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Background: Gliomas are the most common and aggressive tumors of the central
nervous system. A robust and widely used blood-based biomarker for glioma has not yet
been identified. In recent years, a plethora of new research on blood-based biomarkers for
glial tumors has been published. In this review, we question which molecules, including
proteins, nucleic acids, circulating cells, and metabolomics, are most promising blood-
based biomarkers for glioma diagnosis, prognosis, monitoring and other purposes, and
align them to the seminal processes of cancer.

Methods: The Pubmed and Embase databases were systematically searched.
Biomarkers were categorized in the identified biomolecules and biosources. Biomarker
characteristics were assessed using the area under the curve (AUC), accuracy, sensitivity
and/or specificity values and the degree of statistical significance among the assessed
clinical groups was reported.

Results: 7,919 references were identified: 3,596 in PubMed and 4,323 in Embase.
Following screening of titles, abstracts and availability of full-text, 262 articles were
included in the final systematic review. Panels of multiple biomarkers together
consistently reached AUCs >0.8 and accuracies >80% for various purposes but
especially for diagnostics. The accuracy of single biomarkers, consisting of only one
measurement, was far more variable, but single microRNAs and proteins are generally
more promising as compared to other biomarker types.

Conclusion: Panels of microRNAs and proteins are most promising biomarkers, while
single biomarkers such as GFAP, IL-10 and individual miRNAs also hold promise. It is
possible that panels are more accurate once these are involved in different,
complementary cancer-related molecular pathways, because not all pathways may be
dysregulated in cancer patients. As biomarkers seem to be increasingly dysregulated in
patients with short survival, higher tumor grades and more pathological tumor types, it can
be hypothesized that more pathways are dysregulated as the degree of malignancy of the
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glial tumor increases. Despite, none of the biomarkers found in the literature search seem
to be currently ready for clinical implementation, and most of the studies report only
preliminary application of the identified biomarkers. Hence, large-scale validation of
currently identified and potential novel biomarkers to show clinical utility is warranted.
Keywords: diagnostics, liquid biopsy, blood, glioblastoma, glioma
INTRODUCTION

Gliomas, and especially glioblastomas, are one of the most
devastating primary tumors of the central nervous system with
a dismal prognosis. Definite diagnosis of the disease is
particularly dependent on tumor tissue assessment, though
repetitive collection of tumor tissue to track tumor molecular
evolution and/or tumor progression and regression is not
desired. Part of such follow-up monitoring can be done via
(advanced) imaging techniques. Also, the past years a plethora of
research has been published in which blood-based biomarkers
for glioma were utilized with various purposes. This is in line
with the upcoming field of so-called ‘liquid biopsies’ in other
(solid) tumor types. Blood-based biomarkers were found to be
helpful as (early) diagnostic markers, including tumor grade and
brain disease differentiating markers, prognostic, predictive, and
monitoring markers (1–3) in glioma patients. Early diagnostic
blood markers are biomarkers that can be utilized to predict
development of glioma in individuals years before clinical or
radiological signs can be noticed. These markers may be useful to
screen patients with familial disorders such as neurofibromatosis
type I, Li–Fraumeni syndrome and others that are at risk of
development of a glioma (4). The term ‘diagnostic marker’ in this
systematic review implies markers that were used to differentiate
between healthy individuals and glioma patients. The terms
‘tumor grade and brain disease/tumor type-differentiating
markers’ are employed to further classify glial tumors in
glioma patients. Predictive markers can be employed to predict
response to therapy and thus aid in correct therapy selection by
examining the expression of histopathological features present in
the glial tumor. Lastly, monitoring markers can be used to
monitor tumor volume or monitor tumor progression as
opposed to pseudoprogression after treatment. Tumor volume
monitoring biomarkers that are stated in this review, were
mainly used to predict tumor volume pre-treatment, but may
also have use as volume monitoring markers after treatment. An
example of how the different biomarker types may be employed
during the clinical course of a typical glioma patient is detailed in
Figure 1. Here, the timing of different biomarker types during
and before treatment of future glioma patients is illustrated,
along a timeline of clinical events in high- and low-grade glioma
patients. Currently, it remains unclear which biomarkers or
which combination of biomarkers will have most clinical
utility. The aim of this systematic review is to identify and
highlight the most promising and well-researched blood-based
biomarkers for patients with glioma. Identification of a novel
biomarker should start with the desired clinical groups to
separate in mind. Distinguishing these groups should have
2

clinical relevance, e.g. monitoring progression of lower-grade
glioma patients to a secondary glioblastoma thereby tailoring
treatment and providing prognostic information, or
identification of patients with glioblastoma on treatment that
develop tumor pseudo-progression as opposed to true-
progression, thereby optimizing treatment schedules. With this,
we believe that a promising biomarker should meet several
criteria. First, the accuracy of the biomarker should be
sufficiently high, measure exactly the difference between the
clinically relevant groups without contribution from
confounding variables, and adjusted towards its clinical
context. For example, a diagnostic biomarker should be very
precise, whereas predictive biomarkers should be very specific In
order to not withhold patients potential therapeutic options.
Second, a biomarker should be resistant to inter- and intra-
individual factors, such as diurnal variation, body temperature,
comorbidities, medication, radiation therapy, exercise, fasting,
sex, and race. Following, the analytical devices that are used to
measure the biomarker should be relatively cheap, easy to
operate, sensitive in determining low concentrations of
biomarker and specific for the biomarker, avoiding false-
positive test results. Lastly, the biomarker should have been
tested in several (preferably independent) studies with large
patient populations, which include independent validation
cohorts. Here, we provide a useful and easily accessible
overview of the studies performed so far, after which we
discuss the most promising markers that may deserve further
validation. The review has been subdivided into several
biosources and biomolecules as illustrated in Figure 2, and will
close with a discussion of this dynamic field.
METHODS

Search Strategy and Study Selection
We conducted systematic searches in the bibliographic databases
PubMed and Embase from inception up to August 7, 2020. The
following terms, including synonyms and closely related words,
as index terms or free-text words were used: “Glioma”, “Blood”,
“Biomarkers”. These were combined with possible purposes of
biomarkers such as prognosis, diagnosis, monitoring and other
related terms. Duplicate articles were excluded. The references of
the identified articles were searched for relevant publications.
The full search strategies for PubMed and Embase can be found
in Supplemental Tables 1 and 2. Three authors independently
screened all potentially relevant titles and abstracts for eligibility.
If necessary, the full-text article was reassessed for the eligibility
criteria. Differences in judgement were resolved through a
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consensus procedure. Studies were included if they met all of the
following criteria: i) Histologically proven glial tumors; ii)
Measured biomarker concentrations in whole blood, serum or
plasma; iii) Correlation of the biomarkers with at least one of the
following: glial tumor diagnosis, glial tumor grade, (glial) tumor
type such as astrocytoma or oligodendroglioma, overall survival
of patients, glial tumor manifestation prior to diagnosis, and
tumor burden; iv) Included measures, such as Area Under the
Curve (AUC), accuracy, hazard ratio (HR), sensitivity, specificity
values and/or the degree of significance using a p-value. We
excluded studies if they i) Reported on biomarkers found in CSF,
tumor tissue or other non-hematogenous fluids such as cyst
fluid; ii) Were of the following publication types: editorials,
letters, interviews, case reports, animal studies, in vitro studies,
pediatric studies, or (systematic) reviews; iii) Did not analyze
biomarker value in a glioma-only (sub)group; iv) Reported on
prognostic biomarkers when patients with glial tumors were
treated with experimental treatments; v) Were published in
Frontiers in Oncology | www.frontiersin.org 3
languages other than English; vi) Described biomarker(s)
which lacked substantial evidence relative to the biomarker
categories. Substantial evidence is quantified as able to
differentiate between clinically relevant groups in at least four
independent studies. The process of retrieving all articles relevant
to our systematic review is summarized in a Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
flowchart (see Figure 3).

