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Abstract Feedback inhibitory motifs are thought to be important for pattern separation across

species. How feedback circuits may implement pattern separation of biologically plausible,

temporally structured input in mammals is, however, poorly understood. We have quantitatively

determined key properties of netfeedback inhibition in the mouse dentate gyrus, a region critically

involved in pattern separation. Feedback inhibition is recruited steeply with a low dynamic range

(0% to 4% of active GCs), and with a non-uniform spatial profile. Additionally, net feedback

inhibition shows frequency-dependent facilitation, driven by strongly facilitating mossy fiber inputs.

Computational analyses show a significant contribution of the feedback circuit to pattern

separation of theta modulated inputs, even within individual theta cycles. Moreover, pattern

separation was selectively boosted at gamma frequencies, in particular for highly similar inputs.

This effect was highly robust, suggesting that frequency-dependent pattern separation is a key

feature of the feedback inhibitory microcircuit.

Introduction
Efficiently discriminating similar percepts or experiences is a central capability common to inverte-

brate and vertebrate species. In general terms, such discrimination can be achieved by decreasing

the overlap in representations by neuronal ensembles between input and output patterns, a process

termed ‘pattern separation’ (Cayco-Gajic and Silver, 2019; Marr, 1971; McNaughton and Morris,

1987; Rolls, 2013). Numerous studies have proposed cellular and circuit mechanisms that support

this computation. For instance, sparse divergent inputs, specialized intrinsic properties and feedfor-

ward inhibition are thought to generally contribute (Cayco-Gajic et al., 2017; Cayco-Gajic and Sil-

ver, 2019; Krueppel et al., 2011; Mircheva et al., 2019). Another common feature of most of

these models and experimental studies is a critical role of feedback inhibition (Cayco-Gajic et al.,

2017; Rolls, 2013). Feedback circuits differ from the above mechanisms in that they can i) imple-

ment direct competition between active cells through lateral inhibition and ii) integrate information

about the actual global activity level in a population allowing efficient normalization (Braganza and

Beck, 2018; Wick et al., 2010; Wiechert et al., 2010). Indeed, in the insect olfactory system a criti-

cal role of such a circuit has been causally demonstrated (Lin et al., 2014; Papadopoulou et al.,

2011).

In mammals, substantial evidence points toward a role of the hippocampal dentate gyrus (DG) for

pattern separation during memory formation and spatial discrimination (Bakker et al., 2008;

Berron et al., 2016; Gilbert et al., 2001; Leal and Yassa, 2018; Leutgeb et al., 2007;

McHugh et al., 2007; Neunuebel and Knierim, 2014; Stefanelli et al., 2016; van Dijk and Fenton,

2018). The DG is thought to subserve this task by converting different types of inputs to sparse,
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non-overlapping activity patterns of granule cells (GCs). However, in contrast to the insect olfactory

system, the DG feedback circuit is extremely complex, comprising numerous interconnected inter-

neuron types (Supplementary Table 1) (Bartos et al., 2002; Dasgupta and Sikdar, 2015;

Espinoza et al., 2018; Ewell and Jones, 2010; Freund and Buzsáki, 1996; Geiger et al., 1997;

Harney and Jones, 2002; Hefft and Jonas, 2005; Kraushaar and Jonas, 2000; Larimer and Strow-

bridge, 2008; Lee et al., 2016; Liu et al., 2014; Lysetskiy et al., 2005; Sambandan et al., 2010;

Savanthrapadian et al., 2014; Sik et al., 1997; Yu et al., 2015; Yuan et al., 2017; Zhang et al.,

2009). For instance, interneurons subserving feedback inhibition are also incorporated into circuits

mediating feedforward inhibition (Ewell and Jones, 2010; Hsu et al., 2016; Lee et al., 2016) and

disinhibition (Savanthrapadian et al., 2014; Yuan et al., 2017). This makes it difficult to predict the

net inhibition arising from GC activity.

We reasoned that to assess if feedback inhibition is indeed suitable for the purpose of pattern

separation in the DG, it is necessary to determine how efficiently the activity of sparse GC ensembles

recruits net inhibition, that is the dynamic range and gain of the feedback inhibitory microcircuit. It is

furthermore necessary to quantify the spatial and temporal properties of the elicited inhibition, in

order to investigate its impact on biologically plausible, temporally structured input. For instance,

the DG shows prominent theta oscillations during exploration and distinctive slow-gamma activity

during associative memory encoding (Hsiao et al., 2016; Lasztóczi and Klausberger, 2017; Pernı́a-

Andrade and Jonas, 2014; Sasaki et al., 2018; Trimper et al., 2017). Importantly, both sparsity

and temporal oscillations will critically affect a proposed pattern separation function. For instance,

feedback inhibition must by definition occur with a delay, a property frequently abstracted away in

computational models (Myers and Scharfman, 2009; Rolls, 2016), but potentially critical during

oscillatory activity.

Here, we combine patch-clamp recordings, multiphoton imaging and optogenetics to provide a

first quantitative, empirical description of the net input-output function of a feedback inhibitory

eLife digest You can probably recall where you left your car this morning without too much

trouble. But assuming you use the same busy parking lot every day, can you remember which space

you parked in yesterday? Or the day before that? Most people find this difficult not because they

cannot remember what happened two or three days ago, but because it requires distinguishing

between very similar memories. The car, the parking lot, and the time of day were the same on each

occasion. So how do you remember where you parked this morning?

This ability to distinguish between memories of similar events depends on a brain region called

the hippocampus. A subregion of the hippocampus called the dentate gyrus generates different

patterns of activity in response to events that are similar but distinct. This process is called pattern

separation, and it helps ensure that you do not look for your car in yesterday’s parking space.

Pattern separation in the dentate gyrus is thought to involve a form of negative feedback called

feedback inhibition, a phenomenon where the output of a process acts to limit or stop the same

process. To test this idea, Braganza et al. studied feedback inhibition in the dentate gyrus of mice,

before building a computer model simulating the inhibition process and supplying the model with

two types of realistic input. The first consisted of low-frequency theta brainwaves, which occur, for

instance, in the dentate gyrus when animals explore their environment. The second consisted of

higher frequency gamma brainwaves, which occur, for example, when animals experience something

new.

Testing the model showed that feedback inhibition contributes to pattern separation with both

theta and gamma inputs. However, pattern separation is stronger with gamma input. This suggests

that high frequency brainwaves in the hippocampus could help animals distinguish new events from

old ones by promoting pattern separation.

Various brain disorders, including Alzheimer’s disease, schizophrenia and epilepsy, involve

changes in the dentate gyrus and altered brain rhythms. The current findings could help reveal how

these changes contribute to memory impairments and to a reduced ability to distinguish similar

experiences.
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microcircuit. This includes the spatiotemporal organization of net feedback inhibition elicited by a

spatially restricted GC population and the net short-term dynamics within the feedback microcircuit.

Finally, we integrate our data into a biophysically realistic computational model and probe its ability

to perform pattern separation. We find a moderate feedback inhibition mediated pattern separation

effect during theta modulated input but a substantial separation, particularly of highly similar inputs,

during gamma oscillations.

Results

Input-output relation of the feedback inhibitory microcircuit
We reasoned that the ultimately relevant parameter for the putative pattern separation effect of

feedback inhibition is the net inhibition arriving at GCs. We therefore treated the feedback microcir-

cuit as a black-box striving to relate only its net input (fraction of GCs active) to its net output (feed-

back inhibition in GCs). To this end, we antidromically recruited feedback inhibitory circuits, while

simultaneously recording GC inhibition and population activity (see schematic in Figure 1A). Electri-

cal stimulation reliably evoked graded IPSCs in dentate GCs, that increased with stimulation strength

(maximal amplitude of 324.1 ± 99.2 pA, n = 8; Figure 1B). Feedback IPSCs were completely blocked

by 10 mM GABAzine (to 1.5 ± 0.9%, n = 7 cells, P(df = 6, t = 117.4)<0.001, one-sided t-test), as

expected (Figure 1C). To ascertain that IPSCs were mediated by synaptically activated interneurons

rather than interneurons directly recruited by electrical stimulation, we only included slices where

inhibition was successfully blocked by glutamatergic antagonists (25 mM CNQX and 50 mM D-APV, 8

of 21 experiments, Figure 1C). We also tested if inhibition of glutamate release from mossy fibers,

which can be specifically achieved via mGluR2/3 activation by DCG-IV (Doherty and Dingledine,

1998; Toth et al., 2000), reduces feedback IPSCs. Indeed, we found that IPSCs were reduced to

16.3 ± 6.1% by 0.5 mM DCG-IV (n = 4 cells, P(df = 3, t = 13.73)<0.001, one-sided t-test, Figure 1C).

In order to relate the measured IPSCs to the fraction of GCs activated by a given stimulation

strength, we used population Ca2+ imaging with multibeam two-photon microscopy (Figure 1A, see

Materials and methods). After bolus-loading GCs with the Ca2+ indicator OGB-1-AM (see

Materials and methods), antidromic stimulation caused action potential associated Ca2+ elevations in

a subset of GCs (Figure 1D, transients indicated by *). Before quantifying population activity, we

verified the reliable detection of single action potentials under our conditions using simultaneous

cell-attached recordings from dentate GCs (Figure 1E; Figure 1—figure supplement 1). Briefly,

cells were differentiated into true responders or non-responders on the basis of cell-attached record-

ings (Figure 1E,F; responders green, non-responders grey). A histogram of the peak DF/F of non-

responders upon a single stimulus was fitted with a Gaussian (Figure 1F right, grey dots, grey bars,

n = 33) and the threshold set to the quadruple standard deviation of this fit (0.94% DF/F, dashed

line in Figure 1F). We estimated that this threshold would yield approximately equal numbers of

false positives and false negatives (Figure 1—figure supplement 1F). We additionally controlled for

possible errors through variable dye loading and the overestimation of the active cell-fraction

through accidental detection of adjacent active cells (Figure 1—figure supplement 1G,H,

respectively).

Orientation of hippocampal slices may be a critical feature in determining the extent of feedback

connectivity. We therefore systematically assessed the magnitude of feedback activation of GCs

using imaging in slices obtained from different dorso-ventral levels of the hippocampus (see inset of

Figure 1G). We found a clear connectivity maximum within horizontal slices obtained at a distance

of ~1750 mm from the temporal pole (Figure 1G,H; Bischofberger et al., 2006). In these and all fol-

lowing experiments we therefore used exclusively slices obtained at 1400–2100 mm from the tempo-

ral pole, where the orientation of hippocampal slices matches the orientation of mossy fibers.

