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Abstract
Parameter identification of robot manipulators is an indispensable pivotal process of achiev-

ing accurate dynamic robot models. Since these kinetic models are highly nonlinear, it is not

easy to tackle the matter of identifying their parameters. To solve the difficulty effectively,

we herewith present an intelligent approach, namely, a heuristic particle swarm optimization

(PSO) algorithm, which we call the elitist learning strategy (ELS) and proportional integral

derivative (PID) controller hybridized PSO approach (ELPIDSO). A specified PID controller

is designed to improve particles’ local and global positions information together with ELS.

Parameter identification of robot manipulators is conducted for performance evaluation of

our proposed approach. Experimental results clearly indicate the following findings: Com-

pared with standard PSO (SPSO) algorithm, ELPIDSO has improved a lot. It not only en-

hances the diversity of the swarm, but also features better search effectiveness and

efficiency in solving practical optimization problems. Accordingly, ELPIDSO is superior to

least squares (LS) method, genetic algorithm (GA), and SPSO algorithm in estimating the

parameters of the kinetic models of robot manipulators.

Introduction
Until now, robot manipulators have been used in a wide variety of industrial engineering proj-
ects, ranging from material handling and assembly to cutting, wedding, gluing, and painting.
To achieve productivity and flexibility in fully automated production lines, robot manufactures
invest much more time and effort in developing advanced model-based control schemes. Dy-
namic robot models are crucial in these developments because they can be used to linearize
nonlinear robot systems in both joint spaces and task spaces. Moreover, the design of advanced
model-based robot controllers are usually based on these models and their performances are
directly related to the accurate dynamics of the robot systems. Although the dynamic robot
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models are well known, the dynamic parameters are not easily available since they are not
often provided by robot manufactures and are not directly measurable in practice due to the
structural complexity and payload of robot manipulators. Therefore, the subject of estimating
the model parameters has drawn the aspiring attention from many researchers and practition-
ers around the world. They have been committed to the study of robot identification for de-
cades of years.

A good number of effectively theoretical and experimental methods to obtain accurate dy-
namic parameters of robot manipulators have been recently reported in the literatures. These
methods may be categorized as on-line identification and off-line identification methods.
There are three main off-line identification methods for estimating dynamic parameters of
robot manipulators: (1) Physical experiments of dismantled robot manipulators; (2) Computer
aided design and manufacturing packages based techniques by using the geometric and materi-
al characteristics of robot manipulators; (3) Input/output behavior matching based method: It
is deemed as the best choice of these off-line identification methods due to its better identifica-
tion accuracy and easier measurement [1]. However, the on-line identification methods consist
of the following two categories: (1) Traditional cybernetic methods: These methods include a
wide variety of solutions such as step response function, pulse response function, frequency re-
sponse method, correlation analysis method, spectrum analysis method, LS method, and maxi-
mum likelihood method, and so on. (2) Modern intelligent optimization techniques: These
methods mainly depend on intelligent algorithms and optimization theories to deal with the
parameter estimation of robot manipulators. The typical ones of them include neural networks,
GA, PSO, differential evolution, set membership method, and other intelligent algorithms and
optimization methods.

Among the above methods for the parameter estimation of robot manipulators, traditional
cybernetic methods are usually employed to obtain accurate dynamic parameters [2–15]. In
[2], Billings and Fakhouri employed cross-correlation techniques to decouple the identification
of the linear dynamics from the characterization of the nonlinear element in the nonlinear sys-
tems when the input is a white Gaussian signal [2]. Gautier and Khalil presented a direct meth-
od for determining the minimum set of inertial parameters of serial robots. The method
contributes to the reduction of the computational cost of the dynamic models and simplifies
the identification of the inertial parameters by using least squares method [3]. To overcome the
difficulties of noise on position and torque measurements, friction modeling error and bad ex-
citation, Vandanjon, Gautier, and Desbats proposed a new identification method based on ex-
periments which are designed by means of physical interpretation and spectrum analysis of the
robot dynamic model in order to reduce sensitivity to noise. The successful application of this
new method to a 3 degrees of freedom robot proves the efficiency of the algorithms [4]. Olsen
and Petersen developed a new maximum likelihood method for estimating inertial parameters.
The experiments in their study were carried out on the first two links of a seven-axis Mitsubishi
PA-10 robot in [5]. It is worth noting that although the least squares method is regarded as the
most widely used one, there exist some problems of estimating the accurate dynamic parame-
ters by using it. It can often generate the solutions with temporary minima or non-optimal
local minima and it is also sensitive to measurement noise. One can use the so-called exciting
trajectory that can guarantee the excitation of all the dynamic parameters to be identified or
use the data filtering to overcome the measurement noise sensitivity [6]. Furthermore, one
promising solution for the problem of the so-called physical feasibility of the identified param-
eters is to use constrained optimization tools to adjust the least squares results [7–10]. Gautier,
Janot, and Vandanjon presented a closed-loop output error method where the usual joint posi-
tion output is replaced by the joint force/torque. Its merit is to avoid the calculation of the ve-
locity and acceleration by bandpass filtering of the measured position. The method is
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experimentally validated on an industrial Stäubli RX-90 robot and a two degree-of-freedom di-
rect drive rigid robot [11]. In addition, Díaz-Rodríguez, Mata, Valera, and Valera put forward
a strategy for dynamic parameter identification of parallel robots in terms of relevant parame-
ters. The dynamic model developed by means of the Gibbs-Appell equations is simplified
based on the considered geometry of each link and symmetry of the legs. The identification is
done by Weighted Least Squares. The strategy has been experimentally tested on two actual
3-DOF parallel robots [12]. Calanca, Capisani, Ferrara, and Magnani proposed a practical
multi-input multi-output (MIMO) closed loop parameters identification procedure for robot
manipulators. It is based on the weighted least squares method. The presented procedure has
been successfully experimentally tested on a COMAU SMART3-S2 industrial manipulator
used in a planar configuration [13]. In [14], Thanh, Kotlarski, Heimann, and Ortmaier ad-
dressed both modelling and dynamics identification of kinematically redundant parallel robots,
based on the Lagrangian equations of the first kind and the coordinate partitioning method.
The dynamic parameter estimation of an exemplarily considered kinematically redundant 3-
(P)RRR parallel robot using a least-squares approach and a nonlinear optimization technique
is discussed. More recently, Janot, Vandanjon, and Gautier proposed an instrumental variable
method for robot identification. The instrument set is the inverse dynamic model built from
simulated data calculated from simulation of the direct dynamic model. The simulation is
based on previous estimates and assumes the same reference trajectories and the same control
structure for both actual and simulated robots. The gains of the simulated controller are up-
dated according to instrumental variable estimates to obtain a valid instrument set at each step
of the algorithm. The proposed approach validates the inverse and direct dynamic models si-
multaneously, is not sensitive to initial conditions, and converges rapidly. Experimental results
obtained on a six degrees-of-freedom industrial robot show the effectiveness of this
approach [15].

