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Abstract

A rapid, low cost, accurate point-of-care (POC) device to detect influenza virus is needed for effective treatment and control
of both seasonal and pandemic strains. We developed a single-use microfluidic chip that integrates solid phase extraction
(SPE) and molecular amplification via a reverse transcription polymerase chain reaction (RT-PCR) to amplify influenza virus
type A RNA. We demonstrated the ability of the chip to amplify influenza A RNA in human nasopharyngeal aspirate (NPA)
and nasopharyngeal swab (NPS) specimens collected at two clinical sites from 2008–2010. The microfluidic test was
dramatically more sensitive than two currently used rapid immunoassays and had high specificity that was essentially
equivalent to the rapid assays and direct fluorescent antigen (DFA) testing. We report 96% (CI 89%,99%) sensitivity and
100% (CI 95%,100%) specificity compared to conventional (bench top) RT-PCR based on the testing of n = 146 specimens
(positive predictive value = 100%(CI 94%,100%) and negative predictive value = 96%(CI 88%,98%)). These results compare
well with DFA performed on samples taken during the same time period (98% (CI 91%,100%) sensitivity and 96%(CI
86%,99%) specificity compared to our gold standard testing). Rapid immunoassay tests on samples taken during the
enrollment period were less reliable (49%(CI 38%,61%) sensitivity and 98%(CI 98%,100%) specificity). The microfluidic test
extracted and amplified influenza A RNA directly from clinical specimens with viral loads down to 103 copies/ml in 3 h or
less. The new test represents a major improvement over viral culture in terms of turn around time, over rapid immunoassay
tests in terms of sensitivity, and over bench top RT-PCR and DFA in terms of ease of use and portability.
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Introduction

In a normal year, the influenza virus infects millions of

individuals [1] causing approximately 350,000 hospitalizations

and 50,000 deaths in the United States [2,3]. Furthermore, when

genetic rearrangements result in antigenic shift in the virus, a

pandemic strain can result [4]. In April 2009, worldwide

surveillance efforts identified the emergence and rapid spread of

a novel influenza A strain, which reached pandemic levels as

defined by the World Health Organization (WHO) in early June

of 2009 [5]. As of August 2010, worldwide more than 214

countries and overseas territories or communities had reported

laboratory confirmed cases of pandemic influenza H1N1 2009,

including 18,449 deaths [6].

The most recent pandemic highlighted weaknesses in the

methods widely used to diagnose influenza: rapid immunoassays

(antigen tests), direct fluorescent antigen testing (DFA), and viral

culture methods (culture followed by immunofluorescence or

hemagglutination assay for virus identification) [7]. During the

pandemic, rapid influenza tests on the market were widely used

and found to be dramatically lacking in sensitivity [8,9,10,11] such

that the Centers for Disease Control and Prevention (CDC,

Atlanta, GA) recommended that a negative test result be ignored

for clinical decision-making [12]. Although the DFA test worked

well during the 2009 H1N1 pandemic [13,14], the labor-intensive

nature of the test and potentially subjective aspects of results

interpretation somewhat reduced its utility [7]. While now being

debated, viral culture remains the ‘‘gold standard’’ test; however, it

requires 2–7 days to complete and lacks the ability to distinguish

between different respiratory viruses and between influenza virus

types without follow up testing [7]. Alternatively, polymerase chain

reaction (PCR) testing provides a faster turnaround time, high

sensitivity and high specificity. The vast amount of PCR data

generated during the 2009 H1N1 pandemic supported the

hypothesis that PCR performs as well or better than culture,

including the ability to verify and differentiate influenza types and

subtypes [8,9,15].
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Since the 2009 H1N1 pandemic, several commercial PCR tests

have been United States Food and Drug Administration (FDA)

approved, including the XpertTM Flu A panel (Cepheid,

Sunnyvale, CA), the Iquum LiatTM Influenza A/2009 H1N1 test

(Iquum, Marlborough, MA), the Luminex xTAGH Respiratory

Viral Panel (Luminex, Austin, TX) and the Prodesse ProFASTTM

assay (Gen-Probe, San Diego, CA). The Luminex and Gen-Probe

tests require off-chip sample preparation either by hand or using a

separate automated sample preparation system, requiring either a

bench top kit and centrifuge or additional instruments and

reagents. The Cepheid and Iquum tests do include sample

preparation in the cartridge, but the tests are not Clinical

Laboratory Improvement Amendments (CLIA) waived or point-

of-care (POC). Clinical utility would be greatly enhanced by a

CLIA waived molecular test that could be performed at the

bedside, since a CLIA waiver allows testing and analysis of results

to take place outside of the clinical laboratory by trained

personnel. Here we demonstrate a proof-of-concept microfluidic

chip using clinical specimens collected over a two-year period from

patients with suspected influenza. The microfluidic assay uses a

nucleic acid extraction method and a PCR thermal cycling

strategy chosen for their relative ease and simplicity.

