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Abstract: The clinical course of chronic lymphocytic leukemia (CLL) is very ambiguous, showing
either an indolent nature of the disease or having latent dangerous progression, which, if diagnosed,
will require an urgent therapy. The prognosis of the course of the disease and the estimation of the
time of therapy initiation are crucial for the selection of a successful treatment strategy. A reliable
estimating index is needed to assign newly diagnosed CLL patients to the prognostic groups. In this
work, we evaluated the comparative expressions of proteins in CLL blood cells using a label-free
quantification by mass spectrometry and calculated the integrated proteomic indexes for a group of
patients who received therapy after the blood sampling over different periods of time. Using a two-
factor linear regression analysis based on these data, we propose a new pipeline for evaluating model
development for estimation of the moment of therapy initiation for newly diagnosed CLL patients.

Keywords: chronic lymphocytic leukemia; CLL; linear regression; proteomics; mass spectrometry;
label-free quantification

1. Introduction

Chronic lymphocytic leukemia (CLL) is a malignant blood disease that is character-
ized by a progressive accumulation of functionally incompetent CD5- and CD19-positive
mature B-type lymphocytes [1]. CLL is the most common form of leukemia in adults in
Western countries [2]. The understanding of the pathological mechanisms involved in the
CLL formation helps to divide the disease into subgroups, which are considerable for prog-
nostication and treatment. Despite detailed studies of clinical features and chromosomal
abnormalities in CLL, the molecular details underlying disease development are still not
entirely clear [3].

The clinical course of patients with CLL is extremely heterogeneous. While in some
cases the disease has an indolent behavior and patients eventually die because of causes
not related to the disease, in others it shows an aggressive clinical course and patients die
shortly after diagnosis, due to the disease or treatment-related complications. The lifespan
of patients with a diagnosed CLL ranges from less than 1–2 years to more than 15 years [4].
The widely used Binet and Rai staging systems [5,6] have proved to be invaluable in
predicting the clinical outcome between the various staging groups. However, they are
unable to identify prognostic groups with good and bad outcome within the stage [7]. As
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most patients come to clinical attention in the early stage of the disease and do not require
immediate treatment, the future therapy necessity and estimation of the time of therapy
initiation are relevant.

Diagnostic biomarkers serve as indicators of the presence and activity of pathogenic
processes in organism in general [8]. Unlike diagnostic biomarkers, prognostic biomarkers
allow one to observe the process development over time and denote natural history of
disease, which is independent from the treatment [9]. Prognostic markers can predict
patient’s lifespan in aggressive state of disease, or they might help to evaluate a point of
future initiation of treatment in the case of a latent state of CLL [10].

The following molecular-based CLL prognostic markers are currently used in clinical
practice: (1) immunoglobulin heavy-chain variable region (IgHV) mutational status, (2)
interphase fluorescence in-situ hybridization (iFISH) abnormalities, (3) cluster of differ-
entiation (CD) 38, and (4) zeta-associated protein (ZAP)-70 [10]. However, none of these
markers provides the direct estimation of time before therapy initiation; moreover, they
still require standardization and validation [4]. The mechanisms by which these markers
influence a disease progression are under investigation as well [11].

Mass spectrometry-driven proteomics generates a large amount of biologically rel-
evant data. Recent advances in data mining technologies can make this approach more
applicable in medicine. For instance, the linear regression analysis was presented as a
powerful estimating instrument for the prediction of heart diseases based on multiple
clinical indicators [12]. However, so far, no published example of the application of linear
regression based on proteomic data for medical estimating purposes has been found in
the literature.

To develop a new evaluating model using a two-factor linear regression to estimate
the time of the therapy initiation, we used the results of the proteomic profiling of blood
lymphocytes from patients with diagnosed CLL. Blood cells sampling was performed prior
to treatment, but all the patients were treated later at different times, which allowed us
to use this observed time parameter to improve the quality of the evaluating model. The
quantitative data on the cellular proteins were obtained by high-resolution mass spectrome-
try and calculated by label-free quantification (LFQ) approach. The best regression models
based both on direct LFQ data for certain proteins as well as integrated full-proteomic
indexes expressed in principal components are presented here.

2. Materials and Methods
2.1. Sampling

This study was approved by the Local Ethics Committee of the Krasnoyarsk State
Medical University named after Professor V.F. Voyno-Yasenetsky (ethical code 37/2012 of
31 January 2016) and was conducted in accordance with the principles of the Declaration
of Helsinki. All patients gave their informed consent for inclusion before they participated
in the study.