Combining the IPSC recordings with population Ca2+ imaging allowed us to probe the input-out-

put relationship of the feedback inhibitory microcircuit. Inhibition was recorded in a GC within or

immediately adjacent to the imaging field, and stimulation strength was increased gradually

(Figure 1I). The IPSC saturated at 300mA stimulation strength, where the mean active cell fraction

was 2.2 ± 0.7% and the mean IPSC reached 93.1 ± 3.4% of the maximal IPSC (Figure 1I,J, n = 20 for

imaging, n = 8 for IPSCs including six slices with both). Plotting the IPSC magnitude vs. the cell
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Figure 1. Recruitment of feedback inhibition assessed using population Ca2+ imaging. Combined population Ca2+ imaging and IPSC recordings of

GCs during antidromic electrical stimulation. (A) Schematic illustration of the experimental setup. Dashed lines represent cuts to sever CA3

backprojections. (B) Top: reconstruction of the dendritic tree of a representative GC. Bottom: Feedback IPSC at increasing stimulation strength during

stratum lucidum stimulation. (C) IPSCs were completely blocked by GABAzine and CNQX + D-APV and largely by DCG-IV. (D) Left: overlay of

exemplary OGB1-AM-loaded GC population (green) with a DF/F map (white). right: traces of DF/F over time of a subpopulation of cells depicted on the

Figure 1 continued on next page
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fraction showed that the magnitude of feedback inhibition rises steeply, reaching ~90% with less

than 3% of GCs active and complete saturation at 3.7 ± 1.7% of cells (Figure 1K).

Optogenetic quantification of the recruitment of feedback inhibition
These experiments yielded a first quantitative estimate of the input-output relation of the feedback-

inhibitory microcircuit in the DG. We then decided to verify these findings using an alternative

method, which allowed spatially controlled and less synchronous GC activation. Mice selectively

expressing ChR2(H134R)-eYFP in GCs were created by crossing Prox1-Cre mice with Ai32-mice

(Figure 2A, see Materials and methods). Focal optogenetic stimulation was achieved through a laser

coupled into the microscope light path, yielding an 8 mm stimulation spot (Figure 2B). Brief (20 ms,

473 nm) light pulses within the molecular layer approximately 40 mm from the dentate GC layer eli-

cited reliable IPSCs in GCs (Figure 2C). Increasing the light intensity evoked larger IPSCs that

showed clear saturation (Figure 2C,D, Power = 7 AU corresponding to 1.7 mW, see

Materials and methods). Inhibition was completely blocked by combined application of 40 mM

CNQX and 50 mM D-APV (Figure 2E, n = 9), confirming that it is recruited via glutamatergic collater-

als. The maximal IPSC amplitude obtained optically vs. electrically in experiments in which both stim-

ulations were performed were similar (Figure 2F, paired t-test, P(df = 3, t = 1.568)=0.2148, n = 4),

indicating that similar maximal inhibition is recruited despite the differences in the activated GC

population (distributed vs local; synchronous vs. less synchronous).

In order to relate feedback inhibition to the underlying GC activity levels, we performed system-

atic cell attached recordings of GCs in the same slices in which inhibition was recorded (~2 cells per

slice, Figure 2—figure supplement 1). Briefly, we recorded the spatial firing probability distribution

in response to focal stimulation for each laser power. We then estimated the mean firing probability

of GCs throughout the section, which is equivalent to the expected active GC fraction, by incorpo-

rating measurements of the light intensity distribution throughout the slice (Figure 2G, black). We

additionally estimated an upper and lower bound by assuming either no decay of firing probability

with slice depth or isometric decay (Figure 2G, grey dashed lines). Combining the input-output rela-

tions of IPSCs (Figure 2D) and the estimated active cell fraction (Figure 2G) again revealed that inhi-

bition is recruited steeply, saturating when approximately 4% of GC are active (Figure 2H).

Importantly, the resulting recruitment function of inhibition is unlikely to be affected by voltage

escape errors (Figure 2—figure supplement 2). This is because such errors scale linearly with synap-

tic conductance and will thus affect the absolute but not the relative amplitude of the somatically

measured IPSC. Next, we compared the focal light activation with global activation via a light fiber

positioned over the surface of the slice (with powers up to 50 mW, Figure 2I). Under global stimula-

tion all cells tested fired APs with 100% reliability and independent of location, even though focal

stimulation in direct proximity to the cell led to much lower maximal firing probabilities (Figure 2I,

middle, 100.0 ± 0.0 versus 31.2 ± 7.1% respectively, paired t-test, P(df = 7, t = 9.74)<0.001, n = 8).

At the same time, the maximal IPSC amplitude did not increase further upon global stimulation

(Figure 2I, right, 356.9 ± 76.2 versus 344.3 ± 77.5 pA, paired t-test, P(df = 9, t = 1.112)=0.29,

n = 10). This implies that additional activation of remote GCs cannot recruit interneurons beyond

those activated by local GC populations. Thus, the recruitment of feedback inhibition in the DG is

steep, with a dynamic range tuned to sparse populations of GCs (up to 3–4% of cells).

Figure 1 continued

left. (E) Simultaneous cell attached recording and calcium imaging to measure the action potential induced somatic calcium transient amplitude. (F)

Scatterplot and histogram of the calcium fluorescence peaks of cells which either did (green) or did not (grey) fire action potentials, as assessed by cell

attached recordings. (G) Illustration of the anatomical localization of maximum connectivity plane slices. Short black dashed lines indicate depth at

which the slice plane is aligned to the dorsal brain surface. (H) Antidromic stimulation elicited Ca2+ transients primarily at this depth (black bars). (I)

Normalized IPSC amplitude and activated cell fraction both increase with increasing stimulation strength (example from a single slice). (J) Summary of

all slices (K) Summary data plotted to show the increase of inhibition as a function of the active GC fraction.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Detection of single action potential induced calcium transients.
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Figure 2. Recruitment of feedback inhibition assessed optogenetically. (A) EYFP fluorescence in dentate GCs of Prox1/ChR2(H134R)-EYFP transgenic

mice. The field of view for rapid focal optogenetic stimulation is indicated by a blue square. A typical stimulation site approx. 40 mm from the GC layer

(two short black lines) is indicated by a blue dot. (B) Schematic of the microscope setup used to achieve spatially controlled illumination. The inset

shows the intensity profile of the laser spot. (C) Top left, reconstruction of an Alexa594 filled GC. Left, illustration of optical stimulation. Right, IPSCs

following 20 ms light pulses at increasing laser power (p=1 to 7 AU). Each trace represents an average of three trials. (D) Summary of IPSC amplitudes

from cells in the superior blade (n = 7 cells). IPSC amplitudes were normalized to the maximum amplitude within each cell. (E) Optogenetically elicited

IPSCs are abolished by glutamatergic blockers (40 mM CNQX + 50 mM D-APV, n = 9). (F) Left, Schematic of focal optical and electrical stimulation.

Dashed lines indicate cuts to sever CA3 backprojections. Middle, Example traces for IPSCs following electrical or focal optogenetic stimulation. Right,

maximal IPSC amplitude for the two stimulation paradigms (361 ± 37 vs. 410 ± 13 pA for electrical and optogenetic stimulation respectively, paired

t-test, p=0.28, n = 4) (G) The optogenetically activated GC fraction responsible for recruiting the IPSC at the respective laser powers was estimated

from systematic cell attached recordings (see Figure 2—figure supplement 1 for details). The best estimate (black) incorporates measurements of the

3D light intensity profile in the acute slice. Upper and lower bounds were estimated by assuming no firing probability decay with increasing slice depth

(upper grey dashed line) or isometric firing probability decay (lower grey dashed line. (H) Data from (D) and (H, best estimate) plotted to show the

recruitment of feedback inhibition. (I) Comparison of focal optogenetic stimulation to global (light fiber mediated) optogenetic stimulation. Left,

Schematic illustration. Middle, Comparison of the AP probability of individual GCs at maximal stimulation power for focal and global stimulation

assessed by cell attached recordings. Right, Comparison of the maximal IPSC amplitude under focal and global stimulation for individual GCs.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Optogenetically activated cell fraction.

Figure supplement 2. Error in somatic IPSC measurements with increasing inhibitory conductance.

Figure supplement 3. Absence of single GC induced feedback inhibition.
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Lower limit of feedback recruitment
Previous work has addressed the lower limit of the recruitment of feedback inhibition in various corti-

cal areas (Jouhanneau et al., 2018; Kapfer et al., 2007; Miles, 1990; Silberberg and Markram,

2007). The authors report the ability of even a single principal cell to activate feedback inhibitory

interneurons and a supralinear increase of inhibition as the second and third principal cells are co-

activated (Kapfer et al., 2007). Given our findings so far we asked whether single GCs might also

suffice to elicit feedback inhibition in the DG. To this end, we performed dual patch clamp record-

ings and elicited short trains of 10 action potentials at 100 Hz in one cell while monitoring inhibition

in the other (Figure 2—figure supplement 3, n = 15). However, in contrast to the neocortex

(Kapfer et al., 2007; Silberberg and Markram, 2007) and area CA3 (Miles, 1990), we did not find

single GC-induced feedback inhibition in any of these experiments, consistent with a recent large

scale study reporting that such connections are extremely sparse (0.124%) (Espinoza et al., 2018).

Spatial distribution of feedback inhibition
Recent evidence indicates that inhibition by individual PV+ fast spiking hilar border interneurons is

non-uniformly distributed over space, with decreasing connectivity and inhibition at greater distan-

ces from the interneuron (Espinoza et al., 2018; Strüber et al., 2015). To test whether feedback

inhibition by the entire ensemble of feedback inhibitory interneurons also displays a spatial gradient,

we activated cell populations at 100 mm intervals along the GC layer while recording inhibition in

individual GCs (Figure 3A). Spatial profiles were recorded for increasing laser powers in cells in the

superior as well as inferior blade of the DG (Figure 3B,C respectively; n = 8 cells for each blade).

IPSC amplitudes across locations and powers were normalized to the maximal IPSC amplitude in

each respective cell. This maximal amplitude did not differ between cells in different blades

(366 ± 40 vs 390 ± 84 pA for superior and inferior blades, respectively; t-test, P(df = 14, t = 0.258)

=0.0686). Next, we investigated the spatial organization of feedback inhibition at stimulation powers

at which inhibition had saturated (Figure 3D,E). In all GCs tested, the inhibition was greatest when

stimulating in the direct vicinity of the recorded cell. Activating cells at increasing distances led to

monotonically decreasing IPSC amplitudes for both blades. Importantly, the term distance here

refers to the functional distance along the GC layer and not to Euclidean distance. However, inhibi-

tion was observed even at the most remote stimulation sites, indicating that even the most remote

cells from the contralateral blade can contribute to the activation of feedback inhibition in a given

GC. In order to statistically compare the relation of local versus remote inhibition between blades,

we defined a remote location in the contralateral blade at 800 mm from the recorded cell (measured

along the GC layer and equidistant in all slices; Figure 3D,E; grey lines) and compared it to the local

IPSC (black lines). Remote inhibition was significantly smaller than local inhibition while no difference

between blades or significant interaction was observed (Figure 3F; two-way RM ANOVA; Distance:

F(1,14)=3.341, p<0.001; Blade: F(1,14)=2.615, p=0.128; Interaction: F(1,14)=3.341, p=0.089). Postt-

ests suggested inhibition of inferior GCs by superior activation might be greater than vice versa.

However, the difference was not significant (Sidak’s multiple comparison corrected posttest, P

(df = 28)=0.932, P(df = 28)=0.051 for local and remote, respectively).