Over the last two decades, with the advance of intelligent algorithms and optimization theo-
ries, modern intelligent optimization techniques have been playing an increasingly important
role in the field of parameter identification of robot manipulators [16–20]. Khemaissia and
Morris addressed the novel issues related to system identification of robot manipulators based
on the nonlinear functional properties of artificial neural network models. An estimation pro-
cedure for the link parameters is described in which identification is carried out using the par-
allel recursive prediction error technique. The algorithm enables the weights in each neuron of
the network to be updated in an efficient parallel manner and has better convergence than the
classical back propagation algorithm. The whole of the algorithm can be distributed over a net-
work of parallel processors to achieve impressive speed-up. An example is given for the first
three links of the Stanford arm to demonstrate the effectiveness of this algorithm [16]. Besides,
Anh used a novel inverse dynamic MIMO NARX model for modeling and identifying simulta-
neously both of joints of the prototype 2-axes PAM robot arm. The contact force variations
and highly nonlinear coupling features of both links of the 2-axes PAM system are modeled
thoroughly through an inverse neural MIMO NARX model-based identification process using
experiment input-output training data. For the first time, the dynamic inverse neural MIMO
NARX model of the 2-axes PAM robot arm has been investigated. The results show that the
neural inverse dynamic MIMO NARX model trained by back propagation learning algorithm
yields outstanding performance and perfect accuracy [17]. Bingül and Karahan deal with the
dynamic modeling and identification of Stäubli RX-60 robot by least squares method and PSO
technique. These experimental results show that the estimated inertial parameters predict
robot dynamics well [18]. Supriyono and Tokhi presented current biologically-inspired optimi-
zation techniques and their application to modeling of a single-link flexible manipulator [19].
Köker proposed a hybrid approach which combines the characteristics of neural networks and
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evolutionary techniques to obtain more precise solutions. The neural networks and genetic al-
gorithms are used together to solve the inverse kinematic problem of a six-joint Stanford robot-
ic manipulator to minimize the error at the end effector [20].

Being different from the traditional cybernetic methods, the modern intelligent algorithms
are not sensitive to the complex characteristics of the kinetic models of robot manipulators and
are able to promptly search the solutions to problems solving in the nonlinearly multi-dimen-
sional spaces. As a result, we herewith attempt to pursue an effectively intelligent algorithm to
solve the inverse kinematic problem of robot manipulators. After an in-depth investigation
into the nature of the PSO algorithm, we put forward a novel PSO algorithm which we call the
elitist learning strategy (ELS) and proportional integral derivative (PID) controller hybridized
PSO approach (ELPIDSO). A specified PID controller is designed to improve particles’ local
and global positions information together with ELS. In order to verify the effectiveness of
ELPIDSO, we apply it to identify the parameters of the kinetic model of a robot manipulator
with two links. Experimental results prove that it is superior to PSO, LS and GA in estimating
the parameters of the kinetic models of robot manipulators and that it is a more efficient ap-
proach to system identification in real practice.

The rest of the paper is organized as follows. Section 2 describes the kinetic modelling of a
two-link robot manipulator and the problem formulation of its parameter identification, and
depicts the derivation of ELPIDSO and its ELS, mutation mechanism and the whole procedure.
Section 3 presents the experimental study of applying ELPIDSO to the parameter identification
of the two-link robot manipulator. Section 4 gives the conclusions and future work.

Analysis and Methods
In this part, we describe the kinetic modeling and identification criterion of two-link robot ma-
nipulator, discuss the stability of ELPIDSO, design a PID controller, depict the ELS and muta-
tion mechanism, and give a full description of the procedure of ELPIDSO in turn.

Kinetic modeling and identification criterion of two-link robot manipulator
The Lagrangian method may be used to derive the following kinetic equation of kinematic
chains of rigid bodies [21, 22]

Hðq; lÞ€q þCðq; _q; lÞ _q þGðq; lÞ ¼ t; ð1Þ
which expresses, for an n-degree-of-freedom robot, the n-vector of actuator torques τ as a func-
tion of the n-vectors of the joint positions q, velocities _q, and accelerations €q as well as the bary-
centric parameters λ of the model. In Eq (1),H(q,λ) is the n × n inertia matrix,Cðq; _q; lÞ is
the n × n Coriolis and centrifugal matrix, and G(q,λ) represents gravitational torques.H(q,λ),
Cðq; _q; lÞ, and G(q, λ) are nonlinear functions of the model parameters λ which include the
mass, center-of-gravity location, and moments and products of inertia of each link. The actua-
tor torques τ is also expressed by the following equation

t ¼ Yðq; _q; €qÞl; ð2Þ
which is linear in the unknown parameters. In Eq (2)), λ is the barycentric parameter vector,
and Yðq; _q; €qÞ is the observation or identification matrix which depends only on the motion
data. This property simplifies the parameter estimation considerably. The barycentric parame-
ters of a link are combinations of the inertial parameters of the link and its descendants in the
kinematic chain. In general, a robot manipulator with multi-link is better than that with single
link because it has multi-joints and is more stable in practice.
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In particular, for a 2-degree-of-freedom robot manipulator as shown in Fig 1 [23, 24],H
(q,λ),Cðq; _q; lÞ, G(q, λ),Yðq; _q; €qÞ and λ are deduced respectively

Hðq; lÞ ¼ ½H11;H12;H21;H22�;

Cðq; _q; lÞ ¼ ½C11;C12;C21;C22�;

Gðq; lÞ ¼ ½G11;G21�;

Fig 1. Schematic planar diagram of a two-link robot manipulator with unknown payload.

doi:10.1371/journal.pone.0129157.g001
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Yðq; _q; €qÞ ¼ ½Y11;Y12;Y13;Y14;Y21;Y22;Y23;Y24�;

l ¼ ½a; b; ε; Z�;
whereH11,H12,H21,H22, C11, C12, C21, C22, G11, G21, Y11, Y12, Y13, Y14, Y21, Y22, Y23, Y24, e1, e2,
g, α,β,ε and η are defined as follows,