Data Extraction and Study
Quality Assessment
Details per study (e.g. biosource and biomolecule), study
population type (e.g. glioma or glioblastoma patients) and
marker clinical group separating ability quantified as AUC,
sensitivity, specificity, accuracy or hazard ratio can be found in
the Supplementary Materials. In the Supplementary Tables,
biomarkers are separated by purpose as diagnostic
(Supplemental Tables 3–5), prognostic (Supplemental Table 6),
FIGURE 1 | Timeline of clinical events for glioma patients and possible blood-based biomarkers that could be employed at different points in time. The straight lines
indicate timelines for two example glioma patients [upper blue line for a lower-grade glioma (LGG) patient, lower red line for a high-grade glioma (HGG) patient].
Clinical events that occur on either timeline are indicated using dots and the clinical events are described in boxes connected to the dots. Early diagnostic markers
have been found more than two decades before glioma diagnosis and could be used as a screening tool in the healthy population for patients older than 50 years.
At the time of clinical or radiological findings that may indicate the growth of a glial tumor, diagnostic, tumor grade and disease differentiating biomarkers may be
used to supplement the diagnostic procedure. Following, surgery (tumor tissue biopsy and/or tumor resection) may be performed, including either tumor resection or
only a tumor tissue biopsy for definite histopathological diagnosis. At this point, the brain tumor is identified as a HGG or LGG. Following discussion of the case in a
multidisciplinary tumor board, treatment may be initiated in patients with more malignant tumor types, while patients with less malignant tumor types may be
subjected to frequent follow-up using monitoring markers and radiological imaging to monitor potential tumor progression. At the moment of tumor progression in
patients with less malignant tumors or directly after surgical resection in patients with malignant tumors, predictive markers may provide additional information on the
potential benefit of adjuvant treatment. Anti-tumor treatment with conventional chemo- and/or radiotherapy (CCR) is currently usually initiated at this point. Monitoring
blood markers can detect tumor volume decrease over time. Patients with complete or partial response can be followed using radiological imaging and monitoring
markers to distinguish between tumor progression or pseudoprogression. Patients with stable disease, progressive disease or tumor progression after complete or
partial response may be admitted for experimental treatments. For each biomarker purpose, several potential blood-based biomarkers are listed aTocopherols;
bmiR-21; cGFAP; dPanels of miRNAs, proteins and metabolites; eIL-10; fNLR; gYKL-40; hF-NLR; iF-NLR-AGR. Figure was adapted from “Cell Transfer Protocol”, by
BioRender.com (2021). Retrieved from: https://app.biorender.com/biorender-templates.
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predictive (Supplemental Table 7), and therapy monitoring
(Supplemental Tables 8 and 9) markers. A separate table with
panels of biomarkers and their potential function has been added
as well (Supplemental Table 10). The summarized methodologies
and results of included studies were used to critically assess the
quality of the included studies. The evaluation of study quality is
discussed in the results section.
RESULTS

Study Selection and Characteristics of
Selected Studies
The literature search generated a total of 7,919 references of
which 3,596 were identified in PubMed and 4,323 in Embase, of
which 262 studies were eligible for inclusion (Figure 3). A
plethora of biomarkers were identified that could differentiate
between clinically relevant patient groups. However, most
markers were only found to be dysregulated in one group as
compared to the other in only one or two studies. Therefore, we
describe in this systematic review only markers that could
differentiate between clinically relevant groups with significant
results in at least four independent studies. We regarded these as
the most promising biomarkers. Many studies did not include
large patient or control populations of >100 patients or any
validation cohort at all. Also, studies often did not report
biomarker accuracies. The markers were divided into four
relevant biomolecule groups: proteins, nucleic acids, circulating
cells and metabolomics, and the most promising markers within
Frontiers in Oncology | www.frontiersin.org 4
these categories are discussed below. Due to word restrictions, we
decided to report on glioma patients in general, and in most cases
not per histopathological subtype separately, though we do
understand that such separation is of clinical importance. The
histopathological classification of gliomas is continuously
developing with implementation of multiple (novel) molecular
tissue markers (4). Hence, in retrospect it is not always possible
to correlate the patients’ diagnoses as provided in the identified
studies to the current standards. We decided to report the
diagnosis as provided in the referenced studies.
PROTEINS AND PEPTIDES

Interleukins
Interleukins (ILs) are a group of cytokine proteins usually
secreted by inflammatory cells by means of inter-inflammatory
cell communication. Interleukins can promote or inhibit
carcinogenesis. It is possible that glial tumors create a
protumor environment by actively secreting (5, 6) and/or
recruiting brain-resident cells such as microglia to stimulate
the secretion of cytokines with pro-tumorigenic functions (7).
Interleukins such as IL-1b (8–12), IL-6 (8–10, 13–17) and IL-10
(8, 10, 13, 18–23) have been found to be increased in glioma
patients compared to healthy individuals. Accuracies of AUC =
0.9-1.0 (13) and a sensitivity 95% and specificity of 85% (19),
have been found. However, IL-1b (21, 24) and IL-6 (21, 22, 25,
26) concentrations were also found to not be changed compared
to controls or even decreased in glioma patients compared to
FIGURE 2 | Overview of possible blood-based biomarkers for glioma and their purposes. Schematic overview of the several biosources (plasma, serum,
extracellular vesicles, blood platelets, circulating immune cells, and circulating glioma tumor cells) and biomolecules (proteins, nucleic acids, metabolomics and
peptides) that are identified for patients with glioma. These biomolecules can be collected in a vial of blood, and employed as a diagnostic, prognostic, predictive, or
therapy monitoring marker. Figure was created with BioRender.com.
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controls. IL-1b (12) and IL-6 (17) levels may also be increased in
patients with higher glioma grades, however other studies could
not find a significant difference in IL-6 concentrations between
patients with higher and lower glioma grades (25–27).
Furthermore, IL-6 (17, 28) and IL-10 (21) have been found to
be correlated with worse survival, but other studies could not
confirm this for IL-6 (14, 25, 29–31). Thus, interleukins may be
potential biomarkers, especially for glioma diagnosis.

S100 Protein Superfamily
Several S100-family members have been reported to contribute
in vivo to tumor growth, metastasis, angiogenesis and immune
invasion (32). Proteins from the S100 protein family including
S100A8, S100A9 and S100B have been found to be increased in
the blood of glioma patients compared to healthy individuals in
multiple studies (33–39). However, it has also been reported that
S100B is not changed in glioma patients compared to controls
(40). Furthermore, it is unclear whether proteins of the S100-
family are correlated with tumor grade (38, 40), tumor volume
(39, 40) and survival (34, 41, 42). The accuracy of the
inflammatory biomarker S100A8 is promising with a diagnostic
AUC of 0.9 in glioblastoma patients (34). Glioblastoma and
anaplastic astrocytoma patients could be differentiated with an
AUC of 0.7 (34).
Frontiers in Oncology | www.frontiersin.org 5
TNF Protein Superfamily
Tumor necrosis factor (TNF) was reported to be a major mediator
of cancer-related inflammation and is elevated in cancer patients
with poor prognosis (43). In vitro studies with glioma cells have
shown that TNF can stimulate angiogenesis, downregulate the
tumor suppressor gene PTEN and increase glioma cell
invasiveness (44). Currently it is unclear whether TNF-alfa and
TNF-beta are increased (9, 10, 14, 45), decreased (16, 20) or not
changed in the blood of glioma patients (8, 13, 31).

Acute-Phase Reactant Proteins and Other
Inflammatory Protein Markers
Acute-phase (reactant) proteins (APRPs) are proteins that
become increased (positive APRPs) or decreased (negative
APRPs) in serum or plasma by at least 25% in response to an
inflammatory stimulus (46). As gliomas and other cancers are
characterized by chronic inflammation, it is possible that APRPs
are altered in patients with cancer and can be employed as
biomarkers. Indeed, in many other cancer types positive APRPs
such as a1-antitrypsin and ceruloplasmin have been found to be
increased, while negative APRPs such as kininogen and a2-HS
glycoprotein are found to be decreased (47). Similarly, in glioma
patients many positive APRPs such as haptoglobin (48–51) or
CRP (14, 48, 52, 53) were increased compared to healthy
FIGURE 3 | PRISMA diagram showing the amount of records found through database searching and reference checking, the amount of records screened and
removed using exclusion criteria and the amount of records included in the final qualitative synthesis.
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individuals with AUCs around 0.8 (50, 52, 53) (see
Supplemental Table 3). However, it is not clear whether
negative APRPs and markers of reduced inflammation such as
albumin, the prognostic nutritional index (PNI) and the
albumin-globulin-ratio are decreased or remain unchanged
(54, 55). Glioma tumor grade may be correlated with an
increase of positive APRPs and a decrease of negative APRPs.
The positive APRP fibrinogen was increased in patients with
higher tumor grades (56–58) and similar results were also found
for the related inflammatory marker F-NLR-AGR (57). The
negative APRP marker albumin was decreased (56, 58) in
patients with higher tumor grades, as is for the serum markers
Albumin-Globulin-Ratio (AGR) and PNI (54–56, 58, 59), but
these significant results were refuted in other studies (55, 57).
The grade discriminative AUCs of both positive and negative
APRPs were between 0.6 and 0.7 (54, 56, 58).