Next, we investigated whether there are differences in the steepness of recruitment of local ver-

sus remote inhibition between blades (black and grey, respectively; Figure 3G,H). To this end, we

calculated the active cell fraction which produces half-maximal inhibition during local or remote stim-

ulation for each individual slice. Comparison of the recruitment between the four groups revealed

no differences between blades (Figure 3I, two-way RM ANOVA; Distance: F(1,14)=7.889, p=0.014;

Blade: F(1,14)=0.5506, p=0.470; Interaction: F(1,14)=0.0976, p=0.759). However, local inhibition was

significantly more steeply recruited than remote inhibition (1.99 ± 0.22% vs. 3.17 ± 0.57% active cells

for half-maximal inhibition).

Next, we tested if IPSCs elicited by increasing active GC populations differed between local and

remote activation with respect to their kinetic properties. Since all previous data showed no indica-

tion of blade specific differences the analysis of the kinetics of feedback IPSCs were performed on

the pooled data for both blades. Interestingly, local and remote inhibition differed in all tested

respects (Figure 3J–M, two-way RM ANOVAs with dfDistance = 1,183, dfcell fraction = 6,183 and dfinter-

action = 6,183). Local IPSCs occurred with shorter latency and lower jitter than remote IPSCs

(Figure 3J,K; Latency: p<0.001, <0.001 and =0.031 for distance, cell fraction and interaction,
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Figure 3. Spatial organization of feedback inhibition. Feedback IPSCs recorded from an individual GC while GCs at varying distances were activated.

(A) Schematic illustration of the stimulation paradigm and example IPSC traces of an individual trial (p=3). (B, C) Distribution of normalized IPSC

amplitudes as a function of laser power and distance from stimulation spot for superior and inferior blade GCs (n = 8 for each blade). The relative

location of the DG apex ± standard deviation is indicated by the black bar and grey area respectively. (D, E) IPSC distribution over space at saturation

(p�5). Black and grey bars indicate a local and a remote location at 800 mm from the recorded cell respectively. (F) Comparison of the amplitude of the

Figure 3 continued on next page
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respectively; Jitter: p<0.001, =0.037 and =0.707 for distance, cell fraction and interaction, respec-

tively). Furthermore, both latency and jitter decreased as larger populations were activated. IPSCs

were also significantly slower in remote versus local inhibition. IPSC rise time was slightly shorter in

the larger local IPSCs but did not correlate with the active cell fraction (Figure 3L: p=0.010, =0.633

and =0.388 for distance, cell fraction and interaction, respectively). Similarly, decay times were signif-

icantly shorter in local versus remote inhibition while they progressively increased with increasing

stimulation power (Figure 3M; p<0.001, <0.001 and =0.124 for distance, cell fraction and interac-

tion, respectively). These data demonstrate that remote inhibition shows greater delay, greater jitter

and slower kinetics than local inhibition.

Short-term dynamics in the feedback inhibitory microcircuit
Different connections within the feedback inhibitory microcircuit have been shown to variably facili-

tate or depress during trains of activity (Savanthrapadian et al., 2014) (Tabular overview provided

in supplementary file 1). This makes it difficult to predict the net effect on the short-term dynamics

of GC feedback inhibition. We therefore characterized the frequency-dependence of net feedback

inhibition using antidromic electrical stimulation as described above (Figure 4A–C). In marked con-

trast to the CA1 region of the hippocampus (Pothmann et al., 2014), feedback IPSCs showed

strong frequency-dependent facilitation (Figure 4C, n = 10 cells, one-way RM ANOVA; Frequency: F

(2.69, 29.54)=13.99, p<0.001; Wilcoxon signed rank tests for deviation from unity at each frequency

with Bonferroni corrected p-values; p>0.99, p=0.004, p=0.002 and p=0.002 for 1, 10, 30 and 50 Hz,

respectively). Furthermore, the facilitation indices significantly increased with increasing stimulation

frequency (1 Hz: 0.99 ± 0.07; 10 Hz: 1.41 ± 0.11; 30 Hz: 1.83 ± 0.16; 50 Hz: 2.09 ± 0.19; posttest for

linear trend: p<0.0001, R2=0.436). We found no evidence for a spatial gradient of net feedback

inhibitory short-term dynamics (Figure 4—figure supplement 1).

Because this unusual degree of facilitation may be important in allowing sparse activity of GCs to

recruit significant inhibition over time, we further examined the underlying circuit mechanisms. Inter-

estingly, dentate interneuron inputs to GCs appear to be generally depressing (Supplementary file

1, blue rows), rendering our finding of pronounced facilitation at the circuit level even more striking.

We reasoned that a facilitating excitatory synapse driving feedback interneurons could underlie cir-

cuit level facilitation. We therefore measured feedback excitation of hilar neurons by stimulating

mossy fiber axons as described above (Figure 4D–L). Mossy cells and interneurons were classified

according to their morpho-functional properties (Larimer and Strowbridge, 2008) (Figure 4D,E,G,

H,J,K). Cell classification was confirmed using unbiased k-means clustering (Figure 4K). We found

that feedback excitation of hilar cells displayed marked facilitation, which was similar for both INs

and MCs (Figure 4F,I,L; n = 9, 12 respectively, two-way RM-ANOVA, Frequency: F(3,57)=6.642,

p<0.001; Cell type: F(1,19)=0.0075, p=0.932; Interaction: F(3,57)=0.743, p=0.531). Facilitation indi-

ces of hilar cells significantly deviated from one for all frequencies tested (Figure 4E,F; n = 23 cells;

Wilcoxon signed rank tests with Bonferroni corrected p-values; p<0.001 for all frequencies). These

data demonstrate a pronounced frequency-dependent net facilitation of the feedback inhibitory

microcircuit, which is supported by strongly facilitating mossy fiber inputs to hilar cells.

Quantitative properties of the feedback circuit predict frequency-
dependent pattern separation
Together, these data indicate that the dentate feedback circuit is able to deliver strong, spatially

graded inhibition with a high gain and the ability for temporal integration. To probe how these

quantitative properties of the feedback circuit affect the pattern separation capability of the DG, we

incorporated them into a biophysically realistic model of the lamellar microcircuit (Figure 5) based

Figure 3 continued

locally and remotely activated IPSCs at saturation (two-way RM ANOVA, overall test significance indicated by §). (G, H) Comparison of the recruitment

curves during local (black) or remote (grey) stimulation for superior and inferior blade respectively. (I) Comparison of the cell fraction required for

halfmaximal IPSC activation between stimulation sites and blades (two-way RM ANOVA overall test significance indicated by §). (J–M) Temporal

properties of IPSCs between local (black) and remote (grey) stimulation. To test for systematic variations of kinetic parameters with increasing active cell

fractions as well as stimulation site two-way RM ANOVAs with no post tests were performed. Overall significance indicated by §. (K) Latency from

beginning of light pulse to IPSC (L) temporal jitter of IPSCs (SD of latency within cells) (M) 20% to 80% rise time (N) IPSC decay time constant.
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Figure 4. Short-term dynamics in the feedback inhibitory microcircuit. Trains of ten antidromic electrical stimulations at 1, 10, 30 or 50 Hz were applied

to elicit disynaptic feedback inhibition or excitation of hilar cells (electrical stimulation artifacts were removed in all traces). (A, D, G) Schematic

illustration of the experimental setup and example traces of voltage responses to positive and negative current injections of GC and hilar cells (dashed

lines indicate cuts to sever CA3 backprojections). (B) Exemplary GC feedback IPSCs before (black) and after (grey) glutamatergic block (n = 7). (C)

Figure 4 continued on next page
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on Santhakumar et al. (2005); Yim et al. (2015), making use of their carefully experimentally con-

strained DG cell-types (Figure 5A; Figure 5—figure supplement 1A). To maximize our models

inferential value we clearly separated a tuning phase, in which we constrained the model by our

experimental data, and an experimental phase, in which pattern separation was tested without fur-

ther changes to the model. In the tuning phase, we first scaled up the model four-fold to contain

400 perforant path afferents (PPs), 2000 GCs, 24 basket cells (BCs), 24 hilar perforant path associ-

ated cells (HC) and 60 MCs (Figure 5A,B). BCs, HCs and MCs comprise the feedback inhibitory cir-

cuit and BCs receive direct PP input thereby additionally mediating feedforward inhibition

(Ewell and Jones, 2010). We then adapted the spatial extent of the target pools of BC and HC out-

puts to produce local and global inhibition, respectively, reproducing the experimentally determined

spatial tuning of net feedback inhibition (Figure 5C). We further adjusted synaptic decay time con-

stants and weights in order to reproduce the measured PSCs of hilar neurons and GCs and the

empirical recruitment curves (Figure 5D, Figure 5—figure supplement 1). Finally, we incorporated

Figure 4 continued

Facilitation indices (mean of the last three IPSCs normalized to the first; n = 10 cells). (D-L) Hilar cells were manually classified into putative interneurons

(blue) or mossy cells (green) based on their morpho-functional properties. (E) Reconstruction of biocytin filled hilar interneuron (axon in red). (F)

Interneuron EPSCs in response to stimulation trains. (H) Reconstruction of biocytin filled mossy cell (axon in red). (I) Mossy cell EPSCs in response to

stimulation trains. (J) Quantification of intrinsic properties of hilar cells (see Materials and methods). (K) k-means clustering based on intrinsic properties

of hilar cells (coloring according to manual classification). (L) Facilitation indices of classified hilar cells. (§ indicates significance in one-way RM ANOVA,

* show significance in Bonferroni corrected Wilcoxon signed rank tests for deviation from 1).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Frequency dependence of feedback inhibition over space.
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Figure 5. Computational model of the DG feedback circuit. A biophysically realistic model of DG was tuned to capture the key quantitative features of

the feedback circuit. All analyses were performed as for the real data (including IPSC normalization to maximal IPSC over space and power within each

respective cell) (A) Schematic of the model circuit. GC: granule cell, BC: basket cell, HC: hilar perforant path associated cell, MC; mossy cell. (B) Intrinsic

responses of model cell types to positive and negative current injections. (C) Spatially graded net feedback inhibition following simulated focal GC

activation. (D) Local and remote recruitment curves of the feedback inhibitory circuit (left) and the resulting saturated IPSC amplitudes and GC fractions

recruiting halfmaximal inhibition (right). (E) Facilitation indices resulting from simulated, 10 pulse, frequency stimulation of GCs as above.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Model tuning and validation.
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facilitation of the experimentally determined magnitude into feedback excitatory mossy-fiber out-

puts, leading to GC IPSC facilitation in the experimentally observed range (Figure 5E, Figure 5—fig-

ure supplement 1B). Together, these minimal adaptations resulted in a model with remarkably

similar properties to our experimental findings (Figure 5C–E). We therefore concluded the tuning

phase of the model and proceeded to an in silico pattern separation experiment without further

changes to the model.

