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Background. Glucose hydrogen breath testing is a noninvasive test for small intestine bacterial overgrowth (SIBO). A positive 
glucose hydrogen breath test is common in children from low-income countries and has been found to be associated with malnutri-
tion as measured by stunted growth. The microbiome associated with positive breath testing is relatively unstudied.

Methods. We performed 16 S V4 rDNA microbiome analysis on the stool of 90 Bangladeshi children aged 2 years from an 
impoverished neighborhood who were tested at the same time for SIBO by glucose hydrogen breath testing. Data were analyzed by 
linear discriminant analysis effect size with SIBO as the outcome. Any selected genera were tested individually by Wilcoxon’s rank-
sum test to ensure that linear discriminant analysis effect size results were not outlier-skewed.

Results. Linear discriminant analysis effect size analysis identified Lactobacillus (linear discriminate analysis score, 4.59; P = .03) 
as over-represented in 15 out of the 90 children who were SIBO positive.

Conclusions. These results suggest that glucose hydrogen breath test positivity in children from low-income settings may be due 
to an upper intestinal Lactobacillus bloom, potentially explaining the association of SIBO with the gut damage and inflammation 
that leads to malnutrition.

Keywords. environmental enteric dysfunction; fecal microbiome; hydrogen breath testing; Lactobacillus; small intestine bacte-
rial overgrowth.

Small intestine bacterial overgrowth (SIBO) was first described 
by Barker and Hummel in 1939 when they observed macrocytic 
anemia in patients with small intestine structural abnormalities 
(strictures and anastomoses) [1]. Based on their initial 
observations, others went on to describe the presence of SIBO 
in blind loop anatomy, gastrointestinal motility disorders, and 
hypochlorhydria [2]. More recently, SIBO has been described in 
children living in impoverished settings in low-income coun-
tries [3–7]. SIBO in high-income settings has been associated 
with aberrant absorption of nutrients via several mechanisms, 
which include bacterial utilization of carbohydrates before 
host absorption, bile acid deconjugation leading to steatorrhea 
and loss of fat-soluble vitamins, bacterial B12 utilization, and 
protein-losing enteropathy [2]. We demonstrated that SIBO in 

children from low-income countries was associated with linear 
growth deficits in a cross-sectional analysis, a result that has 
been confirmed by 2 separate groups [6–8].

SIBO is classically defined as ≥105 CFU/mL of growth when 
endoscopically obtained upper gastrointestinal (GI) samples 
are plated on anaerobic and aerobic media [2]. Glucose or lac-
tulose hydrogen breath testing has been used in both the clin-
ical and research settings as a noninvasive marker of SIBO [9]. 
However, little work has been done to define which species 
are present in the upper GI tract of SIBO patients or which 
microbial populations correlate with a positive breath test. In 
the premolecular era, one study found that SIBO diagnosed 
by endoscopy was associated with increased Streptococcus, 
Lactobacillus, and Escherichia species [10]. Using quantitative 
polymerase chain reaction (qPCR) techniques, researchers in 
Brazil demonstrated higher counts of Eubacteria in the stool of 
SIBO-negative children and higher counts of Salmonella in stool 
samples from lactulose hydrogen breath test–positive children 
[8]. Most recently, in a study of children from sub-Saharan 
Africa, SIBO, as diagnosed by upper GI aspirate culture, was 
associated with increased upper GI abundance of oropharyn-
geal species, including Haemophilus, Streptococcus, Neisseria, 
Veillonella, Porphyromonas, and Moraxella, as determined by 
16 S rDNA sequencing. Stool samples from stunted children, 
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who had a SIBO prevalence of 91%, had a similarly high abun-
dance of oropharyngeal flora, with Lactobacillus salivarius 
being the most significant single organism, with a 333.9-fold 
increase from nonstunted children [7]. The work presented here 
is the first to utilize 16 S rDNA analysis to define the microbial 
populations in stool that correspond to SIBO, as defined by a 
positive glucose hydrogen breath test (GHBT).