Several positive APRPs have been found to be dysregulated in
patients with glioma with longer compared to shorter survival.
The inflammatory marker CRP has been found to be decreased
in the serum of patients with longer survival (52, 60, 61), but the
prognostic value was low [(HR)=1.0] (52). However, significant
results could not be confirmed elsewhere despite large patients
series and multivariate analyses (14, 28, 62, 63). Furthermore,
fibrinogen (56, 57, 64), fibrinogen-NLR score (64), F-NLR-AGR
(57) and fibrinogen-albumin score (65) were all increased in
glioma patients with worse survival. HRs were between 1.5-3.8
for fibrinogen and its related markers. Negative APRPs and
markers of reduced inflammation such as albumin (56, 66–68),
AGR (57, 69, 70), PNI (59, 69, 71), and the Sanbo Scoring System
(72), were elevated in patients with prolonged survival compared
to patients with shorter survival. However, other studies could
not find a significant relationship between albumin (70, 71, 73,
74), AGR (75), PNI (74, 76) and survival. Lastly, APRPs may also
have use as a marker to differentiate between glioma patients and
patients with other intracranial diseases and as markers to detect
IDH1-mutation and MGMT-methylation status. However,
research on these topics is scarce at this moment. In all, it
seems that positive APRPs and markers of increased
inflammation are increased while negative APRPs and markers
of reduced inflammation are decreased in patients with glial
tumors and in particular patients with more malignant glial
tumors (see Supplemental Tables 3–8).

GFAP
Glial fibrillary acidic protein (GFAP) is a protein that is mainly
expressed by astrocytes and aids in the maintenance of astrocytic
structure and stability. Blood levels of GFAP can be increased
after injury of the brain through strokes (77), traumatic brain
injuries (78), and after brain surgery, including glioma resection
(79–81). The blood levels are typically increased in the context of
destruction of glial cells and opening of the blood-brain-barrier.
As both usually do not occur in non-acute brain diseases such as
multiple sclerosis or brain metastases, GFAP may be a specific
marker for gliomas. Indeed, GFAP values (38, 80, 82–85) were
found to be elevated in glioblastoma patients, but diagnostic
sensitivities were rather variable: between 33% and 86% of
glioblastoma had elevated GFAP concentrations (38, 82–86).
Frontiers in Oncology | www.frontiersin.org 6
GFAP diagnostic specificities were more uniform and ranged
between 85-100% (80, 82, 84). However, GFAP concentrations
were not elevated in the circulation of glioma patients with
tumor grades lower than grade IV (80, 82, 85). Furthermore,
GFAP was increased in patients with glioblastoma as compared
to patients with lower tumor grades (38, 80, 82–85, 87) and in
glioblastoma patients compared to patients with other brain
pathologies such as brain metastases, meningioma or pituitary
adenoma (38, 81, 82, 84–86, 88). Also, GFAP levels were
increased in patients with worse survival (80, 84), greater
tumor volume (40, 80, 82, 86, 88), higher Ki67 proliferation
index and lack of IDH1-mutation (80). However, it was not
always confirmed that circulating GFAP is correlated to tumor
volume and survival (83). Thus, GFAP is a promising marker
and might have value as biomarker for glioblastoma diagnosis,
grade and tumor type differentiation.

YKL-40
YKL-40 is a glycoprotein that is secreted by macrophages,
chondrocytes and several cancer cell types (89), including
glioma cells (90). The exact functions of YKL-40 in cancer are
unknown, however, it may stimulate angiogenesis, cell
proliferation, prevent cell apoptosis (91), and aid in tissue
remodeling during inflammation (89). YKL-40 is found to be
increased in cancer and in inflammatory diseases such as Crohn’s
disease, COPD, ulcerative colitis and others (89). YKL-40 was
found to be increased in glioma patients as compared to healthy
individuals (86, 92–95). The AUC in one study was 0.9 (93).
Furthermore, YKL-40 is increased in patients with high-grade
glioma compared to patients with low-grade glioma (93, 94, 96).
Also, high baseline YKL-40 and increases in YKL-40 during
treatment were correlated with worse survival in glioma patients
with hazard ratios between 1-2.2 (25, 95–98). However, it was
also found that YKL-40 was not correlated with survival (99) and
tumor volume (94, 96, 97). In all, YKL-40 is an interesting
marker, especially for predicting patient survival.

VEGF
The vascular endothelial growth factor (VEGF) is one of the
growth factors that aids in glioma neovascularization and a well-
studied biomarker in glioma patients. VEGF has been researched
extensively and has been found to be increased in glioma patients
(10, 12, 14, 16, 100–107). However, multiple other studies did not
find a significant difference (22, 24, 108–111). The same
controversial results were also found in other studies when
VEGF was used as a blood biomarker for other purposes such
as tumor grade differentiating marker (12, 102, 103, 112, 113),
tumor type differentiating marker for patients with glioblastoma
and patients with intracranial metastases (103, 104, 114) and
prognostic marker in patients that received several types of
therapies (14, 19, 29, 31, 112, 115). It remains unclear why
such differences have been found. It is possible that patient
populations were too small to find a significant effect as both in
studies with and without a significant effect of VEGF, most of the
studies included small patient populations (<100 patients).
Hence, VEGF does not seem to be a promising blood
biomarker at this moment.
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Coagulation in Glioma
It is well known that cancer causes hypercoagulability that can
result in venous thromboembolisms (VTE), disseminated
intravascular coagulation and other coagulation disorders. The
relation between brain cancer and thrombo-embolic events seems
to be especially strong, as brain tumor patients had the second
highest rate of thrombo-embolic events from malignancies in 18
organs (116). It is possible that this hypercoagulable state can be
retraced in the blood of glioma patients if procoagulant factors are
increased while anti-coagulant factors are decreased. It was seen
that a multitude of coagulation markers and procoagulant factors
were significantly increased in the circulation of glioma patients
compared to healthy individuals such as prothrombin factor 1 + 2
(14), tissue factor (117), coagulation factor VII (19) and P-selectin
(118). Procoagulant markers correlated with tumor grade and
worse prognosis (see Supplemental Tables 4 and 6). Especially
fibrinogen is well researched and often found to be correlated
with grade (56–58) and survival in glioma (56, 57) and
glioblastoma (56, 64) patients with moderate grade
differentiating abilities (56, 58) and moderate prognostic
abilities (HR=1.5) (64). Contrary, anti-clotting factors were also
found to be increased (see Supplemental Tables 3, 4 and 6).
Here, it may be possible that anti-clotting factors are reactively
increased as a response to the prothrombotic state that is created
by the tumor. However, it is also possible that the tumor
stimulates the increase in anti-thrombotic proteins, as these
may facilitate metastasis by degrading the extracellular matrix
and allowing tumor cells to invade blood vessels (119).