To investigate the implications for pattern separation, we probed the ability of this model to sep-

arate PP input patterns with behaviorally relevant temporal structure and varying degrees of overlap

(Myers and Scharfman, 2009; Yim et al., 2015). Specifically, we created input trains with constant

mean rate, but with either theta (10 Hz) or slow-gamma (30 Hz) modulation (Figure 5—figure sup-

plement 1C), which are prominent during exploration and novelty exposure, respectively

(Sasaki et al., 2018; Trimper et al., 2017). To model rapid pattern separation in a behaviorally rele-

vant timescale we chose an input duration of approximately five theta cycles (600 ms, corresponding

to the approximate duration of place cell spiking during traversal of its place field). To obtain a

range of input similarities, we generated input patterns in which 24 of 400 PP afferents were acti-

vated (Figure 6A) and compared pairs of such patterns ranging from no overlap (two separate sets

of afferents) to complete overlap (identical trains in the same 24 afferents in both patterns). Each

model network was run with 25 input patterns leading to a total of 325 comparisons (data points in

Figure 6C). To quantify pattern separation we compared input correlation (Rin) to output correlation

(Rout; Figure 6B) both measured as Pearson’s R between the population rate vectors over the full

600 ms time window (Leutgeb et al., 2007; Wiechert et al., 2010).

Our full, tuned model reliably decreased the population vector correlations for similar patterns

(0 < Rin < 1) thereby demonstrating robust pattern separation over the whole range of input similari-

ties (Rout <Rin; Figure 6C, left). Next, we isolated the contribution of feedback inhibition to pattern

separation by rerunning the same input pattern combinations on the network in which mossy fiber

outputs to interneurons were removed (Figure 6C, middle). As expected this manipulation

decreased interneuron activity and GC sparsity (Figure 6—figure supplement 1C,D) leading to

impaired pattern separation (Figure 6D, noFB). Note that removing mossy fiber outputs also elimi-

nates BC activity through cooperative activation of summating feedforward and feedback inputs

(Ewell and Jones, 2010). Removal of all inhibitory outputs led to a further decrease in pattern sepa-

ration, demonstrating the effect of additionally removing feedforward inhibition (Figure 6C, right).

As expected, each of these manipulations increased both the fraction of active GCs and the activity

per GC (Figure 6—figure supplement 1C,D). In order to quantify the respective pattern separation

effects over the full range of input similarity, we computed the bin wise mean Rout (Figure 6C, Rin

bin-width: 0.1, dashed line) and measured the area to the identity line (Figure 6C, black lines). The

resulting mean DRout was calculated for seven separate random networks, each challenged with

theta as well as slow-gamma modulated inputs in each of the three conditions. Both the frequency

of the input modulation as well as network manipulations significantly affected pattern separation

(Figure 6D; two-way RM ANOVA with both factors matching, condition: F(2,12)=145.1, p<0.001; fre-

quency: F(1,6)=31.48, p=0.001; interaction: F(2,12)=11.77, p=0.002; n = 7 random network seeds for

these and all subsequent analyses). Specifically, both feedback and feedforward inhibition signifi-

cantly contributed to pattern separation (Sidak’s multiple comparison posttest, P(df = 12, t = 11.33)

<0.001 and P(df = 12, t = 5.36)<0.001, respectively). These results are consistent with the standard

account, by which any source of inhibition supports pattern separation by decreasing GC activity

(Figure 6—figure supplement 1C,D). Notably, the effect of inhibition on GC sparseness was more

pronounced during gamma than theta modulated activity, translating to improved pattern separa-

tion in the sparser gamma regime (Figure 6D, Figure 6—figure supplement 1C,D). Remarkably,

this increased sparsity in the gamma domain was achieved despite the same excitatory drive from

perforant path (Figure 6—figure supplement 1A,B), and with less interneuron activity (Figure 6—

figure supplement 1C,D).

Next, we more closely investigated the isolated pattern separation effects of feedback and feed-

forward inhibition. To this end, we computed the difference in Rout between the respective condi-

tions for each individual comparison (i.e. data point in Figure 6C). For instance, the individual

comparison shown in Figure 6A, will lead to a single Rout value in the network with MF inputs to

interneurons (full model), which is subtracted from the corresponding Rout value in the same network

without this input (no FB). This procedure isolates the effect of interest (DRout) for each individual
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Figure 6. Frequency dependent pattern separation of temporally structured inputs. The quantitative DG model was challenged with theta (10 Hz) or

slow gamma (30 Hz) modulated input patterns with defined overlap to probe its pattern separation ability. (A) Pair of theta modulated perforant path

input patterns in which 50% of afferents overlap (grey area). (B) Resulting pair of GC output patterns of the full tuned network. Bottom: Representative

individual GC underlying the observed patterns. (C) Comparison of 325 input pattern pairs and their resulting output pattern pairs. Each pair is

Figure 6 continued on next page
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comparison, controlling for other sources of variability. A single pattern separation measure was

then obtained as before, as the area under the curve of bin-wise means of these DRout values

(Figure 6E, bottom). We found a significant effect of both inhibitory motif and frequency domain

(Figure 6E; two-way RM ANOVA with both factors matching, Motif: F(1,6)=15.58, p=0.008; Fre-

quency: F(1,6)=9.91, p=0.020; Interaction: F(1,6)=76.37, p<0.001). Posttests revealed that the fre-

quency dependence of pattern separation was driven by feedback inhibition (Sidak’s multiple

comparison posttest: FB: P(df = 6, t = 13.68)<0.001; FF: P(df = 6, t = 1.33)=0.412. Interestingly, this

frequency dependence of feedback inhibition mediated pattern separation was particularly pro-

nounced for highly similar input patterns (0.9 < Rin < 1; Figure 6E, right; Motif: F(1,6)=261.7,

p<0.001; Frequency: F(1,6)=108.1, p<0.001; Interaction: F(1,6)=109.5, p<0.001; Sidak’s multiple

comparison posttest: FB: P(df = 6, t = 15.78)<0.001; FF: P(df = 6, t = 0.98)=0.595). Indeed, feedback

inhibitory pattern separation for highly similar input at 30 Hz compared to 10 Hz was more than dou-

bled (from 0.04 ± 0.01 to 0.09 ± 0.01, mean ± SD, Cohen’s d = 4.1, Figure 6E, right). This again

demonstrates feedback inhibitory pattern separation effects beyond those explainable by decreases

in GC activity, since comparisons for highly similar inputs are computed on the exact same model

runs as comparisons for less similar inputs and thus by definition have the same GC activity levels

(also see Figure 6F,G, arrows).

It has recently been emphasized, that the assessment of pattern separation can depend critically

on the similarity measure used (Madar et al., 2019; Wick et al., 2010). Therefore, we tested the

robustness of this result for two alternative similarity measures, namely normalized dot product

(NDP, also known as cosine similarity) and pattern overlap (# of coactive/ # of totally active cells; Fig-

ure 6—figure supplement 2). The frequency dependence of feedback inhibition-mediated pattern

separation, especially for highly similar inputs, proved robust for all three similarity measures.

Effect of spatial tuning and facilitation of net feedback inhibition
Next, we investigated the specific effects of two interesting empirical findings of the present study,

1) the spatial tuning and 2) the facilitation of the feedback circuit (Figure 6—figure supplement 3).

To this end, we undertook two targeted, minimal manipulations of the full tuned network. To probe

the effect of spatially graded inhibition, we redistributed BC output synapses to a global target pool

(the whole GC population), leading to spatially uniform inhibition (global FB; Figure 6—figure sup-

plement 3B,E). To probe the effect of facilitation, we removed facilitation from mossy fiber outputs

(Figure 6—figure supplement 3C,E). We isolated the effects of these manipulations by pairwise

comparison to the corresponding full tuned networks as described above (Figure 6—figure

Figure 6 continued

characterized by its rate vector correlation for inputs (Rin) and outputs (Rout), where rates are measured over the full 600 ms time window. Dashed black

lines represent the bin-wise mean Rout (in Rin bins of 0.1). Left: full tuned model, middle: model without mossy fiber inputs to interneurons, right: model

without inhibitory synapses. (D) Full pattern separation effects (mean DRout) of all three conditions for both frequency domains quantified as the area

enclosed by the dashed and unity lines in (C). Black lines represent individual network seeds. Two-way RM ANOVA indicated significance of condition,

frequency and interaction, * indicate significance in Sidak’s posttests between individual conditions. (E) Isolated effects of feedback and feedforward

motifs obtained by pairwise subtraction of Rout between conditions for each individual comparison. The inset shows the resulting DRout for each Rin bin.

The area under the curve quantifies the mean DRout as in (D). Two-way RM ANOVA indicated significance of condition, frequency and interaction. ***

indicate p<0.001 in Sidak’s posttest. (F). 100 ms time-resolved pattern separation effects of the full model, isolated FB or FF inhibition for theta

modulated input (10 Hz). All analyses were performed as above but with rate vector correlations computed for 100 ms time windows. The bottom insets

show DRout as a function of input similarity for each time window. The bottom right insets show the evolution of the mean DRout over time. (G) Same as

(F) but for slow gamma (30 Hz) modulated inputs. Arrow indicate the region of selectively increased pattern separation. Data in D-G represent

mean ± SEM of n = 7 random network seeds.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Activity levels and pattern separation.

Figure supplement 2. Robustness over different Similarity Metrics.

Figure supplement 3. Isolated pattern separation effects of spatial tuning and MF facilitation.

Figure supplement 4. Robustness for shorter analysis time-window.

Figure supplement 5. Robustness over various IPSC decay time-constants and over the full gamma range.

Figure supplement 6. Robustness for increased feedforward inhibition.

Figure supplement 7. Robustness for increased perforant path (PP) drive.
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supplement 3F–I). The results showed a small but significant contribution of facilitation (~20% of the

isolated FB effect for both frequency paradigms), but not spatial tuning to pattern separation (Fig-

ure 6—figure supplement 3G, left; Wilcoxon signed rank test for deviation from 0, n = 7, Bonferroni

corrected p-values: p=0.031 and p=1 respectively for 10 Hz; p=0.031 and p=1 respectively for 30

Hz). We noted that while spatial tuning did not affect mean pattern separation, it appeared to

reduce its variability (CoV) for a given input similarity, although the effect was again small (Figure 6—

figure supplement 3G, right; Wilcoxon signed rank test for deviation from 0, n = 7, Bonferroni cor-

rected p-values: p=0.031 and p=0.750 for tuning and facilitation respectively at 10 Hz; p=0.438 and

p>0.999 respectively at 30 Hz).

Frequency-dependent pattern separation is robust over analysis scales
and input strengths
So far, all pattern separation analyses were conducted on the population rate vectors during a 600

ms time window. However, many neural computations are likely to occur on shorter timescales, such

as within individual theta (~100 ms) and gamma (~10–33 ms) cycles (Buzsáki, 2010; van Dijk and

Fenton, 2018). Indeed, the time window in which correlation is recorded can nontrivially affect the

resulting correlation, depending on the timing of spikes within it (Madar et al., 2019). We therefore

first computed the networks pattern separation ability within 100 ms time windows, revealing i) the

pattern separation ability within such short timescales and ii) the temporal evolution of pattern sepa-

ration throughout a 600 ms stimulus presentation (Figure 6F,G). We find that pattern separation

occurs even within a single theta cycle, including a contribution of feedback inhibition in both fre-

quency paradigms (mean DRout > 0 within the first 100 ms bin, Wilcoxon signed rank test with Bon-

ferroni corrected p-values: p=0.031,=0.031 for full and FB effect respectively in both paradigms).