Lymphocytes isolation from blood was performed by Lympholyte-H (Cedarlane,
Burlington, ON, Canada) according the manufacturer’s protocol. Before further processing,
the cell samples were stored in a Bambanker cryoconservation medium (Lymphotec, Tokyo,
Japan) at −80 ◦C. After that, the suspension of cells was washed and lysed in a 0.1%
solution of sodium deoxycholate for 30 min. The protein concentrations in supernatant
obtained after centrifugation were measured by UV-1280 spectrophotometer (Shimadzu,
Kyoto, Japan). The equivalent amount of 4 µg of protein per sample was taken for mass
spectrometry. The protein samples were reduced, alkylated, and digested by trypsin using
the universal reagent set from Thermo Scientific (Waltham, MA, USA). The samples were
cleaned by 10-µL C18 pipette tips and dried before analysis. All samples were prepared
and analyzed in triplicates.
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2.2. Chromatography and Mass Spectrometry

The samples were resuspended in phase “A” (0.1% of formic acid) before analysis.
The gradient from 0% to 40% of phase “B” (0.1% of formic acid in 80% acetonitrile) was run
for 120 min using a Dionex UltiMate 3000 RSLC nano liquid chromatographer (Thermo
Scientific, Waltham, MA, USA). The Acclaim RLSC PepMap C18 column (75 µm inner
diameter, 2 µm particles, 15 cm length) was used. The nano-flow was set to 200 nL/min.
The Orbitrap Fusion mass spectrometer (Thermo Scientific, Waltham, MA, USA) was set to
data dependent mode with alternating scans of parent and fragment ions. Resolution of
60,000 was set for first scans made by an Orbitrap mass detector. Subsequent fragment ions
were analyzed after collision-induced dissociation by ion trap detector at a normal rate.

2.3. Protein Identification and Label-Free Quantification

The total set of mass spectrometry files was processed by MaxQuant 1.5 software
(Max Planck Institute for Biochemistry, Martinsried, Germany) [13] with enabled label-free
quantification (LFQ). Only unique peptides were chosen for protein quantification. Cysteine
carbamidomethylation, methionine oxidation, and N-term acetylation were chosen as
possible modifications. The reviewed Swiss-Prot protein database was used for protein
search with a false discovery rate of 0.01. The MaxQuant outputs relative values expressed
in LFQ intensities for the identified proteins, which are considered as quantitative indicators
of protein distribution over the sample groups.

2.4. Data Processing

The proteins identified by MaxQuant were excluded only in one sample. The quantita-
tive data for each protein were normalized by dividing the LFQ values by the maximum of
the LFQ value of the protein in all samples. A two-parameter linear model was developed
for each protein:

T = α · T0 + β · LFQ(Protein) + γ, (1)

where T is a period of time from sampling to therapy initiation and T0 is a period of time
from diagnostics to sampling (both in months). To estimate the quality of the models we
used the following well-known metrics: the coefficient of determination R2 as well as the
F-values and p-values corresponding to the model coefficients.

In addition, a linear regression model T on T0 and P1 was built,

T = α · T0 + β · P1 + γ, (2)

where P1 is a projection of the vector of the LFQ values to the first principal component.
In order to estimate the adequacy of this model, in addition to standard metrics, we used
leave-three-out cross-validation [14]—the procedure of multiple calculations of the quality
metrics using different splits of the data set to train/test sets.

All steps of data analysis were performed in Anaconda Python 3.

3. Results

The experimental group (Table 1) consisted of five B-cell CLL patients (average age
was 60.6 years). None of these patients received any treatment at the time of sampling
(July 2014). After sampling, they received therapy at different time intervals (column T in
Table 1). Two patients received Leukeran therapy and three patients received fludarabine,
cyclophosphamide, and rituximab therapy. Most of them had negative test on CD38 and
ZAP-70, which are known as markers of adverse course of the disease.
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Table 1. Characteristics of patients. T0: period of time from diagnostics to sampling. T: period of time
from sampling to therapy initiation. Traditional prognostic markers status: cluster of differentiation
38 (CD38) and zeta-associated protein-70 (ZAP-70).

Patient Age, Years Sex T0, Months T, Months CD38 ZAP-70

XL-28 58 Male 9 37 Negative Negative
XL-30 56 Male 13 46 Negative Negative
XL-35 53 Female 22 42 Negative Negative
XL-36 76 Male 38 16 Negative Positive
XL-38 60 Male 17 8 Negative No data

The difference in the time after diagnosis and before the start of the treatment of
the patients included in the study allowed us to construct evaluating models using indi-
vidual data of proteomic cell profiling. The model quality was assessed by comparing
the evaluated moments of therapy initiation to the observed values for the entire group
of patients.

The comparative LFQ numbers were obtained for 2128 proteins from the total set of
mass spectra using the MaxQuant 1.5 program (Table S1). After filtration, the final set
consisted of 1183 proteins. Then the LFQ values were normalized.

After applying linear regression in the following form:

T = α · T0 + β · LFQ(Protein) + γ, (3)

where T is the period of time from sampling to therapy initiation and T0 is the period of
time from diagnostics to sampling (both in months), models were evaluated based on the
LFQs of single proteins according to the highest values of the coefficients of determination
R2 that were obtained. Proteins selected with the best fit for the model (1) are presented in
Table 1. These proteins are common for all five of the patients that were tested (Table S1).

The F-values of the models were less than 10−10; the p-values corresponding to the
model coefficients were less than 10−8.