Panels of Peptides and Proteins
Biomarker panels of two to over 100 markers were used with
various purposes in glioma patients. In general, larger panels could
differentiate between patients and controls or different patient
groups with different grades, tumor types or survival with higher
accuracies. Inflammation, immune response and cell proliferation
related markers were dysregulated such as interleukins (13), TNF-
alfa (13), CRP (52), YKL-40 (86) and FGF-basic (13). Functional
analysis revealed enrichment of pathways that are dysregulated in
cancer cells such as apoptosis pathways, immune function pathways
and others (13, 52). Several protein and peptide panels could
differentiate between glioma patients and healthy individuals with
high accuracies with sensitivities and specificities >85% (13, 52, 86,
120–123). Only two panels had modest value as diagnostic markers
with an AUC of 0.6 (16) and 74% accuracy (124). One protein panel
(122) and several proteins or peptides from other panels (120, 123)
could also differentiate between glioma patients with different tumor
grades. Lastly, panels could differentiate between patients with better
and worse prognosis (16, 125), and between patients with different
intracranial tumors (123).
NUCLEIC ACIDS

MicroRNAs
miRNAs are short, single-stranded RNAs of approximately 22
nucleotides in length, which bind and regulate translational
repression or degradation of messenger and other RNAs (126).
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MicroRNAs may be ideal blood-based biomarkers as they are easily
accessible in body fluids (127), are stable under harsh extrinsic
conditions such as significant changes in temperature (128), and are
protected from intrinsic conditions such as degradation by RNAses
(129). Indeed, microRNAs can be found in biofluids such as serum,
plasma, urine and cerebrospinal fluid and have shown to be
deregulated in various cancer types such as renal cell carcinoma
(130) and melanoma (131). Also, research is accumulating
indicating that the blood of glioma patients has a unique miRNA
expression pattern. However, it has been noted that miRNAs may
not be good biomarkers as the brain has little influence on miRNA
concentrations in blood as compared to other organs (132) and
because differences in blood cell counts may more prominently
influence variation in circulating miRNA profiles (133, 134).
Despite that, miR-21 (135–143), miR-182 (144–148) and miR-222
(139, 149, 150) were all found to be increased in the blood of glioma
patients as compared to healthy individuals. However, miR-21 (151,
152) and miR-222 (136) were also found to not have significantly
different results in patients compared to controls. Diagnostic
sensitivities and specificities of the miRNAs in glioma patients
ranged from 47% to perfect accuracy (136, 139, 141, 148, 149).
miR-21 (136, 139), miR-182 (146, 147) andmiR-222 (139) were also
correlated with tumor grade and an AUC of 0.8 was reported for
miR-21 (139). Furthermore, miR-21 (143) and miR-222 (139)
might also have use as a marker to differentiate between glial
tumors and other intracranial tumors. Lastly, miR-21 (141), miR-
182 (148, 153) and miR-222 (149, 150) may have value as
prognostic markers and HRs of 1.3 (148) and 2.8 (149) have been
reported. Remarkably, it was also found that miR-21 was
upregulated years before glioma manifestation in patients (154).

Panels of microRNAs
In general, combination of microRNAs increased the accuracies
of markers as compared to single microRNAs. Small panels of
microRNAs which studied marker concentrations in two or three
microRNAs could differentiate between glioma patients and
controls with an AUC of 0.8 (139) and sensitivities and
specificities between 70%-100% (138, 155–157). When larger
miRNA panels were used, diagnostic accuracies of tests tended to
increase. Using a panel of nine miRNAs as diagnostic markers,
50 and 90 glioma patients could be differentiated from healthy
individuals with high accuracy with an AUC of 1.0 (151) and
accuracy of 99.8% (137), respectively. However, a 180-miRNA
panel in whole blood could distinguish between glioblastoma
patients and healthy individuals with ‘just’ 81% accuracy (158).
Patients with glioblastoma could be differentiated from lower
grade patients with an AUC of 0.9 (159), also certain miRNA
combinations were highly prognostic for glioma patients with
HRs of 3.1 (151) and 0.4 (160), or could differentiate between
patients with different brain tumors with an AUC of 0.8 (157).
Lastly, the development of pulmonary embolisms could be
predicted in glioma patients with an AUC of 0.8 (161).

Cell-Free DNA
Cell-free DNA (cfDNA) refers to fragmented DNA freely
circulating outside of cells in blood plasma. cfDNA partly
consists of DNA derived from tumor cells. cfDNA is often
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analyzed by examining circulating DNA from patients and
searching whether there are tumor-specific mutations,
deletions and/or amplifications present. The majority of
cfDNA is released by non-tumor cells including (neighboring)
inflammatory, stromal and other (healthy) cells, thereby
searching for tumor-derived materials is considered to be a
needle in a haystack. While both serum and plasma were used
as biosource for cfDNA, it has been reported that serum contains
around six times as much amounts of free cfDNA as compared to
plasma with low levels of contaminating extraneous DNA
released from leukocytes (162). Evidence is accumulating that
the amount of cfDNA molecules and individual sequences of
cfDNA can be employed as tumor biomarkers. First, it has been
shown that total number of cfDNA molecules can be used as
diagnostic marker to differentiate between glioma patients and
controls (163, 164), tumor type differentiating marker (163),
tumor progression marker (165), and prognostic marker (164).
However, it remains unclear whether total cfDNA can also be
used as a marker to estimate and monitor tumor burden (164–
166). Furthermore, mutations and copy number variations in
cfDNA can also be utilized to differentiate between glioma
patients and controls (164, 166–170). Diagnostic sensitivities
ranged from 50% to near perfect accuracies. Especially selection
of cfDNA fragments between 90-150 base-pairs drastically
improved detection accuracies. Moreover, mutations in
therapeutically relevant genes such as TP53 and EGFR could
also be found in cfDNA (164, 167) but were not always
concordant with mutations in tumor tissue.

An alternative and highly potential biomarker may be
methylation patterns in cfDNA of glioma patients. DNA
methylation is one of three epigenetic mechanisms used to alter
gene expression and can contribute to cancer development
through regional hypermethylation and global hypomethylation
(171). Methylation of tumor suppressor genes can silence tumor
suppressor genes, while global hypomethylation of repetitive
genomic elements can lead to elevated expression of oncogenes
and chromosomal instability (171). In cfDNA of glioma patients,
global hypomethylation of repetitive Alu elements and regional
methylation of tumor suppressor genes such as MGMT were
studied. Global hypomethylation of Alu elements was correlated
with glioma diagnosis, higher tumor grade, shorter survival and
lower Karnofsky Performance Score (172, 173). Also, it was
recently reported that cfDNA methylation profiles have
remarkable diagnostic capabilities in high-grade as well as in
low-grade glioma with AUCs near 1.0. cfDNA methylation
profiles also displayed high brain tumor differentiating
capabilities with AUCs between 0.7-0.8 (174). Concordance of
promoter methylation in tumor suppressor genes such as MGMT
in cfDNA with their counterparts inside tumors, was observed
with varying sensitivities 31%-80% but with high specificities all
near 100% (175–182). Lastly, lack of MGMT promoter
methylation in cfDNA could be used as a prognostic marker
with hazard ratios between 2.0-2.2 (180, 182). While cfDNA
methylation methods are of interest as markers with multiple
purposes, so far the patient populations in which these methods
were studied were often small (50 or less patients).
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CIRCULATING CELLS, EXTRACELLULAR
VESICLES, AND METABOLOMICS

Circulating Glioma Cells
It has been suggested that circulating tumor cells (CTCs) are the
driving cells of tumor metastasis. Extracranial metastases occur
very rarely in patients with glioma and with an (estimated)
incidence of less than 0.5% (183, 184). Despite this, several
research efforts have been investigating the existence of
circulating glial tumor cells (CGTCs) using a variety of
methods, with highly variable results. Diagnostic sensitivities
were reported between 21%-80% (185–192). Apart from
diagnosis, CGTCs might also have other purposes. However,
the cells were often not correlated with tumor grade (187, 190,
192), survival (188) or tumor burden (189) and they could not be
used to differentiate between different glial tumor types (187).
Interestingly, CGTCs have also been investigated as a tool to
differentiate between tumor recurrence and radiation necrosis
(192), and to differentiate between pseudoprogression and actual
tumor progression (186, 190, 191), though such applications are
definitely not ready for implementation in the current
daily clinics.