H11 = α+2εcos(q2)+2ηsin(q2),

H12 = β+εcos(q2)+ηsin(q2),

H21 = β+εcos(q2)+ηsin(q2),

H22 = β,

C11 ¼ ð�2εsinðq2Þ þ 2Zcosðq2ÞÞ _q2 ,
C12 ¼ ð�εsinðq2Þ þ Zcosðq2ÞÞ _q2 ,
C21 ¼ ðεsinðq2Þ � Zcosðq2ÞÞ _q1 ,
C22 = 0,

G11 = εe2 cos(q1+q2)+ηe2 sin(q1+q2)+(α−β+e1)e2 cos(q1)),

G21 = εe2 cos(q1+q2)+ηe2 sin(q1+q2),

Y11 ¼ €q1 þ e2cosðq1Þ,
Y12 ¼ €q2 � e2cosðq1Þ,
Y13 ¼ 2cosðq2Þ €q1 þ cosðq2Þ €q2 � 2sinðq2Þ _q2 _q1 � sinðq2Þ _q2 _q2 þ e2cosðq1 þ q2Þ,
Y14 ¼ 2sinðq2Þ €q1 þ sinðq2Þ €q2 þ 2cosðq2Þ _q2 _q1 þ cosðq2Þ _q2 _q2 þ e2sinðq1 þ q2Þ,
Y21 = 0,

Y22 ¼ €q1 þ €q2 ,

Y23 ¼ cosðq2Þ €q1 þ sinðq2Þ _q1 _q1 þ e2cosðqþq2Þ,
Y24 ¼ sinðq2Þ €q1 � cosðq2Þ _q1 _q1 þ e2sinðqþq2Þ,
e1 ¼ m1l1lc1 � I1 �m1l

2
1 , e2 = g/l1, g is the gravitational acceleration,

a ¼ I1 þm1l
2
c1 þ Ie þmel

2
ce þmel

2
1 , b ¼ Ie þmel

2
ce, ε =me l1 lce cos(δe) and η =me l1 lce sin(δe).

SinceYðq; _q; €qÞ is highly nonlinear and the parameters in λ are linearly independent, some
effective approaches like LS, GA, SPSO and so on are often used for identifying the barycentric
parameter vector λ. During the course of the parameter estimation, the identification criterion
function is generally defined below

E ¼
XN
i¼1

1

2
ðti � t̂iÞTðti � t̂iÞ; ð3Þ

where N is the number of testing samples, τi is the measured torque value of the ith testing sam-
ple, and t̂i is the estimated prediction torque value of the ith testing sample.

Analyzing the stability of ELPIDSO and designing a PID controller
PSO is a stochastic population-based algorithm which is modeled on the behaviors of insects
swarming, animals herding, birds flocking, and fish schooling where these swarms search for
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food in a collaborative manner, and it was originally introduced by Kennedy and Eberhart in
1995 [25, 26]. It is usually used for the optimization of continuous nonlinear systems. Since
PSO uses a simple swarm emulating mechanism to guide the particles to search for globally op-
timal solutions and performs easily, it has succeed in solving many real-world optimization
problems [27–42].

Similar to other evolutionary computation algorithms, the SPSO algorithm also shares a
population-based iterative evolution technique. Hence, it can computationally be inefficient as
measured by the number of function evaluations (FEs) required. Moreover, it may easily get
trapped in the local optimum when solving complex multimodal problems. In order to im-
prove the performance of the SPSO algorithm and achieve the specific goals of accelerating
convergence speed and avoiding local optima, a number of variants of the SPSO algorithm
have been proposed so far in spite of being difficult to simultaneously demonstrate these expec-
tations. We herein bring forward a novel PSO approach called ELPIDSO.

SPSO is a kind of typically stochastic standard algorithm to search for the best solution by
simulating the movement of the flocking of birds or fish. It works by initializing a flock of birds
or fish randomly over the searching space, where each bird or fish is called a “particle”. These
particles fly with certain velocities and find the global best position after some generations. At
each generation, they are dependent on their own momentum and the influence of their own
local and global best positions xlbest and xgbest to adjust their own next velocity v and position x
to move in turn. SPSO is clearly depicted as follows

vðt þ 1Þ ¼ opso � vðtÞ þ c1 � rand1 � ðxlbest � xðtÞÞ þ c2 � rand2 � ðxgbest � xðtÞÞ; ð4Þ

xðt þ 1Þ ¼ vðt þ 1Þ þ xðtÞ; ð5Þ

where ωpso,c1 and c2 denote the inertia weight coefficient, cognitive coefficient and social coeffi-
cient, respectively, and rand1,rand2 are both random values between 0 and 1. Besides, v is
clamped to a given range [-vmax,+vmax].

Adjusting Eqs (4) and (5) to Eqs (6) and (7)

vðt þ 1Þ � vðtÞ ¼ ðopso � 1Þ � vðtÞ � ðc1 � rand1 þ c2 � rand2Þ � xðtÞ
þ ðc1 � rand1 � xlbest þ c2 � rand2 � xgbestÞ;

ð6Þ

xðt þ 1Þ � xðtÞ ¼ vðt þ 1Þ
¼ opso � vðtÞ � ðc1 � rand1 þ c2 � rand2Þ � xðtÞ

þ ðc1 � rand1 � xlbest þ c2 � rand2 � xgbestÞ:
ð7Þ

Supposing ϕ1 = c1 � rand1, ϕ2 = c2 � rand2, ϕ = c1 � rand1+c2 � rand2 and y ¼ �2
�
, Eqs (6) and

(7) can be transformed into the following differential evolutionary SPSO Eqs (8) and (9) since
vðt þ 1Þ � vðtÞ � dv

dt
and xðt þ 1Þ � xðtÞ � dx

dt

dv
dt

� ðopso � 1Þ � vðtÞ � � � xðtÞ þ ð�1 � xlbest þ �2 � xgbestÞ; ð8Þ

dx
dt

� opso � vðtÞ � � � xðtÞ þ ð�1 � xlbest þ �2 � xgbestÞ: ð9Þ
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Provided the initial outsets V(0)� 0 and X(0)� 0, the following formulae are obtained
after the Laplace transformation of differential evolutionary SPSO equations