Since the introduction of the concept of the micro total analysis

system (m-TAS) in 1990 [16] and the introduction of the first PCR

chip in 1993 [17], miniaturization of PCR devices has been

extensively studied [18,19]. Improvements have included faster

amplification [20,21], reduced sample and reagent consumption

[22,23], single-use chip materials [24] and increased integration of

the PCR device with sample preparation and detection modules

[25,26,27,28,29]. Only a few reports have demonstrated integrat-

ed chips with molecular diagnostic capabilities using complex

clinical specimens [30,31,32]. Others have demonstrated on chip

RT-PCR with simulated human specimens [33,34,35]. Here we

focus on clinical specimens collected during the 2008–2010

influenza seasons. Clinical specimens present many difficulties

including inhomogeneity, variations in viral load, different levels of

contaminating human cells and blood, the presence of PCR

inhibitors after nucleic acid extraction [36,37] and unanticipated

chemical and/or physical reactions between the specimens and the

test reagents or the device itself [38]. The single-use chip proposed

here incorporates nucleic acid extraction and reverse transcrip-

tion-PCR (RT-PCR) in a single chip with simple thermal and

fluidic control. The single use feature decreases the possibility of

cross contamination between specimens, and the small form factor

makes it a good candidate for true POC testing.

Results

Overview of Experimental Design
A total of 626 specimens were collected from two sites during

2008–2009 and 2009–2010 influenza seasons. All of the samples

were characterized in our laboratory using bench top RT-PCR,

which we define here as the reference method. In order to

determine the analytical limit of detection for the single use

influenza A assay, the microfluidic assay was first tested using a

laboratory strain of influenza A (VR-1469, H1N1, A/PR/8/34

obtained from ATCC, Manassas, VA). The limit of detection

determined using this laboratory strain was 105 copies per milliliter

of input sample (Figure S1). Before working with the human

samples, the assay was optimized for bovine serum albumin (BSA),

magnesium ion, and enzyme concentrations in order to push the

limit to 104 cp/ml (Figures S2, S3, S4). Next, nasopharyngeal

aspirate (NPA) and nasopharyngeal swab (NPS) specimens that

were collected with Institutional Review Board approval from

patients presenting with symptoms consistent with influenza to two

Boston hospitals, as described in the methods, were tested by

bench top RT-PCR. A total of 146 samples were then selected (73

positive and 73 negative by bench top RT-PCR) from this pool,

without regard to viral load, for testing with the microfluidic assay.

Results of DFA (n = 106) and rapid immunoassay (n = 119) testing

that had been performed on specimens as part of routine care at

each of the two hospitals were also compared to results obtained

from testing of those specimens by our bench top PCR reference

standard. While there was some overlap in the sample sets, in

general, different samples were used to compare each method

(microfluidic, DFA, and rapid immunoassay) to bench top RT-

PCR. Reagents described in the CDC research-use only (RUO)

protocol for real-time PCR of influenza A and B were used in the

gold-standard bench top PCR assay [39].

Microfluidic assay: human specimens
A set of human nasopharyngeal swab (n = 35) and aspirate

(n = 111) samples were tested in the single use microfluidic assay

(n = 146). All of the samples (n = 146) were also tested for both

influenza A and influenza B in our laboratory using bench top

quantitative RT-PCR. Quantification of the microfluidic assay

output is summarized in Table S1. The specimens tested in the

microfluidic assay included n = 73 specimens positive for influenza

A and n = 73 specimens negative for influenza A by bench top

RT-PCR. The 73 influenza A negative specimens included 20

samples that tested negative for influenza A but positive for

influenza B by the bench top reference assay in our laboratory.

The disposable microfluidic assay included sample injection after

mixing with lysis buffer (see Methods), nucleic acid isolation by solid

phase extraction (SPE) (nucleic acid extraction), reverse transcrip-

tion (RT) and continuous flow polymerase chain reaction (PCR)

(Figure 1). Products were detected off-chip by capillary electro-

phoresis. Each test was completed in 3 hours or less. The test time

included approximately 110 min for sample preparation, 30 min

for RT, 15 min for polymerase activation, 20 min for PCR, and

5 min for off-chip detection. It took more than 4 hours to complete

the same steps for the gold standard RT-PCR assays. The sample

preparation is the rate-limiting step in the current chip design.

Simple modifications to greatly reduce the time spent on this step

are covered in the discussion. The bench top assays also required

many more handling steps. The PCR products were verified by gel

electrophoresis (2100 Bioanalyzer and 12% PAGE) and a subset of

the positive results were verified by sequencing. The on-chip PCR

product yield ranged from 43 pg/ml to 1.5 ng/ml. The majority

(77%) of the amplicons had endpoint concentrations between 0.1–

1.0 ng/ml. Periodically, products from the positive reactions

(specifically, every 10th product) were sequenced for quality control.

The sequences were submitted to the GenBank database (accession

numbers HM370561-HM370565; HQ902243-HQ902250). A

BLAST search of the sequenced region returned results of 98–

100% homology for all sequences (n = 13) with the influenza A M1

gene in segment 7 from GenBank. Next, all of the chip product

sequences were aligned with the standard reference influenza strain

A/PR/8/34 M1 gene (position number 171 to 276 in M1, accession

number NC_002016).