Blood Platelets
It is well documented that platelets influence cancer cells in
multiple ways, for example, platelets are known to promote
tumor angiogenesis, tumor cell proliferation, metastasis and
aid in immune surveillance escape of tumor cells (193).
Because platelets stimulate tumor activities to a large degree, it
is possible that platelet counts and content are altered as well in
patients with glioma. However, currently platelet counts have
variable results as biomarkers in glioma. Platelet counts were
found to be increased in glioma patients (93, 100, 194) as well as
non-significantly changed (54, 55, 118, 194) compared to healthy
individuals. In most studies, platelets were observed to be non-
significantly altered in patients with higher grade glioma
compared to lower grade glioma (54, 58, 93, 195–197).
Furthermore, there is overwhelming evidence that platelet
counts are not correlated with patient prognosis in glioma
patients (62, 70, 71, 93, 198–205). Moreover, platelet counts
are not different in glioma patients as compared to other
intracranial pathologies such as epilepsy and non-glial brain
tumors (54, 206, 207). Aside platelet counts, researchers,
amongst us, have noted that platelets may have altered protein
content (208) and RNA content, due to sequestration of tumor-
derived RNAs. The RNA content of these so-called ‘tumor-
educated-platelets’ (TEPs) may be employed to distinguish
cancer patients from healthy individuals (209). Also other
research groups have confirmed that TEPs have good accuracy
in distinguishing between healthy individuals and patients with
various types of cancer (210–214). There are many obstacles that
can interfere with the results of the TEPs such as age-related
factors (215, 216), pre-analytical variables, and inflammatory
and cardiovascular disease (217). Despite this, our data suggests
that platelet RNA profiles may be employed for diagnostics of
lower-grade glioma and glioblastoma, and potentially tumor
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treatment monitoring (209, 218, 219). Hence, platelets may
contain promising information regarding the presence and
treatment response of glioma.

White Blood Cells
In glioma patients it was often observed that WBC counts were
increased compared to controls (21, 54, 55, 100, 118, 220).
However, it was also found that leukocytes are not significantly
changed in glioma patients compared to controls (21, 194),
potentially due to dexamethasone use (221–224). Furthermore,
it remains unclear whether WBCs are correlated with higher
tumor grades (54, 55, 195, 201, 225, 226) and worse survival (23,
61, 62, 71, 201, 227) as many studies reported both statistically
significant and non-significant results (144). Moreover, it was
found that leukocyte counts were increased in glioma patients
compared to patients with neuromas (54), non-lesional epilepsy
(54) and meningioma (54, 161) and lack of IDH-mutation (201).
However, it was also found that WBCs are not different in glioma
as compared to meningioma patients (55). At this moment, total
white blood cell counts are not considered promising as a blood-
based marker for glioma.

Lymphocytes
Lymphocytes mainly consist out of three groups: T-cells (CD-3+),
B-cells (CD-20+) and NK-cells (CD-56+). It was found in
multiples studies that total lymphocyte numbers are not
changed in glioma patients as compared to controls (21, 55,
100, 194, 228, 229). However, significant decreases in total
lymphocytes were noted as well in glioma patients (54, 206,
228). This significant decrease might be attributed partly due to
the use of dexamethasone (229). Total lymphocyte counts were
lower in patients with higher tumor grades (54, 55, 196, 197, 201)
and one study reported a tumor grade differentiating AUC of 0.6.
Also, many studies reported that total lymphocyte numbers were
not correlated with survival in glioma patients (62, 70, 71, 74, 198,
201, 202, 204, 205, 227, 230–233) though two studies reported
that increased numbers of total lymphocytes were associated with
prolonged survival (234, 235). Furthermore, total lymphocytes
were not changed in glioma patients as compared to patients with
brain metastases (206, 207), but it remains unclear whether total
lymphocytes are changed in glioma patients as compared to
meningioma (54, 55, 206) and epilepsy patients (54, 206).
However, lymphocytes were also not correlated to tumor grade
in two other studies (58, 196) or with IDH-1/2 mutation status
(201, 236).

Total T-cells numbers were seen to be significantly decreased
in glioma patients in multiple studies with high statistical
significance (20, 21, 23, 229, 237, 238). Two other studies did
not find a difference in malignant glioma patients (21, 24).
Corticosteroids usually did not influence total T-cell counts
(21, 23, 223), however, in one study corticosteroids did cause a
significant decrease in CD3+-cell counts (229). Thus, more
research is needed to determine whether CD3+ cells are altered
in glioma patients. It may be possible that T-cells are decreased
because of a decrease in CD4+-cells, which has often been
reported in glioma patients (20, 21, 23, 229, 238–240).
However, other studies did not find a significant difference
Frontiers in Oncology | www.frontiersin.org 9
between glioma patients and controls (21, 241, 242) in terms
of CD4+-counts in blood. CD4+-cells have been found to be
negatively correlated with glial tumor grade (20, 243) as well as to
not be correlated with increasing tumor grades in glioma
patients. Decrease in CD4+-cell counts was inversely related to
survival in glioma patients (233, 243), but not related to IDH1-
status (236).

There is little evidence for NK-cells as blood-based glioma
biomarker. In several studies NK-cells (CD3+/CD56+, CD3-/
CD56+ or CD16+/CD56+) were not significantly altered as
compared to healthy individuals in glioma patients (23, 229,
244, 245). However, certain NK-cell populations were seen to be
significantly decreased (23, 245) or increased (238) in glioma
patients. Also, CD16+/CD56+-NK-cells had prognostic value
(23). CD8+-cell counts were not altered in glioma patients in
most studies (21, 238, 239, 242). It remains unclear whether
CD8-cell counts are correlated with patient survival (23, 233)
and lower tumor grades (20). There is a lot of controversial
evidence concerning the value of lymphocytes and
subpopulations of lymphocytes as biomarkers in glioma and
glioblastoma patients. However, the majority of studies agree
that total T-cells and CD4+-cells may be promising as a
diagnostic marker.

Neutrophils
Neutrophils were found to be increased in glioma patients
compared to controls in the majority of the studies (21, 54, 55,
194, 220). Furthermore, higher-grade glioma patients were often
reported to have increased neutrophil counts as compared to
patients with lower-grade glioma (54, 55, 58, 196, 197, 201, 226,
246). Grade differentiating AUCs between 0.6-0.7 were reported
(55, 58, 201). It remains unclear whether neutrophils are related
to IDH mutation status (201, 236). Moreover, glioma patients
had higher neutrophils compared to patients with a meningioma
(54, 161), neuromas (54) or epilepsy (54, 206). It was also found
that there was no difference between glioma or glioblastoma
patients and meningioma patients (55, 206), between glioma or
glioblastoma and metastases (206, 207) and grade III and grade
IV glioma patients (227) in terms of neutrophil counts. Multiple
studies reported that neutrophil counts had no prognostic value
in glioma patients (62, 70, 71, 198, 204, 205, 230, 234), however,
other studies found a negative correlation of neutrophil counts
with survival in glioma (201, 227, 231, 247) with HRs around 1.6
(227, 231). Thus, neutrophil count might be valuable as
diagnostic and grade differentiating marker.

Monocytes
It remains unclear whether monocyte counts (CD14+-cells and/
or CD16+-cells) are changed in glioma patients compared to
controls (54, 55, 106, 194, 229, 244, 248) or are related to tumor
grade (54, 55, 58, 197, 225, 246). However, monocytes with
reduced immune function and with mainly immunosuppressive
functions such as M2-macrophages (245, 249, 250) and HLA-
DR-low and HLA-DR-negative monocytes were significantly
increased in glioma patients as compared to controls (21, 244,
251), but cell counts might be confounded by dexamethasone use
(229). Also, less pro-inflammatory M1-macrophages were
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observed in glioma patients (249, 250). Total monocyte counts
could not be correlated to prognosis (62, 71, 227, 231).
Monocytes were found to not be different in glioblastoma
patients as compared to patients with brain metastases (207)
and increased in glioma patients compared to epilepsy (54),
meningioma (54, 55), or acoustic neuroma (54).