VðsÞ � s
sþ 1

� XðsÞ; ð10Þ

XðsÞ � �1 � ðsþ 1Þ
s2 þ s � ð1� opso þ �Þ þ �

� XlbestðsÞ þ
�2 � ðsþ 1Þ

s2 þ s � ð1� opso þ �Þ þ �
� XgbestðsÞ

¼ �1 � ðsþ 1Þ
s � ðsþ 1� opsoÞ

� ðXlbestðsÞ � XðsÞÞ þ �2 � ðsþ 1Þ
s � ðsþ 1� opsoÞ

� ðXgbestðsÞ � XðsÞÞ

¼ � � ðsþ 1Þ
s � ðsþ 1� opsoÞ

� ððð1� yÞ � XlbestðsÞ þ y � XgbestðsÞÞ � XðsÞÞ:

ð11Þ

Supposing GðsÞ ¼ ��ðsþ1Þ
s�ðsþ1�opsoÞ, the closed-loop transfer function for the input X(s) and the

combination output of Xlbest(s) and Xgbest(s) is the following formula (12)

XðsÞ
ðð1� yÞ � XlbestðsÞ þ y � XgbestðsÞÞ

¼ GðsÞ
1þ GðsÞ : ð12Þ

Provided Xlbest(s) = Xgbest(s), Eq (12) is changed into Eq (13)

XðsÞ
XgbestðsÞ

¼ GðsÞ
1þ GðsÞ : ð13Þ

Thus, the evolutionary relationship between the position X(s) and its global best position
Xgbest(s) in a closed-loop scheme is displayed in Fig 2. It clearly illustrates their evolutionary re-
lationship which denotes a second order transfer function. In order to advance the evolutionary
relationship, we add one PID controller between Xgbest(s) and X(s) as in Fig 2, where the PID
controller is expressed by Eq (14) [43]

GPIDðsÞ ¼ kp þ
ki
s
þ kd � s ð14Þ

and appears in the dashed framework.
Accordingly, we obtain the following formula (15)

XðsÞ
XgbestðsÞ

¼ GPIDðsÞ � GðsÞ
1þ GPIDðsÞ � GðsÞ

: ð15Þ

Fig 2. The relationship between the position and the global best position.

doi:10.1371/journal.pone.0129157.g002

An Improved Method for Parameter Identification of Robot Manipulators

PLOS ONE | DOI:10.1371/journal.pone.0129157 June 3, 2015 8 / 25



The corresponding eigenvalue function is expressed below by Eq (16)

1þ GPIDðsÞ � GðsÞ ¼ 0; ð16Þ

namely,

ð1þ kd � �Þ � s3 þ ð1þ kp � �þ kd � �Þ � s2 þ ð�opso þ � � kp þ � � kiÞ � sþ ki � � ¼ 0:

According to Routh-Hurwitz’s stability criterion, the inequalities are obtained below

�opso þ kp � �þ kd � � > 0; ð17Þ

ðk2p þ ki � kp þ kd � kpÞ � �2 þ ðkp � opso � ðkp þ kdÞÞ � �� opso > 0: ð18Þ

On the other hand, the updated X(s) is as follows

XðsÞ ¼ �1 � ðsþ 1Þ � GPIDðsÞ
s � ðsþ 1� opsoÞ

� ðXlbestðsÞ � XðsÞÞ þ �2 � ðsþ 1Þ � GPIDðsÞ
s � ðsþ 1� opsoÞ

� ðXgbestðsÞ � XðsÞÞ

¼ � � ðsþ 1Þ � GPIDðsÞ
s � ðsþ 1� opsoÞ

� ððð1� yÞ � XlbestðsÞ þ y � XgbestðsÞÞ � XðsÞÞ:
ð19Þ

After being combined with Eqs (19) and (10) is presented below

VðsÞ ¼ � � GPIDðsÞ
s � ðsþ 1� opsoÞ

� ððð1� yÞ � XlbestðsÞ þ y � XgbestðsÞÞ � XðsÞÞ: ð20Þ

Thus, Eq (20) is turned into the following time-varying function formula (21) after the in-
verse Laplace Transformation

vðt þ 1Þ ¼ opso � vðtÞ

þ� �
�
ð1� yÞ � kp � ðxlbest � xðtÞÞ þ ki �

Z t

0

ðxlbest � xðtÞÞ � dt þ kd �
dðxlbest � xðtÞÞ

dt

� �

þ y � kp � ðxgbest � xðtÞÞ þ ki �
Z t

0

ðxgbest � xðtÞÞ � dt þ kd �
dðxgbest � xðtÞÞ

dt

� ��
: ð21Þ

Consequently, our proposed ELPIDSO is comprised of Eqs (21) and (5).

Being different from Eq (4) in SPSO, Eq (21) not only includes the proportional terms of
(xlbest−x(t)) and (xgbest−x(t)), but also encompasses their integral terms and derivative terms.
These terms enable ELPIDSO to achieve a proper response, eliminate the steady-state errors,
and improve particles’ evolutionary dynamics simultaneously so that ELPIDSO enhances the
diversity of the swarm and converges fast to the global best position.

Based on the above in-Eqs (17) and (18) and our professional experiences, we design the fol-
lowing three coefficients of the PID controller

kp ¼ eðopso�1Þ� t
MaxT ; ð22Þ

ki ¼ eðopso�1Þ� t
MaxT

1þ eðopso�1Þ� t
MaxT

; ð23Þ

kd ¼ eðopso�1Þ� t
MaxT

� �2
; ð24Þ

where t is the present generation, andMaxT is the maximum generation.
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Concerning the inertia weight coefficient, we adopt the following formula (25) [44]

opso ¼
1

1þ 1:5 � eð�2:6�f Þ ; ð25Þ

where f is supposed to decrease linearly from 1 to 0. In addition, the cognitive coefficient is sup-
posed to decrease linearly from 2 to 0 while the social coefficient is supposed to increase linear-
ly from 0 to 2.

Elitist learning strategy of ELPIDSO
In order to promote the evolutionary process of ELPIDSO, we adopt an ELS to help particles
perform comprehensive learning from their own local and neighboring best positions, and
other local best positions. It is evident that particles are easily trapped into local optima after
some certain iterations. Therefore, we depend on a learning probability Pci which can take dif-
ferent values for different particles to enable each dimension of a specific local best particle to
learn from the same dimension of an elitist particle from either itself or the hybridization of the
local best particles of the population. If a generated random number is larger than Pci, the cor-
responding dimension will learn from itself; Otherwise, it will learn from the another elitist
particle from the better one of two randomly chosen hybridizers of the local best particles. The
tournament selection procedure of the another elitist particle is as follows. We first randomly
choose two hybridizers from the local best particles. These hybridizers can generate new posi-
tions in the search space using the information derived from different local best particles’ his-
torical positions. Then we compare their fitness values and select the better one as the another
elitist particle. We repeat the same operation on every dimension of the specific local best parti-
cle. As a result, the specific local best position has improved a lot by the ELS. And Eq (21) of
ELPIDSO gets more robust and adaptive since the diversity of the population is obviously en-
hanced. The aforementioned learning probability Pci for the ith particle is empirically devel-
oped below [45]

Pci
¼ 0:0þ ð0:5� 0:0Þ

e
5 � ði� 1Þ
PN � 1 � 1

� �

ðe5 � 1Þ ;
ð26Þ

where PN is the number of particles.