METHODS

This work was done on samples from the Performance of 
Rotavirus and Oral Polio Vaccines in Developing Countries 
(PROVIDE) study sample bank. Briefly, PROVIDE is a longi-
tudinal study of Bangladeshi infants with the primary objective 
of investigating the association between environmental enteric 
dysfunction (EED) and the underperformance of oral vaccines. 
Detailed methods of this study have been published elsewhere 
[11, 12]. Briefly, 700 children were enrolled within 7  days of 
birth. Subjects were randomized to receive the oral rotavirus 
vaccine (Rotarix) and/or the inactivated polio vaccine in a 2×2 
design. All children received the oral polio vaccine per  the 
Expanded Program on Immunization, Bangladesh. Rolling 
admission spanned from May 2011 through November 2014. 
Results of this study examining the association of biomarkers 
of EED and oral polio vaccine failure, rotavirus vaccine failure, 
growth through 1  year of age, the impact of enteropathogens 
on oral rotavirus and polio vaccination, and the association 
of Rotarix vaccination and serum zinc levels with severe ro-
tavirus diarrhea have been published elsewhere [11, 13, 14]. 
The PROVIDE study was approved by the Institutional Review 
Boards at the University of Virginia and the University of 
Vermont and by the Ethics and Research Review Committees 
at the International Centre for Diarrhoeal Disease Research, 
Bangladesh.

 Children who were assessed and had an weight-for-age Z score 
(WAZ) ≤–3 SD were not tested and were referred to nutritional 
therapy. The GHBT was compared with markers of enteric inflam-
mation and intestinal epithelial cell damage, growth parameters, 
diarrheal disease, and sanitation. The methods of GHBT and these 
results have been previously published [6]. SIBO positivity was de-
fined as a ≥12-ppm increase in exhaled breath hydrogen over the 
subject’s baseline sample.

At the 2-year study visit, stool was collected from the patients 
on the morning of GHBT before glucose consumption. Stool was 
transported from the field to our laboratory at 4°C, aliquoted in 
DNase- and RNase-free cryovials, and stored at –80°C on the 
day of collection. Samples were shipped from our laboratory in 
Bangladesh to our laboratory in Virginia on dry ice, where they 
were replaced in –80°C storage. Samples were then removed, 
thawed, and 200 ug was removed for total nucleic acid (TNA) 
extraction. Extraction was performed using a slightly modified 
protocol utilizing the QIAamp DNA Stool Mini Kit (Qiagen, 

Gaithersburg, MD), which has been described elsewhere [13, 
15]. TNA was stored at –80ºC until testing. Positive extraction 
controls were achieved by spiking phocine herpesvirus (Erasmus 
MC, Department of Virology, Rotterdam, the Netherlands) and 
bacteriophage MS2 (ATCC 15597B; American Type Culture 
Collection, Manassas, VA) into each sample during the extrac-
tion process.

The entire 255-bp V4 region of the 16 S rDNA gene was 
amplified as previously described, using phased Illumina-
eubacteria primers to amplify the V4 16 S rDNA region 
(515F–806R) and to add the adaptors necessary for illumina 
sequencing and the GOLAY index necessary for de-multiplexing 
after parallel sequencing [16, 17]. Negative controls included the 
addition of extraction blanks that were tested throughout the 
amplification and sequencing process to ensure they remained 
negative. As a positive PCR control, DNA extracted from the 
HM-782D Mock Bacteria Community (ATCC through BEI 
Resources) was run on each plate and added to the library. 
A PhiX DNA library was spiked into the 16S sequencing run 
(20%) to increase genetic diversity before parallel sequencing in 
both forward and reverse directions using the Miseq V3 kit and 
machine (per the manufacturer’s protocol).

Raw paired-end sequences were trimmed to a length of 
200 bp to remove poor-quality base calls in the tail end of both 
forward and reverse reads. V4 rRNA amplicons were generated 
by merging the overlapping ends of trimmed paired-end reads 
using the MeFiT pipeline [18]. Amplicons with a maximum ex-
pected error as a percentage of read length (meep) score <1.0, 
that is, <1 error per 100 bases, were retained for further analysis. 
Chimeric amplicons were removed using the SILVA LTPs123 
reference database [19], as implemented in VSEARCH, version 
2.7.1 [20]. Operational taxonomic units (OTUs) were identified 
by de novo clustering pooled sequences from all samples at 97% 
identity threshold, using USEARCH, version 10.0.240 [21]. 
Taxonomic assignments of OTUs up to the genus level was 
performed using the Bayesian classifier Ribosomal Database 
Project (version 2.12) [22]. Species-level assignments were made 
by aligning the OTUs to the SILVA LTPs123 database [19].