Neutrophil-Lymphocyte-Ratio
The Neutrophil-lymphocyte-ratio (NLR) may be a promising
marker for multiple types of cancers (252–255) and has the
potential to fulfill various biomarker roles. It is unclear how the
NLR can be dysregulated. However, a hypothesis is that tumors,
including glioblastoma (256), secrete hematopoietic factors such as
granulocyte-colony stimulating factor, granulocyte macrophage-
colony stimulating factor and IL-1 and IL-6, which stimulate
proliferation of neutrophils (257, 258). Also, tumors can secrete
neutrophil attractant chemokines (259) and turn neutrophils from
foe into friend via the secretion of TGF-beta (260). Tumor-
associated neutrophils can stimulate vascularization of the tumor
and inhibit lymphocyte function, weakening the antitumor response
(261). NLR and the derived NLR (dNLR; absolute neutrophil count/
(WBC count minus absolute neutrophil count) were increased in
glioma patients compared to controls (54, 55, 194, 206, 262).
Glioma patients with low NLR or derived NLR had longer
survival in multiple studies with large patient populations (57, 63,
64, 69, 75, 93, 201, 203, 204, 225, 226, 230, 234, 262–269) with HRs
mostly between 1.7 and 2.4. On the contrary, multiple studies
including those with larger patient populations could not find a
correlation between NLR and survival in glioma patients (62, 71,
198, 200, 205, 227, 247, 270). Furthermore, there is overwhelming
evidence that NLR is significantly increased in patients with higher-
grade glioma as compared to patients with lower-grade glioma (54–
57, 93, 195, 197, 200, 201, 213, 266, 271, 272). The AUC to
differentiate between patients with higher-grade and lower-grade
glioma was mostly between 0.6 and 0.7. It remains unclear whether
NLR values are increased in glioma patients compared to patients
with meningioma (54, 55, 206) or intracerebral metastases (206,
207), although it may be increased as compared to patients with
epilepsy (54, 206) or acoustic neuroma (54). Also, NLR values might
be correlated with IDH-mutation status (56, 63, 69, 201, 225, 226,
267) and increased tissue Ki-67 expression (267, 271). Finally, high
NLR correlated with tumor relapse (264), and decrease in NLR
during treatment with radiotherapy and concomitant
temozolomide was correlated with pseudoprogression (265). To
conclude, NLR might be correlated with clinicopathological
markers, survival and tumor grade. However, there is a lot of
conflicting evidence for most of these markers. There is
overwhelming evidence that NLR is related to tumor grade, but
the accuracies reported are too limited to apply NLR as a definite
diagnostics biomarker in the clinics.

Platelet-Lymphocyte-Ratio and Monocyte-
Lymphocyte Ratio
It remains unclear whether the platelet-lymphocyte-ratio (PLR)
and monocyte-lymphocyte-ratio may have use as a blood-based
marker in glioma. Controversial results have been found for both
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PLR (54, 55, 206) and MLR (54, 194) as diagnostic markers to
differentiate between glioma patients and controls. Similar
controversial results have also been found for PLR (54–56, 197,
201, 263, 266, 271) and MLR (54, 58, 197, 266, 271) as tumor
grade differentiating markers. PLR (63, 64, 69, 71, 75, 198, 204,
205, 263, 266, 267, 269) as well as MLR (69, 71, 75, 267, 271) were
found to not be prognostic in glioma patients in the majority of
studies. However, PLR and MLR might have some value as brain
disease differentiating marker for glioma patients as these
markers were significantly different in glioma patients as
compared to patients with epilepsy (54, 206) and non-glial
brain malignancies metastases (54, 55, 206, 207). Both markers
were rarely correlated with tumor tissue IDH-mutation (56, 63,
69, 201, 267) or MGMT-methylation status, and Ki-67
proliferation index (267, 271).

Systemic Immune Inflammation Index
The systemic immune inflammation (SII) index can be
calculated as follows: platelets * (neutrophils/lymphocytes). A
high SII-index was correlated with short survival in patients with
different cancer types (273–275). In glioma, an increased SII-
index was found in patients with higher tumor grades (58, 70,
195, 196) with AUCs of 0.6-0.8 (58, 196), respectively. The SII-
index was correlated with poorer prognosis (70, 267), and
patients with tumors with higher tissue Ki-67 proliferation
index (196), but was not correlated with tumor size (70).

Dendritic Cells
Dendritic cells are antigen presenting cells that can present
antigens for example from tumor cells to T-cells, which
subsequently activates these T-cells. Total dendritic cells and
its subpopulations (myeloid/conventional dendritic cells and
plasmacytoid dendritic cells) were found to be decreased in
blood of glioma patients compared to controls (21, 243, 276),
and these cell populations were also decreased in glioblastoma
patients compared to patients with lower tumor grades (243).
Furthermore, it was reported that an immature dendritic cell
population with increased immunoinhibitory effects on cells
(277) becomes increased in glioma patients, especially in
patients with higher tumor grades (243). Therefore, glial
tumors might actively weaken a patient’s immune system.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) are immunoinhibitory
cells originating frommonocytes. MDSCs might be formed during
direct cell-cell contact with tumor cells possibly during infiltration
of the glial tumor (106). There are variable results concerning in
which glioma patients MDSC counts are changed. Total MDSCs
(33, 278–280), monocytic MDSCs (21, 33, 280, 281) and
granulocytic MDSCs (33, 278–281) were often significantly
increased in glioblastoma patients but non-significantly
altered in patients with lower grades. Furthermore, MDSCs
were increased in patients with poor prognosis (30) and
in glioblastoma patients as compared to other patients
with intracranial tumors such as anaplastic glioma or
meningioma (251).
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Regulatory T-Cells
Tregs are known for their immunosuppressive functions (282)
and have been shown to be associated with poor patient
prognosis in various cancer types (283). Tregs have been found
to be significantly increased in the blood of glioblastoma patients
as compared to healthy individuals (23, 229, 240, 284, 285).
However, Tregs were also found to be non-significantly altered in
glioma (21, 23, 241, 286) or even significantly decreased
(237, 240).

Extracellular Vesicles
Extracellular vesicles (EVs) are microparticles that are 30 to
10.000 nanometer in diameter. These vesicles are released by cells
and can carry proteins, lipids and nucleic acids from one cell to
another, thereby facilitating communication between cells (287).
Extracellular vesicles can be released from the plasma membrane
itself as microvesicles or can be released after fusion of
endosomes inside a cell with the plasma membrane as
exosomes (288). In glioma patients numbers of EVs (289, 290),
microparticles (291) and exosomes (292) in blood were increased
as compared to healthy individuals. EVs could potentially also be
used as markers for tumor relapse (289) or tumor progression as
opposed to pseudoprogression (293). Furthermore, the cargo of
EVs can be employed as biomarkers. The protein cargo level –
that is the total amount of protein loaded – from glioma patients
might have value as diagnostic marker (294, 295). Also, the
protein cargo itself is dysregulated and can be used to
differentiate between a group of healthy individuals and
patients with less malignant glial tumors, which have similar
protein cargo, and patients with highly malignant glial tumors
(296). EV protein cargo from glioblastoma patients was enriched
in proteins that were associated with inflammation, immune
response, members of the complement coagulation cascade and
others (289). Other studies found a decrease in immune system
related proteins IFN-g, IL-10, and IL-3 within plasma exosomes
from glioma patients (292). Furthermore, RNA inside exosomes
may increase tumor cell invasion and repress apoptosis (297).
Lastly, the surface protein profile of EVs are dysregulated (298,
299) and can be used as biomarkers to differentiate between
glioma patients and healthy individuals with high accuracy.

Single Metabolites and Metabolomic
Panels
Metabolomics is the analysis of small molecules in a biofluid, cell,
tissue, organ or organism (300) and can be used to study
metabolic pathways within the organism. Combinations of
metabolites such as creatine, glucose and lactate could
differentiate patients with brain tumors, glioblastoma,
oligodendroglioma, glial tumor, or astrocytoma from healthy
individuals with very high accuracy (AUC: 0.9-1.0) (301).
Patients with higher grade and lower grade tumors could be
differentiated with AUC of 0.7 (301) or 91% accuracy (302).
Tumor type differentiating metabolomic panels had variable
accuracies with AUCs between 0.4-0.8 (301, 303). Tumor
tissue IDH-mutation status could be predicted with an
accuracy of 94% (302). Single metabolites (303, 304) and
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metabolite combinations (303) could predict survival of glioma
patients, even with near perfect accuracies. Remarkably, serum
metabolites such as tocopherols were found in two studies that
could predict glioblastoma up to 22 years before manifestation
(305) and glioma patients up to 9 years before manifestation
(306). The metabolic pathways that were dysregulated were often
involved energy metabolism including amino acid metabolism
(302, 303, 306, 307), lipid metabolism (303, 306, 307), nucleic
acid metabolism (302) and carbohydrate metabolism (302, 306,
307). Glucose and lactate in particular are interesting markers
and had value as blood biomarkers with several purposes,
possibly due to their role in the Warburg effect. Glucose levels
were reported to be increased in patients with higher tumor
grades (308) or worse survival (308–311). One study reported
that this was independent of the degree of disability, tumor
grade, diabetes, prolonged dexamethasone use, or subsequent
treatment modalities (309). Furthermore, it has been found that
glucose was related to tumor progression and it was higher in
patients with glial brain tumors such as glioblastoma and
oligodendrogliomas, but not in meningioma, as compared to
healthy individuals (301). Pre-treatment lactate levels (302, 312,
313) were increased in patients with high-grade glioma
compared to low-grade glioma patients with AUCs of 0.7 (312)
and 1.0 (313), and could potentially also be used as a diagnostic
marker (307).