Mutation of ELPIDSO
It has been observed that the normal PSO is easily stagnated in local optimum because of the
lack of diversity of the population. Thus, particles remain in a local optimum for unpredictable
generations. In order to increase search diversity and avoid getting trapped in local optimum,
many leaping-out mechanisms are proposed [44–48]. However, the performance can be affect-
ed by many factors and is hard to predict after introducing the leaping-out algorithms.

In ELPIDSO, we first randomly select the local best particle (xlbest(k)) out of the population.
If it is not the global best particle (xgbest), we randomly choose one dimension (j) from the se-

lected particle, whose position is xjlbestðkÞ and velocity vector is vjlbestðkÞ. Thereafter, we use
xjlbestðkÞ to replace the same dimension (j) of the global best particle as a temporary global best
particle (xgbest0). Otherwise, we use the following equation

xjlbestðkÞ þ ðxjmax � xjminÞ � Gaussianðm; s2Þ ð27Þ

to do it, where the search range ½xjmin; x
j
max� is the same as the lower and upper bounds of the

An Improved Method for Parameter Identification of Robot Manipulators

PLOS ONE | DOI:10.1371/journal.pone.0129157 June 3, 2015 10 / 25



problem, and the Gaussian(μ,σ2) is a random number of a Gaussian distribution with a zero
mean μ and a standard deviation σ. Similar to some time-varying neural network training
schemes, it is suggested that σ be linearly decreased with the generation number, which is
given by

s ¼ 1� t=MaxT; ð28Þ
where t is the present generation andMaxT is the maximum generation. Next, we compare the
fitness(xgbest) with the fitness(xgbest0). If the fitness(xgbest)> the fitness(xgbest0), the position of

the global best particle in the dimension j is moved to xjgbest0 and its updated fitness(xgbest) value

is equal to the fitness(xgbest0).

Procedure of ELPIDSO
Consequently, based on the aforementioned contexts, our proposed ELPIDSO can be depicted
below in detail.

Step 1: Initialize parameters including the number PN of particles, dimensional size D of
each particle, maximum generation numberMaxT, initial position x and velocity v of each par-
ticle, inertia weight coefficient wpso, cognitive coefficient c1, social coefficient c2, and learning
probability Pc. Calculate the initial fitness of each particle, and set the initial local best position
xlbest and global best position xgbest.

Step 2: If the specific local optimal value xlbest(k) does not evolve for some certain iterations,
improve the specific local best position by the above-mentioned ELS. Thereafter, according to
Eqs (22)–(24), calculate the three parameters kp,ki and kd of the PID controller. Then in terms
of Eqs (21) and (5), calculate the next velocity v(k) and position x(k) of each particle. Next, cal-
culate the fitness of each particle, set the local best position xlbest and the global best position
xgbest. Next, update the global best position xgbest with the temporary global best mutation posi-
tion xgbest0 if the fitness(xgbest)> the fitness(xgbest0).

Step 3: Observe if the global best fitness(xgbest) meets the given threshold or not, or observe
if the maximum generation numberMaxT reaches or not. If not, go back to Step 2.

Step 4: Otherwise, the operation can be terminated. Finally, output the global best position
xgbest, and its corresponding global best fitness as well as convergent generation number.

The pseudo-code for ELPIDSO is presented below in Algorithm 1.

Experimental Study and Results
In this part, we conduct a detailed experimental study to identify the parameters of a two-link
robot manipulator. The experiment includes the design of the identification procedure, de-
scription of the experimental setup, parameter estimation and experimental results as well as
model validation and discussion.

Design of identification procedure
Fig 3 gives the schematic representation of our experimental robot identification procedure.
Note that prior to the identification, the kinematic and geometric information of the robot ma-
nipulator and model accuracy specifications are necessarily available because these information
determines choices to be made in the procedure. Model accuracy specifications determine the
model type to be used and the level of the dynamics to be included in the model. The last step
of the identification procedure is the model validation, where the users verify if the model satis-
fies the accuracy specifications or not. In our procedure, we consider one model validation
measure, namely, the actuator torque estimation accuracy. Being different from other
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experimental robot identification procedures, we introduce ELPIDSO into our experimental
identification procedure and take full advantage of it to estimate the parameters of the two-link
robot manipulator with unknown payload. Moreover, the well-informed methods used in the
identification procedure like LS, GA and PSO are also considered together so as to clarify the
effectiveness and efficiency of ELPIDSO.

Description of experimental setup
The schematic planar structure of the two-link robot manipulator with unknown payload is
shown in Fig 1. There exist four unknown physical parameters to be identified in the combina-
tion part of the second joint and payload which include the massme, moment of inertia Ie, dis-
tance lce from the massive center to the second joint, and angle δe between the massive centric
line and the second link. For the sake of the comparison to the experimental results, these real
parameters are presented in Table 1. As a result, λ is calculated below λ =
[6.7333;3.4000;3.0000;0].

Fig 3. Identification procedure of a two-link robot manipulator with unknown payload.

doi:10.1371/journal.pone.0129157.g003
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During the parameter identification, the reference torque trajectories τ1 = 0.1sin(2ρπt), τ2 =
0.1cos(2ρπt) (ρ = 0.25,0.5,1.0,2.0,4.0,5.0,5.5,6.0) are used to collect the corresponding measured
data from the identified system model. The former five reference torque trajectories are pre-
pared for the parameter estimation and the later three ones for the estimation validation.