To obtain a general indicator for our data set that was not based on individual candi-
date biomarkers, while taking into account the contribution of all proteins, we used the
method of lowering the dimensions by principal component analysis (PCA). The projection
P1 onto the first principal component for the LFQ vector of each sample was found. Then a
linear regression model was built:

T = α · T0 + β · P1 + γ, (4)

Taking T and T0 in months, the values of the coefficients α, β, and γ were −0.83,
−1.78, and 46.27, respectively. The value of the coefficient of determination R2 was 0.99.
The F-value of the model was 3.3 × 10−15, and the p-value corresponding to the model
coefficients was less than 10−12. In order to estimate the adequacy of the linear model
of the form (2) in general, we performed leave-three-out cross-validation. For this, we
sequentially removed the certain patient’s data from the dataset, fitted the model, and
estimated the model quality based on the removed data (test dataset). It was found that
the average value of R2 on the test dataset was 0.95 and the average value of mean squared
error was 1.4. Thus, the model (2) (Figure 1) can be recommended for further testing on
larger sets of samples.
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4. Discussion

We obtained the best evaluating regression models for estimating the rate of CLL
progression with the F-values less than 10−10, and the p-values less than 10−8, based on
the expression levels of individual proteins (Table 2). All of the three proteins perform
key cellular functions. Mitochondrial 60 kDa heat shock protein plays a significant role in
carcinogenesis, promotes the proliferation of cancer cells, and serves as an antiapoptotic
mediator for various types of cancer [15,16]. The content of 40S ribosomal protein SA
increases with various malignant tumors, in particular melanoma, colon cancer, breast and
esophageal cancer, and glioma [17–21]. Polypyrimidine tract-binding protein 1 promotes
the development of metastases with colorectal cancer and clear-cell renal cell carcinoma,
glioblastoma, and epithelial ovarian tumors [22–26].

Table 2. The best models according to the R2.

Protein ID Protein Name R2 α β γ

P10809 60 kDa heat shock protein, mitochondrial 0.994 −1.39 −81.14 111.52
P08865 40S ribosomal protein SA 0.987 −0.80 −62.75 81.74
P26599 Polypyrimidine tract-binding protein 1 0.978 −0.98 −54.06 77.81

Although the individual proteins presented in the best evaluating models are respon-
sible for the active life cycle and proliferation of cancer cells and may be related to the
whole oncogenesis, they were not mentioned as specific markers of CLL. The function of
any distinct predictive biomarker is not entirely relevant in an unbiased approach. A long
list of various proteins may be involved in the origin and course of CLL. Therefore, we
should consider models that take into account the contributions of larger sets of proteins
that affect pathology. At best, it should be the whole proteome found in a cell sample.

The most proper strategy for identifying individual markers of malignancy would be
proteomic comparison of CLL lymphocytes with healthy cells. In our case, we used new
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integrative parameters as a diagnostic feature. The new principal components take into
account the contribution of all proteins registered in mixtures of normal and malignant
lymphocyte lysates. Wherein, we assume that the main contribution to the principal
components is made by the proteins that are most varied in different samples. Typically,
these are proteins specific to the malignant cells. Normal proteins, which originate from
the healthy lymphocytes, and do not differ in the level of expression in different patients,
should not contribute to the principal components and are not taken into account in
the model.

The regression model (2) (Figure 1), showing the F-value of 3.3 × 10−15 and the p-value
less than 10−12, turned out to be the preferred one, since it considered the contribution
of all the proteins together. Moreover, this model did not depend on a single biomarker.
Therefore, it may be more reliable and universal, and may be applicable for the clinical
prognosis of the disease and evaluation of the treatment effectiveness.

The use of the presented approach considers the concept of a clinical test system,
where the separation of malignant cells from normal lymphocytes using antibodies seems
to be a laborious task at the routine level. The idea of the new test system was to take
lymphocytes “as is” to simplify the clinical procedure. In future, the test for evaluating
the time of the start of therapy can be performed in a laboratory equipped with a mass
spectrometer. Data on the proteomic profile of blood cells from a newly diagnosed patient
should be analyzed together with the data of known patients. When adding the new data
into an existing regression model based on data from known patients, it will be possible
to assess the moment of the therapy initiation for a new patient. With an increase in the
samples used, and with further verification in the future, the reliability of the method
will increase. However, the results obtained in our work are based on a small number of
patients in each group. Therefore, in this form, they can only be a successful demonstration
of the proof-of-concept. Further verification on larger sets of samples is definitely required.

5. Conclusions

Here, we propose an approach based on linear regression, which can be used for
clinical purposes for evaluating disease progression. For this, a primary set of proteomic
and time-related data for the regression model development should be collected. The newly
diagnosed patient’s proteome should be analyzed on the same instrumental platform, and
the new data should be processed along with the primary dataset in order to obtain relative
quantitative proteomic values. The obtained regression model could be used for the
assessment of disease progression. We introduce a concept of the evaluating system for
CLL, based on a small-scale dataset. A more accurate prognostic model can be developed
along with the accumulation of more extended proteomic and time-related data based on
blood cancer clinical records.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-7
382/9/1/3/s1: Table S1: Label-free quantification (LFQ) values for the total set of cell proteins
generated by MaxQuant program.
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