Assessment of Risk of Bias and
Reproducibility of Included Studies
Using summaries of the methodology and results of the studies
that we referenced here (see Supplemental Tables 3–9), we
assessed risk of bias in the biomarker studies, similar to some
degree to the QUADAS-2 (314) and REMARK (315) guidelines
for quality assessment of diagnostic and prognostic biomarker
studies. We noted several limitations in the studies that were
reviewed concerning study population size, presentation of
results and registration of effect of intrinsic and extrinsic
factors that could influence marker levels. Apart from markers
that are measured on a routine basis such as some APRPs or
inflammatory cell populations in clinical chemistry labs, the
study populations of markers are often small (often <100
individuals included). Also, small validation cohorts are used
or validation cohorts were not included at all. Primarily
glioblastoma patients are included in the studies that we
referenced here. Patients with lower-grade gliomas are rarely
included or comprise a small portion of the entire patient
population. Therefore, it is unclear whether the biomarkers
that we selected as being most promising, will be of value in
particularly these patients. Furthermore, the majority of studies
only reported the p-values of biomarkers and not the value of
biomarkers quantified as accuracy, sensitivity, specificity and/or
hazard ratio, and these could not be deduced from the available
and presented data. Therefore, it is unclear what the clinical
value of most biomarkers is. Lastly, it is largely unknown to what
extent biomarkers are affected by extrinsic factors such as anti-
tumor therapy, use of (co-)medication, choice of analytical
methods, and by intra-individual factors such as race,
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comorbidities and others. Co-medication use by patients before
sampling, such as corticosteroid use, is reported in some studies.
Use of other medication, e.g. anti-diabetic and anti-epileptic
drugs, is rarely reported. Most studies that reported use of these
drugs did not (statistically) analyze the effect of these drugs on
the biomarkers that were studied, a potential bias that should be
taken into account when interpreting these data.

In order to assess the potential reproducibility, and ultimately
clinical validation, of the most promising markers GFAP, IL-10,
and miR-21, we precisely evaluated the available studies using
dedicated guidelines. The MIQE guideline was employed for the
miRNA (316), whereas we had to adjust existing guidelines to
assess the studies for GFAP and IL-10 (Supplementary
Table 12), as to the best of our knowledge no such guidelines
are available for ELISA/immunoassays. As can be seen in
Supplementary Figure 1, for GFAP and IL-10 essential factors
of the study design such as the number of included patients,
protein detection methods and kits were almost always
mentioned. However, other important factors such as the used
(analytical) instrumentation, sample storage and sample
preparation procedures were rarely reported. Also, it was often
not reported whether samples were quality controlled by
evaluating intra-assay and inter-assay variability. Furthermore,
test accuracy is often not reported which makes it unclear
whether the tests will have value in the clinical settings. Lastly,
factors such as comedication use, histopathological marker
presence and tumor volume are rarely reported, which can
have significant impact on biomarker concentrations. For miR-
21, several categories of the guidelines were often sufficiently
described such as experimental design, sample processing and
storage. However, other categories such as ‘nucleic acid
extraction’, ‘qPCR target information’ and ‘qPCR protocol’
were rarely sufficiently described or not described at all
(Supplementary Figure 2). In all, it again highlights that
adequate reporting of employed methods is of importance to
ensure reproducibility of the identified biomarker.

Thus, it can be concluded that there is room for improvement
in biomarker studies in multiple domains of methodology and
results presentation, as has been reported by other (systematic)
reviews (317–319). The biomarker studies that we referenced
here may not be of the highest possible quality and cannot be
used to determine immediately which biomarkers will have
clinical value. However, they can still be used to determine
which biomarkers are promising for further research, as
markers that have shown great clinical group differentiating
abilities in multiple studies may still hold clinical value despite
the bias in results and methodologies present in the studies.
DISCUSSION

Glioma is still one of the most devastating diseases with high
burden. Any additional information that can be obtained from the
patient regarding tumor development, growth, behavior, and
vulnerabilities, in a least minimally invasive way is desired.
Many studies have been published, and included in this
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systematic review, that identified potential circulating biomarkers
for patients with glioma, at each point in the glioma patients
clinical course (Figure 1). Unfortunately, none of the biomarkers is
in our opinion ready for direct clinical implementation.

As opposed to tumor tissue biomarkers, such as MGMT
methylation, 1p/19q codeletion, IDH1-mutations, and the
recently introduced methylation profiling (320) in glioma,
blood-based markers often reflect local or systemic responses
of the endogenous processes to the presence of a tumor. Direct
measurement of glioma-derived circulating cells and genomic
aberrations is an exception in this view. Cells, cell ratios and
APRPs that are often measured in complete blood counts
(CBCs), are attractive biomarkers as CBCs are regularly used
in the clinic and extensive research has already been performed
on their utility as biomarkers. However, they are possibly
insufficiently accurate biomarkers for clinical utility as a single
marker or in combination with other cells, cell ratios or APRPs.
An explanation for the worse performance of single markers as
opposed to panels of markers may be interpreted using the
framework of hallmarks and enabling characteristics of cancer, as
formulated in the seminal article by Hanahan and Weinberg
(321). Hallmarks are traits unique to cancer cells and enabling
characteristics are traits that lead to the development of such
hallmarks. In this framework, blood biomarkers including
VEGF, miR-182 and YKL-40 may be mediating factors that
enable cancer cells to contain the hallmarks ‘inducing
angiogenesis’, ‘resisting cell death’ and ‘tissue invasion’.
Other biomarkers such as lactate concentrations and CGTC
can be seen as an expression of the hallmarks or enabling
characteristics ‘deregulated cellular energetics’ and ‘activating
invasion and metastasis’. Inflammatory cells may be promoting
the enabling characteristic ‘tumor promoting inflammation’ (see
Supplemental Table 11 and Figure 4). As single blood markers
have low to modest accuracies and value as biomarkers but
panels of biomarkers often have higher accuracies, it can be
hypothesized that screening of multiple markers involved in
multiple hallmarks or enabling characteristics may improve
biomarker accuracy. This hypothesis can be supported by the
fact that diagnostic sensitivity of inflammatory cells such as NLR,
PLR, neutrophils and others is limited with diagnostic and tumor
grade and tumor type differentiating AUCs between 0.6-0.7 (54–
56, 58, 201). Similar results also have been found for APRPs with
AUCs between 0.5-0.7 (54–56, 58). Combination of
inflammatory cell populations (54, 56, 58) or APRPs (56), as
well as combination of inflammatory cell populations with
APRPs (54, 56), does not increase accuracy in a meaningful
way (144). Thus, it is possible that both APRPs as well as
inflammatory cell populations already reflect alterations in the
inflammation enabling characteristic and combination of these
markers does not further improve marker accuracies. Also,
panels of biomarkers often have higher accuracies than single
biomarkers irrespective of the biomarker function and these
panels contain biomarkers involved in multiple pathways related
to the hallmarks of cancer and its enabling characteristics (13, 52,
155). Furthermore, our analysis indicates that biomarker levels
become increasingly dysregulated as tumors increase in
June 2021 | Volume 11 | Article 665235
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FIGURE 4 | Correlation of blood-based biomarkers in patients with glioma with seminal events in tumorigenesis. Blood biomarkers in glioma patients are implicated
in the molecular pathways as detailed by Hanahan and Weinberg (321). Markers colored in green were mostly found to be increased in the circulation of glioma
patients compared to healthy individuals, and in glioma patients with more malignant tumors compared to patients with less malignant tumors. Markers that were
inversely correlated were colored in red. Markers without color were found to be either significantly increased or decreased in the formerly mentioned groups. The
abbreviation “DC” indicates dendritic cells and “iDC” indicates immature dendritic cells. Adapted from “Hallmarks of Cancer: Circle”, by BioRender.com (2021).
Retrieved from: https://app.biorender.com/biorender-templates.
TABLE 1 | Advantages and disadvantages of the biomarkers.