All sequences were confirmed to be from influenza A; 12/13 of

the specimens sequenced had greater than 98.2% homology with

the reference, and one was 94.7% homologous. We observed

variance of the sequence at position 199 in 9/13 sequences between

guanine and adenine, and further sequence changes were observed

in specimen ID 63 (Figure 2). To determine if these positions were

variable in M1 and to determine the frequency of variations at these

positions, we retrieved all (n = 739) GenBank M1 sequences isolated

Disposable Molecular Diagnostic for Influenza A
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from humans during the same time span of our study, 2008–2010,

in North America from the NCBI’s Influenza Virus Resource

database [40]. The sequences were aligned using the Influenza

Virus Resource alignment tool. Adenine was found to be a common

base at position 199, occurring in 66% of the sequences. Three

positions in specimen ID 63 were altered; the same 2/3 variations

were observed at low frequency in the database (0.3%–0.7%)),

however we did not find the third variation, an insertion, in the

database. All positive reactions and every 10th negative reaction (a

subset is shown in Figure 3) were verified by 12% PAGE, with RT-

PCR positive products at 106 bp and negative specimens showing

only primer dimers as expected.

The microfluidic assay for influenza A did not generate any false

positives, including for those specimens shown to be RT-PCR

Figure 1. The microfluidic assay flow. (A) Image of two microfluidic chips with attached thin film heaters and the two-barrel syringe pump. Glass
syringes were connected to each chip with flexible tubing to load reagents and samples. Three ports were glued at the inlets of SPE channel and the
waste port, and the outlet of the PCR channel. (B) Channel design with three sections: sample preparation (SPE), RT chamber and continuous flow
PCR channel. Two fixed resistance heaters are attached via thermal tape to the bottom of the chip. Fluid flow between the channels was linear, and
changes in fluid resistance allowed for valveless operation. The depth is 500 mm for SPE and RT channels, and the PCR channel is 100 mm deep. The
widths are 500 mm for the SPE column, 1 mm for the RT chamber, and vary from 200 to 400 mm for the wide and narrow sections of the continuous
flow PCR channel. The chip is 70 mm in length, 25 mm in width and 1.4 mm in height. (C) Microfluidic assay process flow. The nasopharyngeal
sample is mixed with lysis buffer, applied to the chip, the chip is run, and the PCR products are read using a commercial capillary electrophoresis chip.
doi:10.1371/journal.pone.0033176.g001

Figure 2. Sequence alignment of microfluidic assay RT-PCR products to standard reference influenza strain A/PR/8/34 M1 gene
(position number: 193–252). The sequence presented here excludes primer sequences.
doi:10.1371/journal.pone.0033176.g002
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positive for influenza B in bench top testing, resulting in a

specificity of 100%. For specimens with greater than 105 copies/

ml viral loads, the sensitivity was 100%. Viral load was determined

using absolute quantification by real time PCR (methods). The

sensitivity decreased to 96% when specimens with viral loads

down to 103 copies/ml were included (Table 1). None of the

specimens assayed had measured viral loads of less than 103

copies/ml. Based on all specimens tested in the microfluidic assay

(n = 146), the sensitivity and specificity were 96%(CI 89%,99%)

and 100%(CI 95%,100%), respectively (Table 2).

As expected, there is significantly higher PCR product yield

with increased RNA template input from higher viral loads (one-

way ANOVA, p,0.001) (Figure 4). Two different specimen types

(NPA and NPS) were tested in the microfluidic assay. Similar

trends were found for both specimen types, with no observable

difference between swab and aspirate samples (Figure 4).

Other methods
To compare the performance of techniques in clinical use to the

bench top RT-PCR performed in our laboratory, we selected

additional specimens from our sample library that had been

previously tested as part of routine clinical care using rapid

immunoassays (Boston Medical Center) or DFA (Beth Israel

Deaconess Medical Center). In total, n = 106 samples tested by

Figure 3. Representative on-chip RT-PCR products on 12% polyacrylamide gel. P: cultured influenza A virus (A/PR/8/34) microfluidic assay
result. N: negative control (nuclease free water) in microfluidic chip result. Positive specimens: 26B, 53, 27B, 20B, 22B, 21B, 115, 117, 31B, 30B, 171.
negative specimens: 149, 56, 24, 92, 45, 173, 302, 64, 272, 22, 24, 112, 150, 307, 173, 118, 91, 20, 32, 6, 8. L: GeneRulerTM Ultra Low Range DNA Ladder
(Fermentas, Glen Burnie, Maryland).
doi:10.1371/journal.pone.0033176.g003

Table 1. Cumulative sensitivity and specificity of the microfluidic assay for influenza A for decreasing specimen viral loads.

No. of specimens (n) in
each viral load ‘‘bin’’

False negatives
in each ‘‘bin’’

Cumulative no.
of specimens

Cumulative number
of false negatives Sensitivity Specificity

Viral load
(copies/ml)

1 0 1 0 100% 100% 1010

11 0 12 0 100% 100% 109

29 0 41 0 100% 100% 108

17 0 58 0 100% 100% 107

8 0 66 0 100% 100% 106

3 2 71 2 97% 100% 105

2 1 74 3 96% 100% 104

2 0 76 3 96% 100% 103

doi:10.1371/journal.pone.0033176.t001
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DFA and n = 119 samples tested using rapid immunoassays were

included in the testing and analysis. These sample sets are

summarized in Tables S2 and S3. The DFA tests were 98%(CI

91%,100%) sensitive and 94%(CI 86%,99%) specific when

compared to RT PCR run in our laboratory, with 1 false negative

(NPV = 98%) and 2 potential false positives (PPV = 97%). The

rapid immunoassays (Xpect FluTM and BinaxNOWTM) were

49%(CI 38%,961%) sensitive and 98%(CI 90%,100%) specific

(n = 119), with 1 false positive (PPV = 97%) and 34 false negatives

(NPV = 60%) (Tables 3 and 4).

