituting)
nucleotide changes in the penicillin-binding protein 2X gene (pbp2x) are associated
with reduced susceptibility in vitro to one or more members of the beta-lactam family
of antibiotics (12, 13). Among the 1,515 macrolide-resistant isolates, 25 pbp2x alleles
encoding 10 PBP2X variants were identified (Table S3). Although the pbp2x allele
differed from one emm type to another, virtually no allelic variation in pbp2x was found
within an emm type for the cohort. That is, in terms of pbp2x allele/PBP2X variants,
712/713 emm4 isolates have the same pbp2x allele/PBP2X variant, 324/324 emm6
isolates are the same, and 327/332 emm12 isolates are the same. The emm4 isolates
have the consensus PBP2X wild-type (WT) sequence that is most prevalent among S.
pyogenes isolates of multiple emm types (12, 44, 45). The PBP2X variant of all 324 emm6
isolates have three substitutions (Ile502Val, Pro676Ser, and Lys708Glu), and 327/332
emm12 isolates have a single substitution (Met593Thr) relative to the PBP2X WT
751-amino acid sequence. This lack of pbp2x sequence diversity is again consistent
with emm type 4, 6, and 12 macrolide-resistant isolates stemming from recent clonal
expansions.

= mef(A) + msr(D)

0.01
1998, n = 31
1999, n = 428
2000, n = 204
2001, n = 42
Other, n = 8

A

Genetic relationships among 713 emm4 isolates inferred by
neighbor-joining based on 1,376 recombination-filtered core SNPs

709 mef(A)-msr(D)
PW-MGD = 11.3 SNPs

2000, n = 131
2001, n = 99
2002, n = 12
2003, n = 10
2004, n = 43
2005, n = 16
2006, n = 8
2007, n = 9
Other, n = 4

Genetic relationships among 332 emm12 isolates inferred by
neighbor-joining based on 1,030 recombination-filtered core SNPs

327 mef(A)-msr(D)
PW-MGD = 20.8 SNPs

B

Genetic relationships among 324 emm6 isolates inferred by
neighbor-joining based on 539 recombination-filtered core SNPs

2007, n = 48
2008, n = 267
2009, n = 5
Other, n = 4

322 mef(A)-msr(D)
PW-MGD = 9.2 SNPs

C

FIG 4 Genetic relationships among erythromycin-resistant isolates. Illustrated at the same scale are trees for the three most prevalent emm types,
which account for 90.3% of the 1,515 detected erythromycin-resistant isolates. Isolates that carry mef(A) and msr(D) are shown with circles, and
isolates that do not are shown with squares. Closely related clonal isolates carrying mef(A) and msr(D) are enclosed within dotted lines. The isolates
are colored by year of detection as indicated. (A) Phylogeny inferred for emm4 isolates. (B) Phylogeny inferred for emm12 isolates. (C) Phylogeny
inferred for emm6 isolates.
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The susceptibility to penicillin G, ampicillin, and erythromycin of the three predom-
inant PBP2X variants present in the emm 4, 6, and 12 isolates was tested for five isolates
of each emm type (Table 2). The isolates were selected to represent the temporal
spread of each emm type corresponding with the three peaks of macrolide-resistant
infections. All five emm4 isolates having the PBP2X WT variant were fully susceptible to
the beta-lactam antibiotics penicillin G and ampicillin. Despite the five emm6 isolates
having a PBP2X variant with three amino acid substitutions relative to the PBP2X WT,
they were also fully susceptible to the beta-lactam antibiotics. In contrast, all five
emm12 isolates with a Met593Thr substitution PBP2X variant had approximately 2-fold
increased MICs for both penicillin G and ampicillin. To unambiguously determine if the
PBP2X Met593Thr substitution alters beta-lactam susceptibility, we constructed an
isogenic PBP2X Thr593 substitution derivative using the parental strain MGAS27213-
PBP2X-L601P (12). Importantly, whole-genome sequencing confirmed that the con-
structed derivative strain, MGAS27213-PBP2X-L601P,M593T, only differs from the parent
strain by a single nucleotide change in codon 593 (ATG to CTG) of pbp2x. As antici-
pated, the parental strain had fully susceptible PBP2X WT penicillin G and ampicillin
MIC levels. In contrast, the isogenic PBP2X Met593Thr derivative had 2-fold increased
MICs (Table 2). All 15 of the emm4, emm6, and emm12 isolates encoding mef(A) and
msr(D) were erythromycin resistant, and both the parental and PBP2X Met593Thr
derivative strains were erythromycin susceptible.