Algorithm 1 ELPIDSO

1: /�initialize the swarm�/
2: for i = 1! PN do
3: create particle pi with dimension D, velocity vi and position xi from 1 to
PN
4: set xlbest(i) = xi

5: calculate fitness(xi)
6: end for
7: set xgbest = best(xlbest(i))
8: calculate inertia coefficient wpso, cognitive coefficient c1 and social

coefficient c2
9: set maximum generation number MaxT and learning probability Pc
10: /�update velocity and position with an evolutionary PID style strategy�/
11: for t = 1! MaxT do
12: calculate PID controller parameters: kp,ki and kd
13: for i = 1! PN do
14: �/improve local best position at a given generation�/
15: if repeat_num(i) > = 5 then
16: set repeat_num(i) = 0, f_pbest(i,:) = i. � ones(1,D)
17: set fi1 = ceil(PN � rand(1,D)), fi2 = ceil(PN � rand(1,D))
18: set fi = (fitness(fi1) < fitness(fi2)).�fi1+(fitness(fi1) > = fit-

ness(fi2)).�fi2
19: set bi = ceil(rand(1,D)−1+Pc(i))
20: if bi == zeros(1,D) then
21: set rc = randperm(D), bi(rc(1)) = 1
22: end if
23: set f_pbest(i,:) = bi.�fi+(1−bi).�f_pbest(i,:)
24: end if
25: for dimcnt = 1! D do
26: set xlbest(i,dimcnt) = xlbest(f_pbest(i,dimcnt),dimcnt)
27: end for
28: calculate velocity vi and position xi, according to Eqs (21) and (5)
29: if fitness(xi) < fitness(xlbest(i)) then
30: set xlbest(i) = xi
31: else
32: set repeat_num(i) = repeat_num(i)+1
33: end if
34: if fitness(xlbest(i)) < fitness(xgbest) then
35: set xgbest = xlbest(i)
36: /�mutation of xgbest

�/
37: randomly select k between 1 and PN
38: set xgbest0 = xgbest

Table 1. Real physical parameters of a two-link robot manipulator with unknown payload.

m1 l1 lc1 I1 me lce Ie δe e1 e2

1kg 1m 1/2m 1/12kg 3kg 1m 2/5kg 0 -7/12 9.81

doi:10.1371/journal.pone.0129157.t001
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39: if k! = i then
40: randomly select j between 1 and D, and crossover between xjgbest0 and

xjlbestðkÞ
41: else
42: calculate standard deviation σ, randomly select j between 1 and

D, and crossover between xjgbest0 and Eq (27)

43: end if
44: if fitness(xgbest) < fitness(xgbest0) then
45: set xjgbest0 ¼ xjgbest
46: end if
47: set xgbest = xgbest0

48: end if
49: end for
50: /�operation termination�/
51: if goal threshold or maximum generation number MaxT reaches then
52: break
53: end if
54: end for
55: output results

In order to evaluate the performance of ELPIDSO, we compare four state-of-the-art evolu-
tionary optimization algorithms including our proposed ELPIDSO, LS, GA and SPSO by identi-
fying the parameters of the two-link robot manipulator with unknown payload. The identified
result λ of LS is acquired by Eq (29)

l ¼ ðYTYÞ�1YTt: ð29Þ

The four dimensional (4-D) parameters α,β,ε and η in the barycentric parameter vector λ
are retrieved around the ranges [0, 10], [0, 5], [0, 5] and [0, 5], respectively. For GA, SPSO and
ELPIDSO, population size PN is set at 20, maximum generation numberMaxT is set at 15000.
As is known, with the increase of population size, the median convergence characteristics of di-
verse evolutionary optimization algorithms for 4-D identification problem becomes faster.
However, there is no obvious change on the final mean parametric results of diverse evolution-
ary optimization algorithms for 4-D identification problem. Their settings of other important
parameters are summarized in Table 2. The above-mentioned identification criterion function
is regarded as the fitness function.

Parameter estimation and experimental results
We wish to test LS, GA, SPSO and ELPIDSO on the above specific fitness function with 4-D pa-
rameters α,β,ε and η for identifying the parameters of the two-link robot manipulator. To en-
sure the validation and accuracy of the experimental measurements, all evolutionary
optimization algorithms are run 10 times on the fitness function and their final results are

Table 2. Parameters settings for involved evolutionary optimization algorithms.

Name Inertia Weight Acceleration Coefficients and Others

GA SP = 30 CP = 0.80 MP = 0.10

SPSO wpso(t) = 0.729 c1(t) = c2(t) = 1.49445

ELPIDSO wpsoðtÞ ¼ 1
1þ1:5�eð�2:6�fÞ fðtÞ ¼ 1� t

MaxT c1ðtÞ ¼ 2:0� 2:0�t
MaxT c2ðtÞ ¼ 2:0�t

MaxT kp ¼ eðwpso�1Þ� t
MaxTki ¼ eðwpso�1Þ� t

MaxT

1þeðwpso�1Þ� t
MaxT

kd ¼ ½eðwpso�1Þ� t
MaxT �2

doi:10.1371/journal.pone.0129157.t002
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counted in the mean best fitness. The mean values, standard deviation of the results, and the
best values are presented in tables below. When the 4-D identification problem is solved, the
population size is set at 20 and the maximum FEs is set at 300,000. And in order to determine
whether the results obtained by ELPIDSO are statistically different from the results generated
by other evolutionary optimization algorithms, the nonparametric Wilcoxon rank sum tests
are conducted between the ELPIDSO’s result and the result achieved by other evolutionary opti-
mization algorithms for the fitness function. The h_t-tests presented in the last column of ta-
bles below are the results of t-tests. An h_t-tests of 1 indicates that the performances of the two
comparative optimization algorithms are statistically different with 95% certainty, whereas an
h_t-tests of 0 implies that the performances are not statistically different.

Table 3 presents the means and variances of the 10 runs of the four evolutionary optimiza-
tion algorithms on the above specific fitness function with its dimension 4 when ρ = 0.25.
Table 4 presents the means and variances of the 10 runs of the four evolutionary optimization
algorithms on the above specific fitness function with its dimension 4 when ρ = 0.5. Table 5
presents the means and variances of the 10 runs of the four evolutionary optimization algo-
rithms on the above specific fitness function with its dimension 4 when ρ = 1.0. Table 6 pres-
ents the means and variances of the 10 runs of the four evolutionary optimization algorithms
on the above specific fitness function with its dimension 4 when ρ = 2.0. Table 7 presents the
means and variances of the 10 runs of the four evolutionary optimization algorithms on the
above specific fitness function with its dimension 4 when ρ = 4.0. Table 8 presents the final
means and variances of the 10 runs of the four evolutionary optimization algorithms on the
above specific fitness function with its dimension 4 when ρ = 0.25−4.0. The best results among
the evolutionary optimization algorithms are shown in bold in Tables 3, 4, 5, 6, 7 and 8. Fig 4
presents the convergence characteristics in terms of the best fitness value of the median run of
diverse evolutionary optimization algorithms for the above specific fitness function with its di-
mension 4. The results of the proposed ELPIDSO are depicted by solid plus circle lines in Fig 4.