Discussion

Rapid, sensitive, and cost-effective detection of influenza virus

from clinical specimens is critical for effective treatment and to

limit the spread of infection. In this study, we miniaturized a

nucleic acid amplification test into a single-use microfluidic chip to

reduce the testing cost, decrease the turnaround time and move

the PCR assay closer to true POC testing. We assessed the ability

of the microfluidic chip to amplify influenza A virus RNA in

clinical nasopharyngeal specimens.

146 specimens were chosen from the sample pool to test the

microfluidic assay. Independently, two subsets of specimens that

had been routinely tested using either a DFA (n = 106) or rapid

immunoassay (n = 119) test as the standard of care were tested

with the reference bench top RT-PCR assay. Compared to bench

top RT-PCR as the gold standard, the microfluidic test performed

with sensitivity and specificity comparable to the DFA assays that

had been performed as standard of care, and with substantially

greater clinical sensitivity (96% vs. 49%) than the rapid

immunoassays that had been performed as standard of care.

The 73 clinical specimens negative for influenza A by both bench

top and microfluidic assays included 20 samples that were positive

for influenza B by the bench top gold standard assay. Specimens

with initial viral loads down to 103 copies/ml were detected as

positive in the microfluidic assay, although with reduced sensitivity

Table 2. Summary statistics for the microfluidic assay.

Microfluidic Assay vs. Benchtop RT-PCR

(n = 146) positive negative

Positive 70 0 100% (94%,100%) PPV

Negative 3 73 96% (88%,98%) NPV

96% (89%,99%) 100% (95%,100%)

Sensitivity Specificity

(95% CI).
doi:10.1371/journal.pone.0033176.t002

Figure 4. On-chip PCR product concentration vs. copy number showing NP swab and NP aspirate specimens.
doi:10.1371/journal.pone.0033176.g004
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(Table 1). Sensitivity was 100% for the specimens with influenza

A copy numbers of greater than or equal to 105 copies/ml and was

96% for specimens with copy numbers greater than or equal to

103 copies/ml. Typical viral loads in the nasopharynx for patients

recently infected with influenza A are rarely below 104 copies/ml

[41,42], and this has been verified for several strains [43]. So,

while there are several ways that the reported microfluidic assay

could be improved to lower the limit of detection, in the case of

influenza A infections, this improvement would be of limited

benefit.

It is important to note that the low sensitivity of the rapid

immunoassays was expected. Because in previous work by Pollock

et al. [14], the DFA assay results were comparable to the

performance of bench top RT-PCR, we closely examined our

potential DFA false positive (2) and false negative (1) results. In the

two DFA positive/bench top RT-PCR negative specimens, the

patients who provided the specimens were clinically diagnosed

with influenza based on compatible symptoms and signs, and each

specimen was collected during the pH1N1 epidemic in Boston.

One limitation of the bench top RT-PCR used in this study was

that the assays were performed on the clinical specimens after they

had undergone at least one freeze/thaw cycle, which may have led

to some RNA degradation in the sample and thus slightly reduced

the sensitivity of the gold standard RT-PCR. We hypothesize that

this could potentially explain the two DFA-positive, bench top

PCR-negative results. The DFA negative/bench top RT-PCR

positive specimen was one which was already known to have low

numbers of epithelial cells and was accordingly borderline

inadequate for DFA testing [14]; a separate specimen from the

same patient had tested positive for pH1N1 by RT-PCR testing

done at the Massachusetts State Laboratory, confirming our own

bench top RT-PCR results.

We plotted the input viral load as determined by the bench top

quantitative PCR against the amplicon output concentration from

the microfluidic assay measured using capillary electrophoresis

(Figure 4). Since these were endpoint reads, we did not expect a

strong linear relationship between input copy number and

endpoint concentration (linear regression R2 = 0.174 for NPA

specimens and R2 = 0.253 for NPS specimens), and we did not see

one.

All of the microfluidic assays were run with the same primer,

enzyme and blocking agent starting concentrations. These

concentrations were chosen based on a series of preliminary

optimization experiments that are described in the data (Figures
S1, S2, S3, S4). The only variable in the reaction was the input

sample, which varied in several ways. First, there was variation in

the viral load between specimens. There were also differences in

sample type (NPA vs. NPS) and in the method of storage before

microfluidic testing. The samples collected at BMC were

aliquotted and stored in VTM, while almost all of the samples

collected at BIDMC were not aliquotted and were stored in PBS (a

minority of specimens were stored in VTM). The aliquotting

allowed for minimal freeze thaws before testing the samples in the

reference bench top RT-PCR assay and the microfluidic chip

assay. Most of the samples went through one freeze/thaw cycle

before microfluidic testing and the bench top RT-PCR. In

addition, all samples were spun once before introduction into the

microfluidic chip. The BMC samples were spun before aliquots

were frozen, and the BIDMC samples were spun after aliquots

were thawed fore testing in the microfluidic assay. This

‘‘preprocessing’’ step was performed to minimize the chance of

clogging the nucleic acid extraction part of the chip with cell

debris, which was seen in a small number (about 10%) of the

preliminary experiments due to the very small pore size of the SPE

columns used in these chips. Recent reformulations of the SPE in

our lab have resulted in larger average pore sizes that have

eliminated the need for this initial spin down step. It is possible,

however that the spin step also acted to remove PCR inhibitors,

resulting in better results than had the samples been left

completely untreated.