DISCUSSION

Macrolide-resistant GAS first appeared in Iceland in 1998 and has for most years
since been relatively rare, with a yearly incidence typically below 5%. This contrasts with
three rapid increases reaching peaks in 1999 (47.2%), 2004 (19.9%), and 2008 (44.9%).
These peaks suggested clonal epidemics, now confirmed in this study. The first wave
(1998 to 2001) was composed predominantly of emm4 (74%), the second (2004 to
2005) of emm12 (68%), and the third (2007 to 2008) of emm6 (91%). The peaks did not
coincide with significant changes in either the type or amount of macrolide consumed
over the year preceding the peaks. This suggests that GAS clones can spread rapidly in
populations where herd immunity may be low to that particular clone, decline in

TABLE 2 Antibiotic MICs

emm
type Isolate

Date
isolated Peak PBP2X substitutiona

MIC (�g/ml) for:b

Penicillin-G
(range, 0.002–32)

Ampicillin
(range, 0.016–256)

Erythromycin
(range, 0.016–256)

4 MGAS31145 Feb. 1998 1 Consensus WT 0.012 0.016 12
MGAS30167 Jan. 1999 1 Consensus WT 0.012 0.016 12
MGAS31312 Jun. 1999 1 Consensus WT 0.012 0.016 12
MGAS30569 Jan. 2000 1 Consensus WT 0.016 0.016 8
MGAS29862c Oct. 2001 1 Consensus WT 0.012 0.016 12

12 MGAS30669 Jun. 2000 1 M593T 0.023 0.032 12
MGAS29854c Apr. 2001 1 M593T 0.023 0.023 12
MGAS29776 May 2003 2 M593T 0.023 0.032 12
MGAS3113 Jun. 2004 2 M593T 0.023 0.032 8
MGAS31135 Jul. 2005 2 M593T 0.023 0.032 12

6 MGAS30249 Aug. 2007 3 I502V, P676S, K708E 0.012 0.016 8
MGAS30277 Jan. 2008 3 I502V, P676S, K708E 0.016 0.016 8
MGAS29961c Apr. 2008 3 I502V, P676S, K708E 0.012 0.016 8
MGAS30512 Nov. 2008 3 I502V, P676S, K708E 0.012 0.016 8
MGAS30516 Feb. 2010 3 I502V, P676S, K708E 0.016 0.016 8

89d MGAS27213:PBP2X-L601P S562T 0.016 0.016 0.125
MGAS27213:PBP2X-L601P,M593T S562T, M593T 0.032 0.032 0.125

aAmino acid substitutions relative to PBP2X consensus WT sequence (i.e., PBP2X-1 variant Table S3).
bAntibiotic concentration range of gradient method Etest strips.
cIsolates from which composite MGEs �29862, �29854, and �29961 carrying mef(A) and msr(D) were assembled.
dReference strains used for construction of isogenic pbp2x alleles/PBP2X variants, not part of the Iceland macrolide-resistant cohort.
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numbers as herd immunity increases, and be replaced by another newly emerging
clone. The results presented here should not be interpreted as macrolide consumption
having had no effect on the three epidemic peaks or, alternatively, that significant
changes in macrolide usage are not necessary for there to be significant changes in the
prevalence of macrolide-resistant GAS infections and the predominant clone causing
such infections. Similar results showing a lack of correspondence between macrolide
consumption and occurrence of macrolide-resistant GAS isolates in Portugal have been
reported, where a decline in erythromycin resistance was associated with the disap-
pearance of isolates belonging to an emm3-ST315 lineage and yet accompanied by a
high consumption of macrolides (26).

The short time between the emergence in Iceland of the first erythromycin-resistant
emm4 isolates in 1998 and the first emm12 isolates in 2000 (Fig. 1), with both
contributing to the first macrolide-resistant epidemic wave (1998 to 2001), and the
similarity in gene content and synteny of the mef(A)- and msr(D)-carrying elements in
these emm types (Fig. S1), raises the possibility that the emergence events are directly
related. That is, it is possible that the emm12 lineage progenitor arose through recent
horizontal acquisition of the mef(A) and msr(D) composite MGE directly from an
Icelandic emm4 donor. Alignment of emm4 �29862 with emm12 �29854 revealed a
difference of 668 SNPs. The several hundred-fold greater numbers of SNPs identified for
the mef(A) and msr(D) composite MGE inter-emm type versus intra-emm type (	1 SNP
pairwise) is inconsistent with the hypothesis of a recent emm4 to emm12 transmission
event and argues for emergence of macrolide-resistant emm4 and emm12 lineages into
Iceland not being directly related.