Within-sample alpha diversity was measured using the 
Shannon index. Pairwise Bray-Curtis dissimilarity distances 
were calculated using the vegan R package [23], followed by 
principal coordinates analysis using the phyloseq R package 
[24]. Linear discriminant analysis effect size (LEfSe) was used 
to perform high-dimensional class comparisons to identify 
features that discriminate the phenotypes, that is, SIBO-positive 
and -negative groups [25].

RESULTS

One hundred and three children were screened by GHBT for 
SIBO. Nine were excluded due to the weight-for-age Z score 
being ≤–3 SD. Three children were unable to complete the 
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3-hour test period, and 1 parent refused breath collection. 
Thus, 90 children successfully completed the GHBT. As pre-
viously reported, 15 of the children were SIBO positive and 
75 were SIBO negative, based on a ≥12-ppm rise in H2 [6]. 
Enrollment characteristics did not differ significantly between 
the 2 groups [6]. Also as previously reported, fecal calprotectin 
and fecal Reg1B were elevated in the SIBO-positive children, 
and SIBO-positive children were more likely to live in less san-
itary conditions and had increased growth stunting compared 
with SIBO-negative children [6].

Sequencing had an average depth of 62  247 reads per 
sample (range, 4903–118 484 reads per sample). One thou-
sand two hundred sixty-seven OTUs were identified from 
the 88 samples (2 stool samples failed to amplify, both from 
SIBO-negative children). Taxonomic assignment of OTUs 
and abundance estimations revealed variable levels of clas-
sification of reads. At the phylum and family levels, on av-
erage 97.6% and 96.8% of reads were classified per sample, 
respectively. However, at lower taxonomic levels, fewer reads 
were classified, with 82.9% and 35.9% reads on average per 
sample at the genus and species levels, respectively (Figure 1; 
Supplementary Figure 1). Thus, a decision was made to pro-
ceed with further analysis at the genus level. The Shannon 
alpha diversity index at the genus level, which takes into 

account the richness and evenness of the community, was 
not significantly different between SIBO-positive and SIBO-
negative groups (mean, 2.01 vs 2.06; P =  .29). Principal co-
ordinates analysis of the Bray-Curtis dissimilarity distances 
at the genus level indicated no apparent shift in the com-
munity structure between SIBO-positive and SIBO-negative 
children (Figure 2). Ordination of phylogenetically infor-
mative distances, like unweighted and weighted UniFrac 
distances, also showed no apparent shifts in the microbial 
community (Supplementary Figure 2).

Linear discriminant analysis effect size analysis identified 
2 genera that differentiated SIBO status, Lactobacillus 
(linear discriminant analysis [LDA] score,  4.59; P  =  .03) 
and Veillonella (LDA score, 4.62; P =  .03), both higher in 
the SIBO-positive group. When the relative abundance of 
these genera was examined individually using Wilcoxon’s 
rank-sum test, only the difference in Lactobacillus remained 
statistically significant (mean percentage of reads, 15.47% 
vs 10.09%; P = .03). Veillonella relative abundance was not 
significantly different (mean percentage of reads, 1.15% 
vs 0.06%; P = .38) when analyzed by Wilcoxon’s rank-sum 
test, suggesting that LEfSe’s identification of the taxa was 
likely due to a single outlier in the SIBO-positive group 
(Figure 3).
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Figure 1. Genus- and species-level abundances. Stacked bar plot showing percentage of reads classified at the genus (A) and species (B) levels for samples grouped by 
small intestine bacterial overgrowth (SIBO) status. The samples are clustered based on their Bray-Curtis dissimilarity distances using the Ward method. The top 20 most 
abundant genera and species are plotted. The counts for the remaining classified taxa are agglomerated into “Other Taxa.” On average, 82.9% of reads/sample were classi-
fied at the genus level and 35.9% of reads/sample were classified at the species level. 
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DISCUSSION