The PCR channel design used in the microfluidic assay was

optimized previously to achieve repeatable and predictable

temperature profiles in the chip [44]. The serpentine PCR

channel flows the sample through 30 cycles of PCR. The cycle

number is fixed for any given chip, unlike in bench top PCR

schemes. Increasing the cycle number (by redesigning the chip)

and/or reducing the flow rate could further improve the PCR

yield, but testing time would also increase. So, for any given assay,

the chip design and the PCR reaction itself must be optimized

simultaneously. Here, a validated protocol obtained from the

CDC was adapted for use in the microfluidic chip. Only the

influenza A primer set from the CDC protocol was used in the

microfluidic assay. In place of the other reagents, we used reagents

Table 3. Summary statistics for DFA.

DFA
vs. Benchtop RT-
PCR

(n = 106) positive negative

Positive 58 2 97% (89%,99%) PPV

negative 1 45 98% (89%,100%) NPV

98% (91%,100%) 96% (86%,99%)

Sensitivity Specificity

(95% CI).
doi:10.1371/journal.pone.0033176.t003

Table 4. Summary statistics for the rapid immunnoassays.

Rapid Immunoassays vs. Benchtop RT-PCR

(n = 119) positive negative

Positive 33 1 97% (85%,100%) PPV

negative 34 51 60% (49%,70%) NPV

49% (38%,61%) 98% (90%,100%)

Sensitivity Specificity

(95% CI).
doi:10.1371/journal.pone.0033176.t004
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and buffers from the Qiagen One-Step RT-PCR Kit, which is

specially designed to enable reactions over a wide range of Mg2+

concentrations through a balanced combination of KCl and

(NH4)2SO4 [45]. The standard Qiagen assay was further

optimized by adding twice the amount of enzyme and more

BSA as a blocking agent to improve amplification in a high surface

to volume ratio environment (Figures S2, S3, S4). It has been

observed by others that enzyme can bind non-specifically to the

walls and become inactive in high surface to volume ratio reaction

chambers [46].

Key advantages of an integrated microfluidic chip are rapid

turnaround time, low cost, potential for portability (and thus true

point-of-care use) and reduced possibility of sample-to-sample

contamination. While much faster than most clinical laboratory

turn around times for molecular assays (which usually run more

than 4 hours), 3 hours is still too long for a true POC test. There

are several avenues available to improve the assay and reduce the

testing time. To meet the demands of a POC setting (e.g.

clinician’s office), the end-to-end time for the assay must be short

(less than one hour) and the hands-on time very short. The hands-

on time must include as few steps as possible, and the steps should

be easily performed by a minimally trained user. This end-to-end

time can be markedly reduced in our system through further

optimization. The loading and washing times could be reduced by

optimizing SPE compositions in the chip to allow for faster fluid

flow (larger pore sizes) and including multiple shorter columns in

parallel instead of one long column. These improvements are

expected shorten the loading and washing of the SPE to about

20 min. To reduce the PCR time, continuous flow PCR with real

time reading at each turn of the serpentine channel could further

reduce the cycling time by allowing the reader to see a positive

result before all 30 cycles of PCR were complete. With these two

modifications, the total turn-around-time could be reduced to less

than 1 hour making the assay suitable for true POC applications.

As in any proof of concept design, there are limitations in the

current embodiment. First, none of the reagents were stored on

chip and were added as required while running the assay.

Lyophilized reagents for RT and PCR are commercially available

and will be required for a self-contained system. Further, if

quantitative results are sought, the endpoint read is not a good

method, due to the saturation of PCR at high cycle numbers.

Quantitative results may not be useful in the case of influenza, but

are absolutely critical for other RNA virus diagnostic tests,

including those for HIV and HCV. Continuing efforts include

adding real time detection through the addition of fluorescence

imaging at several locations on the chip. Further, multiplex PCR

or spatial multiplexing, although not demonstrated on this device,

would greatly enhance the power of this technique and would be

imperative for an optimal influenza assay (i.e. the ability to detect

and distinguish influenza A and B).

Although this microfluidic chip shares some similarities with

other devices [47], it has several unique characteristics. This chip

is capable of analyzing clinical specimens directly with minimal

sample preparation. Here, we did spin down the initial sample

once before applying it to the microfluidic chip. This step was

performed to avoid clogging of the SPE columns by cell debris that

might be present in the sample, and it can be eliminated by using

SPE columns with larger average pore sizes as described above.

The chip has a single layer design and is made from a

thermoplastic material suitable for high throughput fabrication

using injection molding. Last, the fluidic and thermal controls are

very simple. Continuous-flow PCR eliminates the need to

thermocycle the entire chip. The flow is almost entirely regulated

by differential flow resistance between the functional chambers.

We demonstrated the feasibility of very simple control methods

using one pump, two heaters and 3 thermocouples. These items

would be packaged in a ‘‘reader’’ for an eventual stand-alone test.

In summary, a newly developed single use microfluidic assay

was demonstrated to amplify influenza A RNA in clinical

specimens with high sensitivity and specificity, with performance

essentially equivalent to standard bench-top RT-PCR. The

microfluidic assay is simple to fabricate and to run, since the

microfluidic device is a single layer with a cover, and the assay

steps follow in a linear progression without active valving on chip.