While mean DRout did not differ between frequency paradigms within this first time window, it was

significantly elevated in the 30 Hz paradigm in all subsequent time windows (full model effect, two-

way RM ANOVA, p<0.001,<0.001 and=0.004 for time-bin, frequency and interaction respectively,

Sidak’s posttest p=0.234 for 1st bin and p<0.001 for all subsequent bins). Again, the selective

increase during slow-gamma modulated inputs was driven by feedback inhibition (isolated FB effect,

two-way RM ANOVA, p=0.007,<0.001 and=0.041 for time-bin, frequency and interaction respec-

tively, Sidak’s posttest p=0.708 for 1st bin and p<0.002 for all subsequent bins), including a contri-

bution from MF facilitation (Figure 6—figure supplement 3). As above, the effect was

predominantly driven by the separation of highly similar input patterns (isolated FB effect, Rin >0.5;

two-way RM ANOVA on last time-bin, p<0.001,=0.010 and<0.001 for Rin-bin, frequency and interac-

tion respectively, Sidak’s posttest on differences between frequency paradigms for each input simi-

larity: p=1 for Rin <0.6 and p=0.032 to p<0.001 for Rin = 0.6 to 0.9). These results were robust when

analysis time windows were decreased even further (to the duration of a slow gamma cycle, 33 ms,

Figure 6—figure supplement 4). This 33 ms resolved analysis additionally reveals that the pattern

separation effect, particularly of feedback inhibition, ramps up within a 100 ms window, becoming

effective only at the end of a theta cycle (Figure 6—figure supplement 4A).

Next, we asked if the frequency dependence of feedback inhibitory pattern separation was sensi-

tive to variations of the inhibitory decay time constants and if there might be an interaction between

these decay time constants and the frequency range at which pattern separation is most effective

(Figure 6—figure supplement 5). Remarkably, we found the differential effect between 10 and 30

Hz to be highly robust across a range of different decay time-constants (0.5x to 5x of the experimen-

tally matched decay, Figure 6—figure supplement 5A–C, Supplementary file 2). Furthermore, the

selective enhancement of feedback inhibitory pattern separation of highly similar inputs was robust

over the entire gamma range (up to 100 Hz, Figure 6—figure supplement 5D,E).

Next, we tested if our main results were robust to alterations in the relative strengths of feedfor-

ward vs. feedback inhibition. Since, our model is closely constrained with respect to the recruitment

and functional properties of the feedback circuit, we are confident about the resulting computational

inferences concerning this circuit. However, the model does not allow strong inferences about the

relative roles of feedback and feedforward inhibition, and it is thus necessary to probe if extremely

powerful feedforward inhibition might occlude the effects described here. We therefore selectively

enhanced the feedforward inhibitory circuit in our model by increasing the PP to BC circuit 2x (Fig-

ure 6—figure supplement 6). This robustly increased the feedforward inhibitory contribution to pat-

tern separation above that of feedback inhibition (Figure 6—figure supplement 6B). However, it
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did not affect the frequency dependence of the feedback inhibitory effect. Indeed, for highly similar

input patterns, the feedback inhibitory effect was so prominently enhanced during gamma input, as

to again dominate the feedforward inhibitory effect (Figure 6—figure supplement 6C).

Finally, we probed the robustness of our findings for various perforant path input strengths (Fig-

ure 6—figure supplement 7). We found that frequency-dependent pattern separation by the feed-

back circuit occurred over a large range of PP-input strengths and resulting mean sparsities of the

GC population (Figure 6—figure supplement 7B–D). These data additionally suggest that for highly

similar input patterns, the more efficient sparsification of the GC population at 30 Hz did not fully

account for the gains in pattern separation (Figure 6—figure supplement 7F). Specifically, selecting

a PP-input strength at 10 Hz that produced the same sparsity as during 30 Hz did not allow to reach

similar pattern separation (Figure 6—figure supplement 7F). This result suggests that the feedback

circuit mediates direct assembly competition, allowing pattern separation beyond a pure sparsifica-

tion effect.

Together these results suggest that frequency dependence is a key feature of the feedback inhib-

itory microcircuits and predict that feedback inhibition selectively boosts the separation of highly

similar input patterns during gamma oscillations.

Discussion
Across brain regions and species, inhibitory circuits contribute critically to regulating the sparsity

and overlap of neural representations (Cayco-Gajic and Silver, 2019; Lin et al., 2014;

Papadopoulou et al., 2011; Stefanelli et al., 2016). In most, if not all brain regions, feedback inhibi-

tion is viewed as important in these capabilities, by directly mediating competition between active

cell ensembles (de Almeida et al., 2009; Myers and Scharfman, 2009; Rolls, 2010). In the mamma-

lian DG, feedback inhibition is implemented by an intricate network of interneurons that is capable

of delivering spatiotemporally defined inhibition to the principal cell population. How net feedback

inhibition is functionally organized in mammals, and how it may contribute to pattern separation of

biologically relevant, temporally structured input patterns is, however, incompletely understood.

Quantitative physiological properties of DG feedback inhibition
We have therefore quantitatively described the recruitment of net feedback inhibition by defined

GC population sizes in space and time in the hippocampal DG, a structure in which sparse activity

and inhibition are thought to critically contribute to the function of pattern separation

(Gilbert et al., 2001; Hunsaker et al., 2008; Leal and Yassa, 2018; McHugh et al., 2007;

Stefanelli et al., 2016). The proposed role of the feedback inhibitory circuit depends critically on its

dynamic range, that is the relation between the number of active principal cells and the resulting

feedback inhibition. This property of the feedback circuit is determined by complex, mainly hilar cel-

lular connectivity patterns including the synaptic and intrinsic properties of all participating cells (see

e.g. Espinoza et al., 2018; Savanthrapadian et al., 2014), tabular overview in Supplementary file

1). While delving into detailed cell-cell connectivities is clearly important, such studies do not allow

the quantitative determination of the gain and dynamic range of net feedback inhibition

(Kapfer et al., 2007; Silberberg and Markram, 2007). Using two complementary experimental

approaches, we found that net feedback inhibition is steeply recruited by sparse populations of GCs

(<4%). This is in good agreement with the sparse range of GC activity reported in vivo

(Diamantaki et al., 2016; Hainmueller and Bartos, 2018; Pernı́a-Andrade and Jonas, 2014;

Pilz et al., 2016; Schmidt et al., 2012). In these studies, different time windows were used to define

active vs. non-active granule cell populations (one to tens of minutes for electrophysiological, imag-

ing or immediate-early gene studies). The relevant window for assembly competition, however, is

much shorter. If we assume random Poisson firing, the electrophysiologically determined rates by

Pernı́a-Andrade and Jonas (2014) and Diamantaki et al. (2016), suggest active GCs fractions

of <2% for realistic assembly competition time windows of <100 ms. Accordingly, the gain and sensi-

tivity of the circuit are well suited to strongly modulate feedback inhibition within the range of GC

activity reported in vivo.
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Frequency-dependent effects of feedback inhibition on pattern
separation
In addition to steep recruitment, we have described the temporal and spatial distribution of net inhi-

bition delivered by feedback circuits in the DG. How do these properties influence the pattern sepa-

ration capability of the dentate gyrus? To address this question, we adapted an established

biophysically realistic computational model of the DG circuitry (Santhakumar et al., 2005;

Yim et al., 2015). We first carefully constrained the model to match the spatial and temporal proper-

ties of net feedback inhibition as assessed in our physiological data. We then fixed all model param-

eters, and proceeded to probe the ability of this circuit to perform pattern separation on temporally

complex oscillatory inputs. The major, highly robust, result of this computational study was that the

impact of feedback inhibition on pattern separation is frequency-dependent. Specifically, we find

that the separation of input patterns during gamma oscillations > 30 Hz is powerfully and selectively

enhanced by the feedback circuit. Remarkably, this mechanism involved decreased interneuron activ-

ity and was particularly efficient for very similar input patterns. Such an effect has not been discov-

ered in earlier modeling studies, because most models have discretized time, calculating the pre-

inhibition population activity, the resulting inhibition, and the inhibition-corrected population activity

in a single time step, sometimes assuming an average corrected population rate within this time

step (Myers and Scharfman, 2009; Rolls and Treves, 1998; Trappenberg, 2010). Thus, they do

not capture temporal features of feedback circuits. On the other hand, a number of spike based,

temporally resolved models have considered only temporally unstructured (Poisson) inputs

(Chavlis et al., 2017; Hendrickson et al., 2015; Hummos et al., 2014; Yim et al., 2015). We sug-

gest that the precise spatiotemporal organization of the feedback circuit, together with the temporal

structure of DG inputs is a crucial determinant of pattern separation. Indeed, the DG and its inputs

have a strong, behaviorally relevant, temporal structure (Lasztóczi and Klausberger, 2017;

Mizuseki et al., 2009; Pernı́a-Andrade and Jonas, 2014; Skaggs et al., 1996). Novelty experience

can induce increased gamma and beta range activity (Berke et al., 2008; Rangel et al., 2015;

Trimper et al., 2017), and explorative activity with rearing is also associated with increased gamma

oscillations (Barth et al., 2018). A previous model has addressed how fast, rhythmic gamma-fre-

quency feedback inhibition may implement a type of ‘k-winners-take-all’ operation, a basic computa-

tional component of pattern separation models (de Almeida et al., 2009), although this model

relies on faster synaptic timescales than we observed in our compound IPSCs. Perhaps most interest-

ingly, the occurrence of oscillations in the slow-gamma range has recently been reported to be caus-

ally related to associative memory formation (Sasaki et al., 2018; Trimper et al., 2017), a process

thought to require pattern separation. Consistent with this finding, Hsiao et al. (2016) report DG

driven gamma entrainment of CA3, the presumed primary storage location of associative memories.

Together, this suggests that the dentate pattern separator may be optimized to rapidly detect sub-

tle degrees of difference within the environment in gamma-dominated exploratory brain states, a

capability likely to support successful memory encoding of novel environmental features, and poten-

tially aiding in rapid discrimination during recall.

Importantly, the frequency-dependency of pattern separation was driven by the feedback circuit.

This effect was highly robust when varying the decay time constants of the inhibitory synaptic con-

ductances, the time windows of analysis, the similarity measure, or the PP input strength. By con-

trast, feedforward inhibition and anatomical pattern separation was robustly independent of

frequency modulation. Together this suggests that frequency-dependent pattern separation is a key

property of the local inhibitory feedback circuit. Importantly, this does not preclude that additional,

long range projections may add further complexity (Szabo et al., 2017). Also note that in addition

to the instantaneous pattern separation mechanisms investigated here, potentially complementary

mechanisms at much longer time scales have been proposed involving ongoing neurogenesis

(Aimone et al., 2011; Clelland et al., 2009; Li et al., 2017; Sahay et al., 2011; Severa et al., 2017;

Temprana et al., 2015).