From the results in Tables 3, 4, 5, 6, 7 and 8, we clearly notice that for a certain reference tra-
jectory with a fixed ρ, although the identification precisions of GA, SPSO are greatly superior

Table 3. Results of diverse evolutionary optimization algorithms for 4-D identification problemwhen ρ = 0.25.

Results LS GA SPSO ELPIDSO h_t-tests

fitness Mean 175.9089 0.0043 7.3845e-006 4.5907e-030 1

Std. Dev 0 0.0041 4.6353e-006 0

Best 175.9089 1.9031e-004 2.3581e-006 4.5907e-030

α Mean 6.7471 6.3621 6.7272 6.7333

Std. Dev 0 0.5280 0.0260 0

Best 6.7471 6.3829 6.7264 6.7333

β Mean 3.3442 3.2138 3.3971 3.4000

Std. Dev 0 0.2667 0.0128 0

Best 3.3442 3.2231 3.3974 3.4000

ε Mean 2.9911 2.8370 2.9967 3.0000

Std. Dev 0 0.2354 0.0101 0

Best 2.9911 2.8439 3.0011 3.0000

η Mean 0.1841 0.0003 0 0

Std. Dev 0 0.0003 0 0

Best 0.1841 0.0000 0 0

doi:10.1371/journal.pone.0129157.t003
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to those of LS in the course of identifying the parameter η, they exhibit worse results than LS
with respect to identifying other three parameters α,β and ε. In addition, SPSO yields the com-
paratively better results than GA on estimating the four parameters. More importantly,
ELPIDSO performs best for all the parameter estimation. With the increase of ρ from 0.25 to
4.0, SPSO still achieves better estimated results than GA whilst ELPIDSO is the best one of all
the four evolutionary algorithms for the parameter estimation. From the graphs in Fig 4, one
may observe that the mean fitness of LS is the worst one of all is evident. The fact reveals LS’ in-
feriority to other three evolutionary algorithms for the whole parameter identification. On the
other hand, it is worth noting that compared to SPSO, ELPIDSO has improved a lot.

Table 5. Results of diverse evolutionary optimization algorithms for 4-D identification problemwhen ρ = 1.0.

Results LS GA SPSO ELPIDSO h_t-tests

fitness Mean 193.9632 0.0023 1.5972e-005 5.4782e-030 1

Std. Dev 0 0.0015 7.7840e-006 0

Best 193.9632 4.1902e-004 6.1376e-006 5.4782e-030

α Mean 6.7336 6.0217 6.7453 6.7333

Std. Dev 0 0.4787 0.0605 0

Best 6.7336 6.7095 6.7676 6.7333

β Mean 3.3580 3.0337 3.4058 3.4000

Std. Dev 0 0.2469 0.0308 0

Best 3.3580 3.3884 3.4174 3.4000

ε Mean 2.9991 2.6480 3.0050 3.0000

Std. Dev 0 0.2363 0.0281 0

Best 2.9991 2.9875 3.0146 3.0000

η Mean -0.1936 0.0001 0 0

Std. Dev 0 0.0001 0 0

Best -0.1936 0.0000 0 0

doi:10.1371/journal.pone.0129157.t005

Table 4. Results of diverse evolutionary optimization algorithms for 4-D identification problemwhen ρ = 0.5.

Results LS GA SPSO ELPIDSO h_t-tests

fitness Mean 78.1332 0.0078 8.7261e-006 5.6011e-030 1

Std. Dev 0 0.0057 5.8100e-006 0

Best 78.1332 6.8916e-004 2.3872e-006 5.6011e-030

α Mean 6.7315 5.8518 6.7101 6.7333

Std. Dev 0 0.7584 0.0227 0

Best 6.7315 5.8790 6.7221 6.7333

β Mean 3.4061 2.9551 3.3880 3.4000

Std. Dev 0 0.3824 0.0111 0

Best 3.4061 3.5916 3.4046 3.4000

ε Mean 3.0015 2.6089 2.9891 3.0000

Std. Dev 0 0.3360 0.0101 0

Best 3.0015 3.1679 3.0045 3.0000

η Mean 0.1227 0.0001 0 0

Std. Dev 0 0.0001 0 0

Best 0.1227 0.0000 0 0

doi:10.1371/journal.pone.0129157.t004
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Model validation and discussion
To verify the estimation results of the four evolutionary algorithms, the three different refer-
ence trajectories with ρ = 5.0,5.5 and 6.0 are applied to the procedure of the parameter identifi-
cation of the two-link robot manipulator. The concrete results of the verification experiments
are presented in Figs 5, 6 and 7. Fig 5 presents the measured torque and estimated torques by
diverse evolutionary optimization algorithms on the two joints and their torque errors when ρ
= 5.0. Fig 6 presents the measured torque and estimated torques by diverse evolutionary opti-
mization algorithms on the two joints and their torque errors when ρ = 5.5. Fig 7 presents the
measured torque and estimated torques by diverse evolutionary optimization algorithms on

Table 7. Results of diverse evolutionary optimization algorithms for 4-D identification problemwhen ρ = 4.0.

Results LS GA SPSO ELPIDSO h_t-tests

fitness Mean 1.9673e+003 0.0024 2.1808e-005 8.9813e-030 1

Std. Dev 0 0.0021 1.7475e-005 0

Best 1.9673e+003 3.4842e-004 2.3836e-006 8.9813e-030

α Mean 6.7357 6.4819 6.7135 6.7333

Std. Dev 0 0.9008 0.0657 0

Best 6.7357 6.4690 6.7145 6.7333

β Mean 3.4008 3.2708 3.3895 3.4000

Std. Dev 0 0.4637 0.0336 0

Best 3.4008 3.2643 3.4119 3.4000

ε Mean 2.9966 2.8766 2.9892 3.0000

Std. Dev 0 0.4397 0.0318 0

Best 2.9966 2.8705 3.0086 3.0000

η Mean 0.6159 0.0001 0 0

Std. Dev 0 0.0001 0 0

Best 0.6159 0.0000 0 0

doi:10.1371/journal.pone.0129157.t007

Table 6. Results of diverse evolutionary optimization algorithms for 4-D identification problemwhen ρ = 2.0.