The sample introduction, static heating and pressure driven flow

have been automated with our collaborators for a very similar

bacterial detection assay [48] and these improvements could be

easily applied to the system demonstrated here. The parallel

development of a very simple, low cost reader with the form factor

of a clinical digital thermometer would meet the requirements for

bedside use. We see these results as a major step toward a true

POC molecular assay for influenza A, and this proof of concept

demonstration as a basis for the molecular detection and diagnosis

of a number of other infections.

Materials and Methods

Specimens and specimen characterization
A total of 626 NPA and NPS samples were collected during the

2008–2010 influenza seasons including the 2009 pandemic period.

The specimens were collected from adult and pediatric patients at

two hospitals in Boston, Massachusetts, USA; 383 from adult and

pediatric patients in the emergency room at Boston Medical

Center (BMC) and 243 from a combination of inpatients and

outpatients (almost all adults) from Beth Israel Deaconess Medical

Center (BIDMC). Each study was reviewed and approved by the

site’s institutional review board. The specimens collected at BMC

were collected prospectively and frozen; the specimens from

BIDMC were frozen discarded specimens that had been collected

and tested during routine clinical care. At BMC, informed consent

was obtained from all participants. All patients were consented in

writing and had the ability to withdraw from the study at any time.

Pediatric patients were consented in writing by their parent or

legal guardian in addition to being asked for verbal assent if they

were able. At both BMC and BIDMC, specimens were collected

from patients presenting with one or more symptoms consistent

with influenza, including fever, cough, sore throat, myalgia, nasal

congestion or rhinorrhea (runny nose), headache, malaise, or

diarrhea. Subjects had a distribution of ages ranging from 12

months to 70 years (as noted, specimens obtained from BIDMC

were almost exclusively from adults) and included both genders.

No subject was excluded based on race.

At BMC, NPA samples were taken from consented subjects

following standard techniques [49,50]. Briefly, the person

obtaining the sample measured the distance from the patient’s

nostril to the nasopharynx and held the tube at that location. A

0.6 mm619 mm6305 mm flexible sterile suction catheter was

placed through the nostril to the posterior nasopharynx. One to

2 ml of sterile saline was instilled through the catheter and the

aspirate was immediately collected with gentle suction while

simultaneously removing the catheter. The NPA was collected into

a sterile container of 1.5 ml of viral transport medium (VTM) (BD,

Franklin Lakes, NJ). Specimens were stored at BMC for no longer

than 72 hours at 4uC before deidentification, transfer and storage

at the Klapperich Laboratory. Specimens received at the

Klapperich Laboratory were immediately centrifuged at

5000 rpm for 5 min and stored as 0.5 ml aliquots at 280uC.

They were not spun again before testing. A subset of the samples
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was tested using rapid immunoassays as part of the standard of

care, by request of the treating physician. When a rapid test was

performed, the remainder of the sample was sent to the

Klapperich Laboratory for further testing.

Both NPA and NPS samples were taken at BIDMC, though the

vast majority of the specimens were swab (NPS) samples. In all

cases, specimens were taken from patients in the course of routine

clinical care, for testing ordered by the patient’s clinician. NPS

specimens were taken using two Copan flocked swabs (COPAN,

Murrieta, CA). The first swab was inserted flat and pushed

forward with gentle downward pressure on the lower nasal floor to

the posterior wall of the nasopharynx, where it was rotated for a

few seconds to collect cellular material. The swab was withdrawn

and placed into sterile 1X PBS. The collection procedure was

repeated using the second flocked swab in the other nostril; the

second swab was placed into M4RT (Remel, Lenexa, KS) media

for viral culture. The two swabs were then submitted on ice to the

BIDMC microbiology laboratory. After routine direct fluorescent

antigen (DFA, performed on the PBS tube in all cases [14]) and

culture (performed on the M4 tube in a subset of cases) testing,

tested/resulted specimens (approximately 1.0 mL) were stored at

280uC. In a minority of patients, NPA specimens were collected

instead of NPS specimens and submitted on ice to the BIDMC

clinical microbiology laboratory for testing, after which they were

frozen at 280uC. The frozen (discarded) NPS and NPA specimens

were later deidentified and sent to the Klapperich Laboratory

where they continued to be stored at 280uC. Before testing, all

specimens were routinely quick thawed from 280uC in a 37uC
water bath. Then the specimens were spun at 13,000 rpm for

10 min at 4uC to remove human cell debris and mucous, and the

supernatant was used for all downstream testing.

Microfluidic Chip Fabrication
The microfluidic chips were fabricated in thermoplastic Zeonex

690R (Zeon Chemicals, Louisville, KY), by hot-embossing a blank

0.7 mm thick Zeonex plaque using an epoxy master mold and

then thermally sealing the imprinted channel with a 0.7 mm blank

Zeonex cover slip [51]. Three open ports in the chip were fitted

with nanoports (Upchurch Scientific, Oak Harbor, WA) using

epoxy glue to facilitate loading the specimen, adding the reagents

and collecting the RT-PCR products. The entire chip is 70 mm in

length, 25 mm in width and 1.4 mm in height. The integrated

chip consists of three functional chambers, a solid phase extraction

(SPE) column for RNA extraction, an RT chamber, and the PCR

channel. The sample preparation channel was fabricated following

methods described in earlier work [52,53]. All reagents for SPE

column fabrication were purchased from Sigma (St. Louis, MO)