Spatiotemporal organization of inhibition and pattern separation
The model also allowed us to examine the impact of the spatiotemporal organization of inhibition

on pattern separation. Facilitation of feedback circuits produced a small but robust enhancement of

pattern separation, while spatial tuning of feedback inhibition did not. The facilitation of feedback
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inhibition is a remarkable feature of the DG, which we to our knowledge have described for the first

time. It is in marked contrast to area CA1, where somatically measured feedback inhibition shows

strong depression (Pothmann et al., 2014; Pouille and Scanziani, 2004) and is particularly surpris-

ing given the prevalence of depression in the literature on pairwise connections (Supplementary file

1). Our experimental and modeling data suggest that the strong facilitation of the mossy fiber input

to the feedback circuit is the principal mediator of this net facilitation. Physiologically, facilitation

may aid sparse GC spiking to efficiently recruit inhibition, particularly during burst-like activity (Per-

nı́a-Andrade and Jonas, 2014).

In our model, spatial tuning of feedback inhibition had no effects on pattern separation. This may

derive from the fact that PP inputs were spatially broad and random, as suggested by anatomical

studies (Tamamaki, 1997; Tamamaki and Nojyo, 1993). In general, the effect of localized inhibition

could be more relevant if synchronously activated populations of GCs are locally clustered

(Feldt Muldoon et al., 2013). For instance, GCs in the inferior and superior blades of the DG are

known to be differentially active (Alme et al., 2010; Chawla et al., 2005). Accordingly, localized

inhibition might be important for independent processing between the two blades. An alternative

function of spatially graded inhibition has been proposed by Strüber et al. (2015), who suggest

that it is more effective in promoting synchronous gamma oscillations. Accordingly, spatial tuning

may play a role in creating the oscillatory dynamics, found here to critically impact the feedback

inhibitory pattern separation performance.

In conclusion, this study provides the first comprehensive, quantitative description of the spatio-

temporal properties of the DG feedback inhibitory microcircuit, and predicts that these properties

will selectively enhance the separation of highly similar input patterns during learning-related gamma

oscillations. This mechanism may be relevant for understanding disease states in which there is a

coincidence of dentate gyrus-centered pathology with abnormal oscillatory activity, and memory

and pattern separation deficits such as temporal lobe epilepsy, Alzheimer’s disease or schizophrenia

(Andrews-Zwilling et al., 2012; Gillespie et al., 2016; Leal and Yassa, 2018; Verret et al., 2012).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background (Mus musculus)

C57BL/6N Charles River Strain Code
027

Strain, strain
background (Mus musculus)

Prox1-Cre MMRRC-UCD RRID: MMRRC_036632-UCD obtained as cryopreserved
sperm and rederived in
the local facility

Strain, strain
background (Mus musculus)

Ai32-ChR-eYFP Jackson Laboratory RRID: IMSR_JAX:012569

Other UGA-40 RAPP Optoelectronics Galvanometric, focal laser
stimulation device

Software, algorithm Igor Pro 6.3 Wavemetrics

Software, algorithm Python 3.5
scikit learn

Pedregosa et al. (2011) https://scikit-learn.org/stable/

Software, algorithm ouropy Custom Python code. This Paper https://github.com/
danielmk/ouropy

Software, algorithm pyDentate Custom Python code, This Paper https://github.com/danielmk/pyDentateeLife2020

Software, algorithm Neuron 7.4 Carnevale and Hines, 2006

Software, algorithm Prism 6 Graphpad

Animals and slice preparation
All experimental procedures were conducted in accordance to federal law of the state of North

Rhine-Westphalia (Aktenzeichen 84–02.04.2014.A254), minimizing unnecessary pain and discomfort.

Experiments were performed on horizontal hippocampal slices of 21- to 97-day-old mice. Ca2+ imag-

ing and a subset of dual recording experiments were performed in C57/Bl6 mice obtained from
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Charles River Laboratories (Wilmington, MA). Optogenetic experiments and the remaining dual

recording experiments were performed on double transgenic offspring of Tg(Prox1-cre)SJ39Gsat/

Mmucd, MMRRC Cat# 036632-UCD, RRID: MMRRC_036632-UCD) obtained as cryopreserved sperm

and rederived in the local facility (Gong et al., 2007; Gong et al., 2003) and Ai32-mice (B6;129S-Gt

(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J, IMSR Cat# JAX:012569, RRID: IMSR_JAX:012569). For

preparation the animals were deeply anesthetized with Isoflurane (Abbott Laboratories, Abbot Park,

USA) and decapitated. The head was instantaneously submerged in ice-cold carbogen saturated arti-

ficial cerebrospinal fluid (containing in mM: NaCl, 60; sucrose, 100; KCl, 2.5; NaH2PO4, 1.25;

NaHCO3, 26; CaCl2, 1; MgCl2, 5; glucose, 20) and the brain removed.

Horizontal 350 mm thick sections were cut with a vibratome (VT1200 S, Leica, Wetzlar, Germany,

300 mm sections for hilar recordings). To obtain maximum-connectivity-plane slices the brain was

glued to its dorsal surface (compare Bischofberger et al., 2006). The slicing depth at which the tem-

poral pole of the hippocampus first became visible was noted (depth = 0 mm). From here the first

four sections were discarded (up to a depth of 1400 mm). The following two to three sections were

secured such that one further section before the beginning of the dorsal hippocampus (approxi-

mately 2400 mm) could be discarded. Slices were incubated at 35˚C for 20 to 40 min and then stored

in normal ACSF (containing in mM: NaCl, 125; KCl, 3.5; NaH2PO4, 1.25; NaHCO3, 26; CaCl2, 2.0;

MgCl2, 2.0; glucose, 15) at room temperature. Recordings were performed in a submerged record-

ing chamber at 33–35˚C under constant superfusion with carbogen saturated ACSF (3 ml/min).

Experiments were performed in the superior blade unless otherwise indicated.

Electrophysiological recordings
Hippocampal dentate GCs were visually identified using infrared oblique illumination contrast

microscopy in a 20x or 60x water immersion objective (Olympus, XLumPlanFl, NA0.95W or Nikon,

N60X-NIR Apo, NA1.0W) on an upright microscope (TriMScope, LaVision Biotech, Bielefeld, Ger-

many or Nikon Eclipse FN1, Tokyo, Japan). For IPSC measurements the whole-cell patch-clamp con-

figuration was established with a low chloride cesium-methane-sulfonate based intracellular solution

(intracellular solution containing in mM: CH3O3SCs, 140; 4-(2-hydroxyethyl)�1-piperazineethanesul-

fonic acid (HEPES-acid), 5; ethylene glycol tetraacetic acid (EGTA), 0.16; MgCl2, 0.5; sodium phos-

phocreatine, 5; glucose, 10). For GC current clamp experiments a low-chloride solution (CC-

intracellular solution containing in mM: K-gluconate, 140; 4-(2-hydroxyethyl)�1-piperazineethanesul-

fonic acid (HEPES-acid), 5; ethylene glycol tetraacetic acid (EGTA), 0.16; MgCl2, 0.5; sodium phos-

phocreatine, 5) was used. GCs with input resistances greater than 300 MW were discarded in order

to exclude immature GCs (Schmidt-Hieber et al., 2004). Hilar cells were recorded with intracellular

solution containing in mM: K-gluconate, 140; KCL, 5; HEPES-acid, 10; EGTA, 0.16; Mg-ATP, 2; Na2-

ATP, 2; pH adjusted to 7.25; 277 mmol/kg without biocytin. 0.3% biocytin (Sigma-Aldrich, B4261). In

all imaging experiments and a subset of optogenetic experiments, the intracellular solution addition-

ally contained 100 mM Alexa 594 hydrazide sodium salt (Life Technologies, Carlsbad, USA). The iden-

tity of visually and electrophysiologically identified mature GC was confirmed by their dendritic

morphology after dye filling in every case tested. Pipette resistance of the patch pipettes was 3–7

MW. Voltage-clamp recordings were performed with a Multiclamp 700B (Molecular Devices, Sunny-

vale) or a BVC-700A amplifier (Dagan Corporation, Minneapolis). Current-clamp recordings were

performed with a Multiclamp 700B. Voltage or current signals were digitized with a Digidata 1322A

(Molecular Devices) or (Instrutech ITC-16, Heka Electronics, Ludwigshafen, Germany) at 10 or 50 kHz

and recorded using Clampex 10.2 (Molecular Devices) or Igor Pro 6 (Wavemetrics, Lake Oswego) on

a PC running Windows XP. All electrophysiological recordings were obtained at least in triplicate,

then averaged and counted as a single biological replicate. For IPSC measurements, cells were held

at 0 mV including liquid-junction potential correction (estimated at 16 mV). To aid the voltage clamp

throughout the cell, this depolarized membrane potential was slowly approached during a 15 min

pre-equilibration period, during which Cs+ entered the cell. For CC-recordings liquid junction poten-

tial was not corrected. IPSCs were normalized to the maximally elicited IPSC over space and power

for each respective cell. Importantly, this normalization does not require prespecification of the loca-

tion or power at which a respective cell’s maximum occurs. Note, that due to this procedure all nor-

malized IPSC values are by definition below 100%. Chemicals for electrophysiological experiments

were obtained from Sigma-Aldrich (St. Louis). All drugs were purchased from Tocris Bioscience (Bris-

tol, UK).
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Dual patch experiments
Two GCs within 100 mm of each other were recorded. To test for single GC-induced feedback inhibi-

tion 10 to 15 trains of 10 APs at 100 Hz were elicited by brief (3 ms) current injections in one cell.

Inhibition was monitored either in VC, while holding the cell at 0 mV to allow the detection of small

IPSCs (Figure 2—figure supplement 3, n = 7 cell pairs, seven directions) or current clamp while

holding the cell at �60 mV, allowing to probe for inhibition in both directions (not shown, n = 4 cell

pairs, eight directions).

Ca2+ imaging
Dye loading was modified from Garaschuk et al. (2006) and performed in the submerged chamber

at 35˚C under constant superfusion. Briefly, a dye solution containing: 1 mM Oregon Green 488

BAPTA-1 acetoxy-methyl ester (OGB-1 AM); 2% pluronic F-127; 150 mM; 2.5 mM KCl; 10 mM

HEPES). The dye was injected into the slice along the superior blade of the GC layer using standard

patch pipettes (4–5 locations, 100 mm intervals, 30 mm depth, 3 min at 500 mbar per location).

Recordings were started at least 45 min after the staining procedure. Population Ca2+ Imaging was

performed using a multibeam two-photon fluorescence microscope (TriMScope, LaVision Biotech,

Bielefeld, Germany) with excitation light at 810 nm. Images were acquired with a digital CMOS cam-

era (ORCA-Flash, Hamamatsu) through a high numerical aperture 20x water immersion Objective

(XLumPlanFl, NA-0.95, Olympus). This allowed imaging of a large field of view (320 � 240 mm) with

high spatial and temporal resolution (1920 � 1440 pixels, 20 Hz) at acceptable signal to noise ratios.