Another possibility is that the emergence and expansion of the macrolide-resistant
emm types contributing to the three epidemic waves that occurred in Iceland from
1998 to 2008 was driven by changes in antibiotic usage. Antimicrobial consumption of
macrolides in Iceland was fairly constant from 1997 to 2009, with mean annual
outpatient usage ranging from 1.85 defined daily doses per 1,000 inhabitants per day
in 1998 to 1.25 in 2009 (46). Over this period, there was a gradual decrease in the use
of short-acting macrolides (i.e., erythromycin) and a corresponding increase in the use
of intermediate-acting (i.e., clarithromycin) and long-acting (i.e., azithromycin) macro-
lides, but no year-to-year dramatic shifts occurred (Fig. S2). The detected macrolide-
resistant S. pyogenes isolates increased 12.8-fold from 1998 to 1999 (from 34 to 434
isolates, nearly all emm4) and increased 4.3-fold from 2007 to 2008 (from 65 to 281
isolates, nearly all emm6). The lack of any substantial change in macrolide usage
corresponding with these dramatic increases in detected macrolide-resistant isolates is
inconsistent with the emergence and expansion being driven by antibiotic selective
pressure.

Although beta-lactam susceptibility testing was not done for all of the Iceland
macrolide-resistant emm12 isolates, it is likely that all 327 isolates that have the PBP2X
Met593Thr amino acid substitution have reduced beta-lactam susceptibility with �2-
fold increased MICs for penicillin G and ampicillin. This idea is supported by the findings
that there were 2-fold increased penicillin G and ampicillin MICs for the five tested
emm12 isolates temporally spread over the first (1999) and second (2004) peaks of
macrolide-resistant infections and that the isogenic PBP2X Met593Thr substitution in
the emm89 genetic background that demonstrated this single nonsynonymous A to
C nucleotide change in pbp2x/single amino acid Met to Thr change in PBP2X is
sufficient to increase penicillin G and ampicillin MICs 2-fold. It needs to be made
clear that none of the isolates tested had MICs meeting the in vitro definition for
penicillin or ampicillin resistance (EUCAST clinical breakpoint tables v10.0: ben-
zylpenicillin resistant, �0.25 �g/ml). It is noteworthy that the PBP2X Met593Thr
substitution is (along with the PBP2X Pro601Leu [12, 47]) only the second PBP2X
amino acid change to be experimentally proven to reduce S. pyogenes beta-lactam
susceptibility. A molecular understanding of how the PBP2X Met593Thr change
alters beta-lactam susceptibility requires further investigation and would be aided
by determination of an S. pyogenes PBP2X crystallographic structure.
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One prevailing argument for why all bacteria have not evolved/acquired polymor-
phisms conferring resistance to any given antibiotic is that such resistance mutations
result in organisms that are of reduced fitness in an environment that lacks that
antibiotic (48–51). In such an environment, bacteria with fitness-reducing resistance
mutations are, over time, out-competed by more fit, susceptible bacteria and conse-
quently become less prevalent/go extinct in the population. To our knowledge, the
identification in Iceland of the closely genetically related 327 emm12 macrolide-
resistant isolates is the largest population identified of S. pyogenes clinical isolates with
a PBP2X substitution conferring reduced beta-lactam susceptibility that are clearly
recent clonally related descendants. Given that most of the isolates in this cohort come
from pharyngitis patients, this indicates that S. pyogenes strains with some beta-lactam
susceptibility-altering mutations in pbp2x are sufficiently fit to be readily transmitted
and cause abundant pharyngitis. This finding contradicts the recent analysis of Hayes
et al. (45) of PBPs among 9,667 GAS isolates, which found that “while heavy antibiotic
selective pressure may select for mutations in the PBPs, there currently is no evidence
of such mutations becoming fixed in the S. pyogenes population.”

The identification of a large number of naturally occurring GAS strains with mef(A)
and msr(D) M phenotype macrolide resistance, in conjunction with a pbp2x nonsyn-
onymous mutation producing a peptidoglycan synthesis transpeptidase (PBP2X) that
confers reduced beta-lactam susceptibility, is concerning given that beta-lactams and
macrolides are the first and second antibiotics of choice for treating S. pyogenes
infections. Such strains are potentially stepping stones along the evolutionary path to
true beta-lactam-resistant GAS. The use of either beta-lactam or macrolide antibiotics
could provide the selective environment that favors the survival of such strains,
increasing the opportunity for the incremental accumulation of additional resistance-
enhancing polymorphisms. This emphasizes the need for beta-lactam susceptibility
monitoring of GAS and the need for a vaccine to prevent GAS infections.
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