unless otherwise noted. Before fabrication of the SPE column, the

channel was cleaned with 50 ml RNAse Away, (Molecular

BioProducts, San Diego, CA), and then rinsed with 100 ml

nuclease free water (Promega, Madison, WI). Briefly, silica

microspheres (0.7 mm, cat# 24324-15, Polysciences Inc.) were

prepared by centrifugation for 5 min at 6600 rpm, aspirating the

suspension solution, and drying on a heat block overnight to

remove excess water. The inner channel surface was grafted with

97% v/v methyl methacrylate and 3% v/v benzophenone by

10 min of UV-irradiation at 265 nm in an Ultraviolet Crosslinker

(CL-1000, UPV Inc., Upland, CA). This step facilitated covalent

attachment between the SPE column and the inert plastic channel

surface. The SPE column itself was made with a mixture of 16%

v/v ethylene dimethacrylate, 24% butyl methacrylate, 42% 1-

dodecanol, 18% cyclohexanol, and 1% photoinitiator 2-dimethy-

lamino-4-(methyl-phenylamino)-phenol. Silica microspheres were

added into the monolith solution in a 1:1 ratio (v/v). The monolith

was then cross-linked by UV irradiation for 5 min as above

through both sides of the chip, achieved by flipping the chip over

half way through irradiation. Before use, chips were cleaned with

500 mL of 100% methanol to rinse away excess porogen and to

create the open pore structure of the SPE.

The Microfluidic Assay
The first chamber of the chip is an SPE column for sample

preparation; it is integrated directly with the RT and PCR steps.

Sample preparation followed the same strategy as previously

reported [54]. Briefly, before introducing the sample, the channel

was conditioned with 300 mL of buffer containing 1.5 M

guanidine thiocyanate (GuSCN) (Sigma, St. Louis, MO), 50% 2-

Propanol (Sigma), and 1X RNASecure (Applied Biosystems,

Foster City, CA). Next, 100 ml of the NPA or NPS specimen

was mixed with 300 ml lysis buffer (2 M GuSCN, 66.7% 2-

propanol, 1x RNASecure, 6 mg carrier RNA (Qiagen, Valencia,

CA)). This mixture was run though the channel and collected from

the first outlet port. During this step, nucleic acids released from

the lysed influenza particles in the specimen bind to the SPE

column. The SPE channel was then cleaned sequentially with

50 ml of 70% ethanol followed by 50 ml of 100% ethanol, which

were also collected at the first outlet (to waste). The residual

ethanol was removed by passing 500 mL of dry air through the

channel. Finally, the extracted RNA was eluted in 13–15 ml of

nuclease free water. The flow rates for all steps were between 0.8–

1 ml/hr. All fluids were pushed using a programmable syringe

pump (PHD2000, Harvard Apparatus, MA).

The extracted RNA was amplified by RT-PCR on-chip using

reagents from the One Step RT-PCR kit (Qiagen). The CDC

influenza A primers were used (see below), targeting the highly

conserved M1 gene and generating a 106 bp amplicon [39]. Each

50 ml RT-PCR reaction included 13.5 ml RNA, 4 ml one step RT-

PCR enzyme mix, and the following reagents with the given final

concentrations: 1X Q solution, 1X one step buffer, 1 mM

additional MgCl2, 1 mM forward primer 59-GAC CRA TCC

TGT CAC CTC TGA C-39, 1 mM reverse primer 59-AGG GCA

TTY TGG ACA AAK CGT CTA-39, 400 mM dNTP, 0.015%

w/v BSA, and 0.75% w/v PEG8000. The PCR products were

analyzed using a 2100 Bioanalyzer and sequenced using the PCR

primers. Influenza A/PR/8/34 cultured in Madin-Darby canine

kidney (MDCK) cells was used as the chip positive control and

nuclease free water was the chip negative control.

After the extracted RNA was eluted and collected in the well at

the end of the SPE channel, the RT-PCR reagents were loaded,

and the solution was pushed into the RT chamber. The RT

chamber was maintained at 50uC for 30 min, followed by 95uC
for 15 min to activate the PCR enzyme according to the

manufacturer’s protocol. Next the reaction flowed through the

continuous-flow PCR channel for amplification. A denaturation

temperature of 95uC and annealing temperature at 60uC were

applied through the thin film heaters. The flow rate was 0.6 ml/

min, resulting in a 40 sec cycle time. The reaction products were

collected in the second outlet port 30 cycles (20 min).

Bench Top Quantitative PCR
For the off-chip control reactions, RNA was extracted from

140 ml of each specimen using the QIAamp Viral RNA Mini Kit

(Qiagen) as per the manufacturer’s protocol. First strand cDNA

synthesis (RT) and amplification (PCR) steps were combined by

using the SuperScript III PlatinumH One-Step qRT-PCR Kit w/

ROX (Invitrogen, Carlsbad, CA). The pan A Universal primers

and probes used were (Biosearch Technologies, Novato, CA)

influenza A forward primer: 59 GAC CRA TCC TGT CAC CTC
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TGA C 39, reverse primer: 59 AGG GCA TTY TGG ACA AAK

CGT CTA 39, and probe: 59 TGC AGT CCT CGC TCA CTG

GGC ACG 39. For influenza B, the primers were forward primer:

59 TCC TCA AYT CAC TCT TCG AGC G 39, reverse primer:

59 CGG TGC TCT TGA CCA AAT TGG 39, and probe: 59

CCA ATT CGA GCA GCT GAA ACT GCG GTG 39 [39]. All

reactions were performed in a 7300 Real Time PCR system

(Applied Biosystems, Foster City, CA) under the following

conditions: 30 min at 50uC for RT, 15 min at 95uC for

polymerase activation, followed by 45 cycles of 15 sec at 95uC
and 60 s at 55uC for amplification. The primers, reagents and

amplification scheme are as described in the CDC protocol for

real time RT-PCR for influenza A and B (H1N1) [39].