Results LS GA SPSO ELPIDSO h_t-tests

fitness Mean 44.2745 0.0327 5.8134e-005 2.7973e-029 1

Std. Dev 0 0.0255 2.8113e-005 0

Best 44.2745 0.0029 2.3677e-005 2.7973e-029

α Mean 6.7401 4.0765 6.6486 6.7333

Std. Dev 0 1.4481 0.0268 0

Best 6.7401 6.1652 6.6897 6.7333

β Mean 3.4217 2.0402 3.3570 3.4000

Std. Dev 0 0.7415 0.0141 0

Best 3.4217 3.1097 3.3784 3.4000

ε Mean 3.0018 1.7695 2.9602 3.0000

Std. Dev 0 0.6707 0.0134 0

Best 3.0018 2.7364 2.9808 3.0000

η Mean 0.0926 0.0003 0 0

Std. Dev 0 0.0002 0 0

Best 0.0926 0.0000 0 0

doi:10.1371/journal.pone.0129157.t006
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the two joints and their torque errors when ρ = 6.0. Note that the logarithmic coordinates in Y
axis are used in Figs 5(b), 5(d), 6(b), 6(d), 7(b) and 7(d) so as to highlight the discrepancies of
the estimated torque errors by diverse evolutionary optimization algorithms on the two joints.

In general, two kinds of accumulated errors are used to determine which evolutionary algo-
rithms produce more accurate estimation results. One is called absolute accumulated error
(Ea), and another is called relative accumulated error (Er). They are defined as follows

Ea ¼
XN
i¼1

jti � t̂i j; ð30Þ

Er ¼
EaPN

i¼1 jti � t̂i j
; ð31Þ

where N is the number of testing samples, τi is the measured torque value of the ith testing sam-

ple, t̂i is the estimated prediction torque value of the ith testing sample, and �̂ti is the average of
the estimated prediction torque values of the ith testing sample.

So we may calculate the results and obtain their corresponding relative accumulated errors
of estimated torques by diverse evolutionary optimization algorithms on the two joints in
Table 9. The best results among the evolutionary optimization algorithms are shown in bold in
Table 9.

As seen in Figs 5(a), 6(a) and 7(a), although the trajectories of estimated torques on the
joint 1 by LS, GA, SPSO and ELPIDSO all approximate the measured torque trajectory, there
exist different absolute errors among these estimated trajectories. From the graphs in Figs 5(b),
6(b) and 7(b), one may find that the absolute errors of the trajectories of estimated torques on
the joint 1 by ELPIDSO is smallest while the ones of the trajectories of estimated torques on the
joint 1 by LS are biggest. In addition, SPSO produces more accurate estimation results than
GA. Likewise, from the graphs in Figs 5(b), 5(d), 6(b), 6(d), 7(b) and 7(d), there are similar re-
sults on the trajectories of estimated torques on the joint 2. The relative accumulated errors of
estimated torques are given in Table 9. As given in Table 9, it is obvious that ELPIDSO yields
the best estimation results while SPSO performs comparatively worse. The estimation results

Table 8. Final mean results of diverse evolutionary optimization algorithms for 4-D identification problemwhen ρ = 0.25−4.0.

Results LS GA SPSO ELPIDSO

α Mean 6.7376 5.7588 6.7089 6.7333

Std. Dev 0.0062 0.9740 0.0365 0

Best 6.7336 6.4819 6.7272 6.7333

β Mean 3.3862 2.9027 3.3875 3.4000

Std. Dev 0.0333 0.4990 0.0184 0

Best 3.4008 3.2708 3.3971 3.4000

ε Mean 2.9980 2.5480 2.9880 3.0000

Std. Dev 0.0044 0.4504 0.0169 0

Best 3.0015 2.8766 2.9967 3.0000

η Mean 0.1153 0.0002 0 0

Std. Dev 0.3193 0.0001 0 0

Best 0.0926 0.0001 0 0

doi:10.1371/journal.pone.0129157.t008
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by GA are worse than those by SPSO, but better than those by LS. Despite of these, all the evo-
lutionary algorithms can be utilized to estimate the parameters of robot manipulators.

Conclusions and Future Work
In order to identify the parameters of robot manipulators, we present a novel variant with a
time varying PID controller of particle swarm optimizers called ELPIDSO, where we attempt to
use a PID controller and an elitist learning strategy to improve the performance of SPSO. Suc-
cessively, ELPIDSO, together with LS, GA and SPSO, is used in the parameter identification of
robot manipulators. The experimental results illustrate that due to the fact that the PID con-
troller improves the particles’ local and global best positions information, our proposed

Fig 4. Themedian convergence characteristics of diverse evolutionary optimization algorithms for 4-D identification problem above. (a) ρ = 0.25.
(b) ρ = 0.5. (c) ρ = 1.0. (d) ρ = 2.0. (e) ρ = 4.0.

doi:10.1371/journal.pone.0129157.g004
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Fig 5. Themeasured torque and estimated torques by diverse evolutionary optimization algorithms on the two joints and their torque errors when
ρ = 5.0. (a) Measured torque and estimated torques on the joint 1. (b) Estimated torque errors on the joint 1. (c) Measured torque and estimated torques on
the joint 2. (d) Estimated torque errors on the joint 2.

doi:10.1371/journal.pone.0129157.g005
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Fig 6. Themeasured torque and estimated torques by diverse evolutionary optimization algorithms on the two joints and their torque errors when
ρ = 5.5. (a) Measured torque and estimated torques on the joint 1. (b) Estimated torque errors on the joint 1. (c) Measured torque and estimated torques on
the joint 2. (d) Estimated torque errors on the joint 2.

doi:10.1371/journal.pone.0129157.g006
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Fig 7. Themeasured torque and estimated torques by diverse evolutionary optimization algorithms on the two joints and their torque errors when
ρ = 6.0. (a) Measured torque and estimated torques on the joint 1. (b) Estimated torque errors on the joint 1. (c) Measured torque and estimated torques on
the joint 2. (d) Estimated torque errors on the joint 2.

doi:10.1371/journal.pone.0129157.g007
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ELPIDSO has good convergence efficiency and enhances the diversity of the swarm in compari-
son to SPSO. Furthermore, ELPIDSO outperforms LS, GA and SPSO in the parameter identifi-
cation of robot manipulators and is regarded as a more effective tool for the future system
identification in real practice.

Future work will further the elitist learning ability of ELPIDSO and the performances of PID
controllers. Moreover, we will apply the proposed ELPIDSO to practical engineering
applications.
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