Time series were processed with ImageJ 1.48o and IGOR Pro 6.3 in a semiautomatic manner.

Regions of interest were manually placed onto all well loaded cells which remained visible through-

out the experiment. Ca2+ fluorescence increase normalized to baseline (DF/F) traces of individual

cells were calculated without background subtraction. The fraction of responders for each time

series was extracted by automatic thresholding at DF/F = 0.94%. The threshold was determined by

combined cell-attached and Ca2+ imaging experiments. Note, that for these experiments the stimu-

lation electrode was placed into the hilus in order to obtain a sufficient number of true positive res-

ponders. The imaged cell population comprised on average 46 ± 18 (standard deviation) cells

(n = 23 slices). The active cell fraction corresponds to the fraction of responders normalized to the

dye-loaded population within each section. To assess the spatial distribution of cell activation in

imaging experiments, DF/F projections were created by averaging and smoothing four frames during

the transient and four frames at baseline fluorescence and then calculating the pixel wise DF/F.

Antidromic electrical stimulation was achieved using a bipolar cluster microelectrode (FHC, Bow-

doin) connected to a digital stimulus isolator (AM-systems, Sequim), placed into stratum lucidum in

the CA3 region. IPSCs at individual powers were elicited 5 to 13 times at 0.1 Hz and averaged (0.1

ms pulse time). The amplitude beyond which the stimulus isolator could not pass the full current,

determined the maximal stimulation amplitude for each experiment.

In order to obtain the input-output relationships of the feedback inhibitory circuit data, each vari-

able was averaged over slices by power. This was necessary since only a small subset of experiments

in which inhibition was completely blocked could also be successfully imaged (6 of 8 sections). Due

to the small numbers of active cells within individual slices with sufficient dye loading (n = 23 slices)

analysis of only these six slices leads to a very piecemeal recruitment curve. A more accurate estima-

tion of the recruitment of feedback inhibition was obtained by averaging the cell activation and inhi-

bition over all appropriate slices and relating them by power, respectively. Note that while the

fraction of activated cells in non-MCP sections (not included in the quantitative analysis) was mostly

zero, IPSCs were almost always present (in 28 of 29 cells in non-MCP sections).

Optogenetic stimulation
Focal optogenetic stimulation was achieved through a galvanometer driven spot illumination device

coupled to a 473 nm DPSS Laser (UGA-40, DL-473, Rapp Optoelectronics, Hamburg, Germany) on

an upright microscope (Nikon Eclipse FN1, Tokyo, Japan). The width of the resulting stimulation

spot at the focal plane was 8.36 ± 0.04 mm (full width at half max; Nikon 10X Plan Fluor, NA 0.3 Laser

powers are given in arbitrary units from 1 to 7 corresponding to 15 ± 1 mW, 107 ± 14 mW, 292 ± 42

mW, 762 ± 105 mW, 1433 ± 49 mW, 1729 ± 165 mW and 1660 ± 163 mW at the objective (n = 5
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measurements). All illumination spots were placed at approximately 40 mm into the ML at the slice

surface. Stimulation pulses were of 20 ms duration.

Light intensity distribution
To measure the light intensity distribution throughout a slice the setup was modified to image the

slice from below while the laser beam was focused to its surface (Figure 2—figure supplement 1C–

F). This was achieved by focusing a surgical Microscope with 36x magnification (M695, Leica Micro-

systems, Wetzlar, Germany) to the lower slice surface. Images were taken with a CCD camera (Nikon

D60). Acute sections of 100, 150, 200, 250, 300 and 350 mm thickness were cut from Prox1-ChR-

eYPF mice as described above. The laser was focused to the surface of the slice in the molecular

layer and an image was taken at every laser power (p=1 to 7 AU). The stage was moved for every

image to avoid bleaching or phototoxicity. Linear profiles of the resulting isometric light distribution

were measured in several directions and averaged to obtain an x profile per section. The x-profiles

of slices of different thickness were then stacked to obtain the xz-profile. Values below 100 mm

depth were obtained through fitting a Gaussian function in x-direction at 100 mm depth and an

exponential function in z-direction. Complete three-dimensional intensity profiles of three different

locations of two slices within the dentate molecular layer were averaged.

Calculation of the optogenetically activated cell fraction
To assess the active fraction of GCs, approximately two GCs were recorded in cell-attached mode in

each slice in which an IPSC was recorded. Illumination spots were placed along the GC layer at 100

mm intervals (Figure 2—figure supplement 1). The entire profile was probed in triplicate with 1 s

intervals between individual locations. When the stimulation spot was in sufficient proximity to the

recorded cell clear APs were generally visible (in 25 of 26 cells), and otherwise could be induced

through simultaneous cell attached depolarization. Cell-attached spikes were detected by automatic

thresholding at 6x standard deviation of the baseline. The spatial profile of firing probabilities, cen-

tered on the recorded cells, was averaged within each section. To test if cell activation properties

differed between blades the maximum firing probabilities (at p=7) as well as the slopes (increase in

firing probability from p=1 to 7) when simply averaging over all location of a given cell were com-

pared by t-test (n = 7 sections per blade, p=0.490 and 0.684 for max. AP probability and slope,

respectively). Since no difference was observed a single firing probability distribution as a function of

the distance along the GC layer (x – distance) was calculated for each power (Figure 2—figure sup-

plement 1B, n = 14 sections, seven per blade). However, the firing probability of cells in the vicinity

of the illumination spot is likely to increase not only as a function of the laser power and spread at

the surface, but also of the penetration depth of the light cone. In order to calculate the firing prob-

abilities throughout the slice, the firing probability distribution at the surface was related to the mea-

sured light intensity distribution throughout the slice (Figure 2—figure supplement 1C–F; see

above) utilizing a ‘virtual distance’ measure. Since cells were measured at random distances from the

molecular layer border, the light intensity distribution, like the firing probabilities were collapsed to

two dimensions, x-distance along the GC layer and z-distance with increasing slice depth. The ‘vir-

tual distance’ was calculated as the mean distance from a given slice-surface pixel to all other pixels

of the light intensity distribution weighted by the intensity within those pixels (Figure 2—figure sup-

plement 1G). Assigning the firing probabilities of pixels at the slice surface to their respective virtual

distance yields the firing probability distribution as a function of virtual distance, which was well

approximated by a gaussian fit (Figure 2—figure supplement 1H). This fit was used to also calculate

the firing probabilities of pixels/cells deeper in the slice using the measured light intensity distribu-

tion as input. The active cell fraction then corresponds simply to the mean firing probability through-

out the slice. This calculation is independent of the size and number of GC and was performed for

every power individually. We noted that a large fraction of the recorded spikes occurred with larger

latency than the typical IPSC following the beginning of the 20 ms stimulation pulse (Figure 2—fig-

ure supplement 1I, example from a single slice). Since only APs preceding the IPSC can participate

in its recruitment, we calculated the fraction of total spikes which preceded mean IPSC latency for

every power, and fitted the resulting relation with an exponential function (Figure 2—figure supple-

ment 1J). All active cell fractions were corrected by this factor (Figure 2—figure supplement 1J,

bottom). Note that this does not take account of the disynaptic delay between mossy fiber output
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and GC input, thereby potentially slightly overestimating the true recruiting population. For compar-

ison, the active cell fraction was also computed with alternative assumptions about the decay of the

firing probability with increasing slice depth. If no firing probability decay with increasing depth is

assumed, the active cell fraction throughout the slice is given simply by the average of the measured

firing probabilities at the slice surface (Figure 2—figure supplement 1K, upper grey dashed line).

Alternatively, the firing probability decay with depth was assumed to be identical to the measured

decay along the slice surface (isometric firing probability distribution; Figure 2—figure supplement

1K, lower grey dashed line). In this case, Gaussian functions were fit to the probability distributions

at the surface and these Gaussian functions were then assumed to extend also in the z-dimension.

The active GC fraction was then calculated by numerical integration under the two dimensional

Gaussian (with the bounds from 0 to 350 mm in z and �888 to 888 mm in x, which corresponds to the

mean GC layer length) normalized to the same area with a uniform firing probability of one. The

best estimate of the active GC fraction, incorporating light intensity measurements (Figure 2—fig-

ure supplement 1K, black line), was within these upper and lower bound estimates.

Comparison of focal and global activation
To globally activate the GC population a multimode light fiber (BF-22, Thorlabs, New Jersey) cou-

pled to a 473 nm laser (Omicron Phoxx, Rodgau-Dudenhofen, Germany) was placed above the slice

surface, non-specifically illuminating the entire hippocampus. Analogous to focal stimulations, the

activated cell fraction was calculated as the firing probability of individual cells following 20 ms

pulses. Here, no spatial normalization is necessary since cells were sampled from random locations

with respect to the light fiber. Firing probabilities for the focal stimulation in these sections was cal-

culated as the simple average of all stimulation locations.

Spatial distribution of feedback inhibition
The same stimulation paradigm which was used to assess cell activation was used to assess the spa-

tial distribution of feedback inhibition. For individual cells, IPSCs at each location and power were

averaged. The entire profile was normalized to the largest measured IPSC of that cell, independent

of the power and stimulation location at which it occurred. For analysis, all IPSC profiles were spa-

tially aligned to the recorded cells. The mean distance to apex ± one standard deviation was

356 ± 163 mm and 322 ± 97 mm for cells from the superior and inferior blade, respectively (n = 8 cells

in each blade). In order to test whether there were any distinct effects of the apex, such as a steep

decay of inhibition, which would be masked by alignment to the recorded cells, we also aligned the

profiles to the apex (not shown). However, no such effects were visible. To analyze the saturated

IPSC profiles, normalized IPSC amplitudes from p=5 to 7 were averaged for each cell. In order to

analyze the effects of local versus remote stimulation for each blade a distance was chosen such that

each remote location was still within the DG but in the other blade (800 mm from the recorded cell).

Normalized IPSCs of the three locations surrounding the recorded cell or this remote location were

averaged within each power to obtain the IPSC amplitudes for further analysis. The cell fraction

required for the activation of a half-maximal IPSC in each section was assessed for each cell by linear

interpolation between the measured values. Since no differences were found between superior and

inferior inhibition, recordings of both blades were pooled to analyze the kinetic properties of IPSCs.

All parameters were calculated on the multiple trials of individual cells. The latency was measured as

the time from the beginning of the pulse to when the IPSC superseded six fold standard deviation

of the baseline. The jitter was calculated as the standard deviation of these latencies for individual

cells. The rise time was calculated as the mean 20 to 80 rise time of each cell and the decay time

constant was obtained from an exponential fit to the decaying phase of the compound IPSC.