The key discovery of this work was the association of an increase 
in fecal Lactobacillus species with GHBT positivity. Positive 
GHBT has been associated with SIBO as diagnosed by culture of 
upper intestinal aspirates [9]. Early studies attempting to delin-
eate exactly which genera or species are responsible for GHBT 
positivity demonstrated increased growth of Lactobacillus, 
Escherichia, and Streptococcal species associated with a posi-
tive test [10]. These early studies were conducted using culture 
techniques before the development of current molecular ana-
lytic techniques. The use of 16 S rDNA in our study may ac-
count for the difference in our observations from the Brazilian 
study. This study analyzing children in Brazil by lactulose hy-
drogen/ methane breath testing found a higher prevalence of 
Salmonella species in the stool of breath test–positive children 
as measured by qPCR.  Lactobacillus quantity, again determined 
by qPCR, did not differ between breath test–positive and –neg-
ative subjects [8]. The only study to investigate SIBO utilizing 
16S rDNA techniques was conducted on African children who 
were stunted and did find Lactobacillus to be over-represented 
in the stool of stunted children. SIBO in that study, as diagnosed 

by semiquantitative culture of upper GI aspirates, was found 
in 42 of the 48 children sampled (87.5%). However, duodenal 
16s rDNA analysis was not performed to directly compare 
SIBO-negative and -positive subjects [7]. Our work supports 
the findings of the African study and suggests that GHBT is 
detecting a similar dysbiosis to that described in detail in their 
analysis [7].

Recent work has shown that Lactobacillus overgrowth in a 
Drosophila mutant can lead to increased lactic acid production 
by the enteric microbiota and trigger activation of the intes-
tinal NADPH oxidase Nox and an increase in reactive oxygen 
species [26]. This could explain the link between GHBT posi-
tivity and the enteric inflammation and epithelial cell damage 
that hallmark EED, which we showed in our previous analysis 
of this cohort [6]. EED is a significant cause of morbidity in 
the low-income pediatric population and has been associated 
with failure of oral vaccines, neurodevelopmental delays, and 
growth stunting [11, 27–29]. Furthermore, GHBT positivity 
was directly associated with prior linear growth stunting in this 
cohort [6]. Stunted children have been shown to have increased 
mortality by 5  years of age, and stunting in early childhood 
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Figure 2. Diversity indices. A, Alpha diversity in samples by small intestine bacterial overgrowth (SIBO) status, as measured using Shannon’s index of genus-level classifi-
cation, demonstrated no statistically significant difference as measured by Mann-Whitney U testing. B, Bray-Curtis dissimilarity between samples was calculated at genus-
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has been hypothesized to contribute to diabetes and metabolic 
disturbances later in life [30]. Stunting has been associated with 
neurodevelopmental delays that may lead to decreased produc-
tivity later in life [29, 31]. Given that one-fourth of the world’s 
children under 5 years of age are estimated to be stunted, under-
standing the contribution of SIBO to the pathogenesis of this 
complex phenotype could be critical to improving child health, 
and thus subsequently adult health and productivity in low- and 
middle-income countries [32].

This study has several strengths, with the most impor-
tant being measurement of SIBO in children in a lower-
socioeconomic urban neighborhood in Dhaka and the use of 16 
S rDNA sequencing to describe the fecal microbiota of children 
with positive breath tests. GHBT and collection of fecal samples 
were accomplished on the same day, and a cold chain was pre-
served to ensure technical completion of DNA sequencing.

A limitation of this work was use of fecal samples instead of 
duodenal samples to quantify the microbiome associated with 
GHBT positivity. The GHBT is believed to be specific for small 
intestinal dysbiosis, as glucose will be completely absorbed in 
the upper intestine when competing bacteria are not present. 
The degree to which fecal bacteria are representative of those in 

the small bowel is unknown; however, Lactobacillus is generally 
an upper intestinal commensal. This supports our theory that 
changes in small bowel bacterial populations can be detected 
through fecal analysis. A second limitation of this work is that it 
was a cross-sectional study of infants. The intestinal microbiome 
is known to change dramatically over the first several years of life 
[33–35], which could potentially confound these analyses. To 
confirm our findings, further investigation needs to be conducted 
to determine if Lactobacillus abundance is higher in children with 
GHBT positivity across varying age groups.

The current understanding of environmental enteric dys-
function and the contribution of SIBO is limited. EED 
involves inflammatory infiltrate into the lamina propria and 
changes to the intestinal architecture, which include blunting 
of villi and crypt hypoplasia [28]. How changes to the intes-
tinal microbiota potentiate the development of EED or re-
sult from it is poorly understood. However, if strategies are 
going to be designed to combat the deleterious effects of EED 
on children in low- and middle-income countries, the spe-
cific dysbiosis of the small intestine and how these shifts in 
microbial populations affect children living in unsanitary 
conditions must be defined.
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Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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