A standard curve was established for each qRT-PCR using

plasmids containing a single copy of the influenza A M1 sequence

targeted by the PCR primers (SeqWright, Houston, TX). The

plasmid was generated by cloning the M1 PCR product with the

pCR 2.1 TOPO-TA cloning kit (Invitrogen) and quantified with

PicoGreen to prepare plasmid dilutions of 107 to 101copies/ml.

The viral cDNA copy number generated from a given patient

specimen was determined by interpolation from a standard curve

of cycle threshold (CT) values based on the known input

concentrations of plasmid DNA.

Microfluidic chip product validation
Results available from the clinical laboratories at each site

varied (DFA results were available for all specimens from

BIDMC, and rapid assay results were available for a subset of

cases from BMC specimens). In order to establish a ‘‘gold

standard’’ method across all of the samples, we re-tested all of the

samples using standard bench top quantitative RT-PCR for both

influenza A and influenza B. The results of this quantitative PCR

were used to calculate the statistical performance of the

microfluidic assay.

For the microfluidic assays, positive and negative specimens

were tested in a random order, and each specimen was tested on a

new chip to avoid cross contamination. The 146 samples selected

for testing with the microfluidic assay were not chosen with regard

to viral load or any other parameter. Previously unthawed aliquots

were preferentially used to reduce potential viral degradation in

the sample. The concentration and product size of microfluidic

assay PCR products from all specimens was analyzed by gel

capillary electrophoresis on a 2100 Bioanalyzer (Agilent, Santa

Clara, CA) with the High Sensitivity DNA Kit (Agilent). The

correct product size was also confirmed for all positive samples by

12% PAGE. Every 10th negative sample from each week was

verified as negative by 12% PAGE.

Every 10th positive sample was sequenced (SeqWright, Houston,

TX or Genewiz, South Plainfield, NJ) to verify the product

sequence as the correct fragment of the M1 gene of influenza A.

The PCR products (10 ml) were cleaned up with ExoSAP-ItH
(USB Scientific, CA) and then sequenced using PCR primers.

Sequences from the chip amplicons were analyzed by standard

methods. Briefly, all GenBank influenza type A M1 gene

sequences from 2008–2010, from humans in North America

(n = 739) were retrieved from the Influenza Virus Resource

database at the National Center for Biotechnology Information

(NCBI) [40]. The sequences were aligned using ClustalX [55]

using the M1 sequence of influenza A/PR/8/34 (accession

number NC_002016) as the reference.

Statistical Analysis
A total of 73 influenza A positive patient specimens and 73

influenza A negative patient specimens were selected from the

banked samples and were tested using the microfluidic assay. We

targeted demonstration of 95% sensitivity. In order to have the

statistical power to demonstrate sensitivity 95% or better, with a

prevalence of 50% (input sample pool was adjusted) with a

confidence interval of 0.05, a sample size of 146 was required.

The 73 negative samples included some samples that were

negative for influenza A, but positive for influenza B by the

bench top RT-PCR assay. The sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NPV) were

determined using standard methods [56] and are reported as

comparisons to standard bench top qRT-PCR, which is

emerging as the gold standard test method [42,57]. One-way

ANOVA (95% CI) was performed to determine the significance

of relationships between viral load and sample type (NPA or

NPS) on the microfluidic assay PCR product yield. Microsoft

Excel and GraphPad Prism (v5, La Jolla, CA) were used for the

analyses.

Rapid immunoassays and DFA
The XpectTM Flu A & B kit (Remel, Lenexa, KS) and the

BinaxNOWTM Influenza A & B kit (Inverness Medical, Princeton,

NJ) were used as per the manufacturer’s protocols at the BMC

emergency departments. These tests were ordered at the discretion

of the attending clinician. The rapid immunoassay tests were

performed using a small amount of the same NPA collected for

this study. DFA assays were conducted at BIDMC as previously

described [14].

Supporting Information

Figure S1 Microfluidic assay performance using cul-
tured influenza A virus and standard Qiagen OneStep
Kit protocol.

(TIF)

Figure S2 Microfluidic assay performance using cul-
tured influenza A as a function of increasing BSA
concentrations. The baseline assay contains no additional BSA.

(TIF)

Figure S3 Microfluidic assay performance as a function
of increasing MgCl2 concentration. The baseline assay has

2.5 mM of MgCl2.

(TIF)

Figure S4 Microfluidic assay performance as a function
of increasing enzyme concentration. The baseline assay

contains 2 ml of the enzyme master mix. The manufacturer does

not give the concentration in IU.

(TIF)

Table S1 Summary of the patient specimens tested in
the microfluidic assay and bench top RT-PCR.

(XLS)

Table S2 Summary of the patient specimens tested by
DFA and bench top RT-PCR.

(XLS)

Table S3 Summary of the patient specimens tested by
rapid immunoassay and bench top RT-PCR.

(XLS)
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