Hilar recordings
Intrinsic properties of hilar cells were quantified based on 4.6 s long depolarizing current steps or

500 ms hyperpolarizing current steps. AP threshold and fast AHP amplitude were measured from

the first AP in the first current step in which an AP occurred within the first 10 ms. Clustering fraction

and mean AP time were calculated from the current injection that elicited the maximum average AP

frequency. The Clustering fraction represents the fraction of APs that occur within 60 ms before or

after another AP (Larimer and Strowbridge, 2008). Mean AP time was calculated as the mean AP
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time point normalized to the duration of the current injection (4.6 s). Input resistance was calculated

as the slope of the IO curve from the hyperpolarizing current ladder. Cells were manually classified

as mossy cells or interneurons based on these intrinsic properties. To objectively confirm classifica-

tion, we performed unsupervised k-means clustering using scikit-learn (Pedregosa et al., 2011). For

clustering all six measures were normalized by mean and variance. Two cells with conflicting classifi-

cation were not included in further analysis.

After recording, slices were fixed for 1 hr in 4% PFA and stored overnight in 0.25% PBS-T at

room temperature. The following day they were transferred to PBS for short term storage or imme-

diately stained. For biocytin staining, sections were washed with PBS and incubated with Streptavi-

din-Alexa-Fluor-555 Conjugate (Invitrogen, S32355), 1:1000 in 0.25% PBS-T overnight at 4˚C. The

following day they were co-stained with DAPI 1:1000 in PBS for 30 min and mounted with Aqua-

Poly/Mount. Cells were imaged with the Leica SP8 Confocal Microscope of the Microscopy Core

Facility at the University Clinic Bonn using a 40x water immersion objective.

Short-term dynamics
Short-term dynamics of GCs and hilar cells were assessed using antidromic electrical or optogenetic

stimulation at minimal power (the smallest stimulation power that yielded reliable responses). Trains

of 10 pulses at 1, 10, 30, 50 Hz were delivered in triplicate and averaged (excluding sweeps with

action currents for hilar cells). In all GCs and a subset of hilar cells we confirmed that PSCs could be

blocked by at least 90% with 40 mM CNQX + 50 mM D-APV (n = 12, 23 for GCs and hilar cells

respectively). Facilitation indices were obtained by normalizing the average of the last three PSC

peaks to the first.

To test for differential dynamics between local and remote inhibition analogous trains of optoge-

netic 20 ms pulses at powers below saturation (usually p=2 for local inhibition and p=3 for remote

inhibition) were delivered. For each power and frequency, five repeats were recorded and averaged.

AP probabilities were assessed by cell-attached recordings with the stimulation site close to the

recorded cell. Cell-attached spikes were detected by automatic thresholding as above.

Voltage escape estimation model
A simple multicompartmental passive ‘ball and stick’ model with number of segments following the

d_lambda rule (Carnevale and Hines, 2006) and passive properties Ra = 181 Wcm, Cm = 1 uFcm�2

and a leak conductance = 0.0002 Scm�2, which gave an Rin of 165 MW, were adopted from

Carnevale and Hines (2006) and Krueppel et al. (2011). A soma (20 mm diameter) contained one

dendrite (3 mm diameter, 200 mm length) with an alpha synapse point mechanism (Erev �90 mV)

placed at 180 mm from the soma. The range of synaptic conductances (0.1–50 nS; adopted from

Williams and Mitchell, 2008) elicited IPSC amplitudes in the model, which covered the range of

somatic IPSC amplitudes that were experimentally measured (3 pA – 1nA). Voltage clamp experi-

ments were simulated using a single electrode point mechanism at the soma (Rs 5 MOhms, to model

a Rs of 15 MW compensated 70%) with a holding potential of 0 mV. The transfer (Zc) and input

impedance (Zn) were determined from the model and used to calculate the actual peak IPSC ampli-

tude at the soma for a given synaptic conductance. Simulations were run in the Neuron 7.5 simula-

tion environment.

Biophysically realistic dentate gyrus lamella model
Simulations were run in python 2.7 with NEURON 7.4 (Carnevale and Hines, 2006) on Windows 7/

10. We created a generic python-NEURON interface (https://github.com/danielmk/ouropy; copy

archived at https://github.com/elifesciences-publications/ouropy) which wraps NEURON’s python

module, into which we ported the conductance based DG model by Santhakumar et al. (2005).

Model code is available at https://github.com/danielmk/pyDentateeLife2020 (copy archived at

https://github.com/elifesciences-publications/pyDentateeLife2020).

We first tuned the original model to capture our experimentally determined properties in the

most parsimonious way. During tuning we also updated some model properties to better reflect cur-

rent data and our experimental paradigm in an individual DG lamella:

We introduced a T-type Ca2+ channel mechanism into MCs to more realistically reflect the depo-

larizing envelope at the onset of a positive current step observed in real MCs. Furthermore, while
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the original model placed the perforant path input at the distal dendrite of GCs, we moved all perfo-

rant path synapses to the middle compartment of the dendrite. In order to be able to capture the

results of convergent and divergent synaptic inputs in sufficient resolution to produce the empirically

observed activity gradations, we up-scaled cell numbers by a factor of four. To model space, we

assumed all cell types to be spread out on a 2 mm DG lamella. Since MCs project to GCs primarily

outside the lamellar plane, we removed the MC to GC connection. To allow patterned PP input we

adapted PP input specifications from Yim et al. (2015).

We then proceeded in a first phase of model adjustment, and adapted several parameters to

reproduce our in vitro findings regarding spatial and temporal feedback inhibition

(Supplementary file 2). To model frequency-dependent facilitation on mossy fiber outputs, we

implemented a simple frequency-dependent synapse model (tmgsyn) (Tsodyks et al., 1998), and

matched the facilitation time constant as well as the decay time constants of individual PSCs to our

experimental observations. As in the original model, each cell gives rise to a fixed number of synap-

tic connections which are spatially restricted to a target pool of adjacent cells. We tuned the size

and spatial extent of this target pool to reproduce our spatial data. To provide local inhibition we

implemented a ‘local’ interneuron type (BC), whose inputs and outputs were spatially restricted to

an ~600 mm area (as described by Strüber et al., 2015). To provide global inhibition we imple-

mented a second class of inhibitory interneurons (HC) whose inputs and outputs connect to GCs

independent of space. This simple formulation allowed us to reproduce the recruitment curves seen

for local, remote and global GC activation paradigms. To achieve plausible activity levels, we further

adapted synaptic weights similar to Yim et al. (2015). We call the network incorporating both spa-

tially restricted BC synapses and mossy fiber facilitation the full tuned network. To isolate the contri-

bution of intrinsic GC properties to pattern separation, we created a disinhibited network by setting

the synaptic weight from all interneurons to zero. We also isolated feedforward inhibition by

decreasing the mossy fiber to interneuron synaptic weight to zero. To evaluate the effect of spatially

constrained inhibition, we created a global network, where the target pool of all interneuron was the

entire GC population. To evaluate the effect of mossy fiber facilitation, we set the facilitation time

constant to zero, effectively eliminating facilitation. Details on the model parameters are summarized

in Supplementary file 2).

To study pattern separation, we generated 400 PP inputs. Each PP synapsed onto 100 randomly

chosen GCs with the spatial connection probability being governed by a gaussian probability distri-

bution with standard deviation 1 mm and random peak position, modeling a full, nearly uniform

input connectivity of individual afferents (Tamamaki and Nojyo, 1993). To generate theta modu-

lated spike patterns, we used the inhomogeneous Poisson generator from Elephant 0.5.0-Electro-

physiology-Analysis-Toolkit with a 10 Hz (theta) sinusoidal rate profile with a peak of 100 Hz, a

minimum of 0 Hz and a duration of 600 ms. To generate input patterns with varying overlap from PP

afferents i = 1 to 400, we activated afferents i to i+23 in increments of i = 1 per run. We performed

25 runs for each condition resulting in 300 unique comparisons, excluding self-comparisons. The ran-

dom seed was held constant between different runs of the same condition, resulting in differing

input patterns being fed into the same network. All randomness was generated with the python

module numpy.random.

To quantify pattern similarity, we used Pearson’s product moment correlation coefficient R of the

population rate vectors for input and output patterns. The population rate vector refers to the vector

of the mean firing rates of all cells in the population within the entire 600 ms simulation, or 100 or 33

ms time windows for the time resolved analyses. All statistical analyses of the model were performed

with n = 7 different random network seeds. During Model development (tuning phase), we first

ported the model by Santhakumar et al. (2005) with closely constrained DG cell-types, and further

constrained it to reproduce our physiological data. We then locked the model and proceeded to an

(in silico) experimental phase, in which pattern separation was investigated.

To compute full pattern separation effects (Figure 6D), we calculated the mean Rout within Rin

bins of 0.1 and measured the area to the unity line (computed as the mean of the binwise Rin – Rout

differences). To compute isolated pattern separation effects of specific manipulations we subtracted

the respective Rout values with and without the manipulation, thereby obtaining a DRout value for

each individual Rin. We then again computed the bin-wise mean and quantified the area under the

curve, yielding the mean DRout analogous to the full effects. Note, that the sequence of averaging

and subtracting is irrelevant, and was inverted only to match the figure panels. Data are displayed as
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mean ± SEM for each Rin bin (Figure 6E–G). The coefficient of variance (CoV) was calculated by nor-

malizing the standard deviation of DRout within each bin by the mean of that bin, and then averaging

over bins, analogous to the previous analyses. However, only bins within 0.2 < Rin < 0.8 were

included, since at the borders very small means led to unreliable results. DCoV represents the differ-

ence between the mean CoV of the global (or nonfacilitating) and the tuned network models. For

the temporally resolved pattern separation analysis, all measures were computed as above, but on

population vector correlations within 100 or 33 ms time bins.

Statistics and Data Analysis
Analyses were performed using ImageJ, Microsoft Excel, Python and Igor Pro. Fits were performed

using Igor Pro. Statistical analyses were performed using GraphPad Prism six or Igor Pro. Compari-

sons were two-tailed whenever applicable. Replicates refer to cells unless otherwise indicated (slices

for imaging experiments and network seeds for modeling data). Given the lack of previous informa-

tion on effect sizes, sample sizes were chosen according to field norms, such that only large effects

can be detected (e.g. Cohen’s d > 1 for paired tests). A single outlier facilitation index (Figure 5E)

during model tuning was removed, as it was outside the triple standard deviation (due to a very

small initial IPSC). Group allocation was achieved by alternating acquisition between groups. Statisti-

cal significance in Analysis of Variance (ANOVA) is indicated by §. F-values and degrees of freedom

are given as F(DFn, DFd). When ANOVAs were followed by specific comparisons these are indicated

by asterisks, where *p<0.05, **p<0.01 and ***p<0.001. Bargraphs and XY plots show means where

error bars indicate standard error of the mean. In boxplots error bars represent the data range and

boxes the upper and lower quartiles and the median.
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learning in Python. Journal of Machine Learning Research : JMLR 12:2825–2830.

Pernı́a-Andrade AJ, Jonas P. 2014. Theta-gamma-modulated synaptic currents in hippocampal granule cells in
vivo define a mechanism for network oscillations. Neuron 81:140–152. DOI: https://doi.org/10.1016/j.neuron.
2013.09.046, PMID: 24333053
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