Nucleic acids (miRNA, cfDNA, RNA, DNA methylation)
Advantages Disadvantages

If well-designed highly specific Long turn-around when using next-generation sequencing approaches
For certain methods such as digital droplet PCR highly sensitive, also depending on
patient population and tumor stage

Expensive test requirements, esp. with next-generation sequencing

Measurements can be multiplexed and analysis of panels is possible Requires high-quality RNA isolates
Well-established isolation and detection methods Clonal hematopoiesis may confound mutation analysis
Provides information on (epi)genomic and transcriptomic levels May not provide actionable information

Proteins and peptides
Advantages Disadvantages

Long-term experience with protein-based tests in current clinical practice Can be less specific
Usually low costs for tests Limited stability
Easily standardized protocols
Sensitive test methodologies

Circulating cells (white blood cells, blood platelets, lymphocytes, etc.)
Advantages Disadvantages

Measurement routinely available in clinical chemistry labs Reduced specificity
Rapid test results No direct measurement of tumor-derived materials; surrogate markers

Some circulating cells, esp. immune cells, require more specialized isolation
and quantification methodologies

Circulating glioma cells and extracellular vesicles
Advantages Disadvantages

Directly tumor-derived markers, therefore highly specific May require expensive, technically-challenging, and time-consuming isolation
procedures

Enables for testing of panels of (genetic) markers No gold standard for isolation
Protects markers from degrading enzymes in plasma Reduced sensitivity, esp. in lower tumor stages
Circulating glioma cells may allow for functional analysis and drug screens Long turn-around when using next-generation sequencing approaches
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malignancy, as biomarker levels are often positively correlated
with tumor grade, worse survival and/or more malignant tumor
types. Therefore, cellular hallmarks might develop in more
cancer cells as tumor malignancy increases and this may be
reflected in the dysregulation of circulating biomarkers. With
this in mind, we propose to introduce multi-biosource, multi-
biomolecule-based blood tests for glioma patients. Keeping the
criteria for biomarker test development as discussed above in
mind, such tests may likely include (components of) a miRNA,
protein, or platelet RNA panel, perhaps including the already
promising single markers miR-21, IL-10, and GFAP. These
panels likely include multiple components of the tumor
progression, are less resistant to confounding variables due to
its high dimensions, and far more accurate than a single measured
biomarker. Also, complementary implementation of several
biomarker types may make synergistically use of each other’s
advantages, and perhaps at least partially reduce each other’s
disadvantages (Table 1) (144).

Hence, additional validation of the currently most promising
markers (Figure 4) is also required. Aside analysis of blood, other
biofluids such as urine or perhaps cerebrospinal fluid may also be
rich sources of biomarkers. Recent analysis has shown that tumor
evolution could be tracked via repeated CSF samplings (322).
Similarly, perhaps also other body fluids such as saliva, sputum,
or breathing air may contain molecular information traceable to a
primary glioma. We believe that blood-based biomarkers may
currently only at maximum complement the current methods to
diagnose and/or monitor a glioma, such as clinical symptoms,
imaging, and tissue collection via tumor resection or (stereotactic)
biopsy. It may very well be anticipated that blood-based biomarkers
are included in a future setting in clinical decision making, for
example in multidisciplinary tumor boards, once such biomarkers
are thoroughly validated. For this, systematic biobanking of blood
from glioma patients is required. Such biobanking requires research
funds that support these efforts, as well as research project that in a
dedicated way screen for relevant and valuable biomarkers in well-
annotated, large, and homogeneous patient series. It is of
importance that any future biomarker discovery or validation
research is reported according to the highest standards, facilitating
reproducibility of the found results. Alternatively, we believe that
any clinical trial, even in a phase 1 stage, should include a blood-
Frontiers in Oncology | www.frontiersin.org 14
biomarker branch in the trial design, in order to at least aim to
discover a companion diagnostics biomarker. Also, blood-based
biomarkers that may complement current imaging methods for the
identification of true tumor progression versus pseudo-tumor
progression is required.

In all, the glioma research community should be encouraged
towards additional identification and inclusion of blood-based
biomarker research in a clinical setting. While currently at the
stage of analytical validation and start of clinical validation,
further studies should focus on demonstrating its clinical utility.
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86. Gállego Pérez-Larraya J, Paris S, Idbaih A, Dehais C, Laigle-Donadey F,
Navarro S, et al. Diagnostic and Prognostic Value of Preoperative Combined
GFAP, IGFBP-2, and YKL-40 Plasma Levels in Patients With Glioblastoma.
Cancer (2014) 120:3972–80. doi: 10.1002/cncr.28949

87. Husain H, Savage W, Everett A, Ye X, Blair C, Romans KE, et al. The Role of
Plasma GFAP as a Biomarker for Glioblastoma. J Clin Oncol (2011) 29:2095–
5. doi: 10.1200/jco.2011.29.15_suppl.2095

88. Tichy J, Spechtmeyer S, Mittelbronn M, Hattingen E, Rieger J, Senft C, et al.
Prospective Evaluation of Serum Glial Fibrillary Acidic Protein (GFAP) as a
Diagnostic Marker for Glioblastoma. J Neurooncol (2015) 126:361–9.
doi: 10.1007/s11060-015-1978-8

89. Llorens F, Thüne K, Tahir W, Kanata E, Diaz-Lucena D, Xanthopoulos K,
et al. YKL-40 in the Brain and Cerebrospinal Fluid of Neurodegenerative
Dementias. Mol Neurodegener (2017) 12:83. doi: 10.1186/s13024-017-0226-4

90. Horbinski C, Wang G, Wiley CA. YKL-40 is Directly Produced by Tumor
Cells and is Inversely Linked to EGFR in Glioblastomas. Int J Clin Exp Pathol
(2010) 3:226–37.

91. Schultz NA, Johansen JS. YKL-40-a Protein in the Field of Translational
Medicine: A Role as a Biomarker in Cancer Patients? Cancers (Basel) (2010)
2:1453–91. doi: 10.3390/cancers2031453

92. Kazakova MH, Staneva DN, Koev IG, Staikov DG, Mateva N, Timonov PT,
et al. Protein and mRNA levels of YKL-40 in high-grade glioma. Folia Biol
(2014) 60:261–70.

93. Gandhi P, Khare R, VasudevGulwani H, Kaur S. Circulatory YKL-40 & NLR:
Underestimated Prognostic Indicators in Diffuse Glioma. Int J Mol Cell Med
(2018) 7:111–8. doi: 10.22088/IJMCM.BUMS.7.2.111

94. Tanwar MK, Gilbert MR, Holland EC. Gene Expression Microarray Analysis
Reveals YKL-40 to be a Potential Serum Marker for Malignant Character in
Human Glioma. Cancer Res (2002) 62:4364–8.

95. Bernardi D, Padoan A, Ballin A, Sartori M, Manara R, Scienza R, et al. Serum
YKL-40 Following Resection for Cerebral Glioblastoma. J Neurooncol (2012)
107:299–305. doi: 10.1007/s11060-011-0762-7

96. Iwamoto FM, Hottinger AF, Karimi S, Riedel E, Dantis J, Jahdi M, et al.
Serum YKL-40 is a Marker of Prognosis and Disease Status in High-Grade
Gliomas. Neuro Oncol (2011) 13:1244–51. doi: 10.1093/neuonc/nor117

97. Hormigo A, Gu B, Karimi S, Riedel E, Panageas KS, Edgar MA, et al. YKL-40
and Matrix Metalloproteinase-9 as Potential Serum Biomarkers for Patients
With High-Grade Gliomas. Clin Cancer Res (2006) 12:5698–704.
doi: 10.1158/1078-0432.CCR-06-0181

98. Chandra A, Jahangiri A, Chen W, Nguyen AT, Yagnik G, Pereira MP, et al.
Clonal ZEB1-driven Mesenchymal Transition Promotes Targetable
Oncologic Antiangiogenic Therapy Resistance. Cancer Res (2020)
80:1498–511. doi: 10.1158/0008-5472.CAN-19-1305

99. van Linde ME, van der Mijn JC, Pham TV, Knol JC, Wedekind LE, Hovinga
KE, et al. Evaluation of Potential Circulating Biomarkers for Prediction of
Response to Chemoradiation in Patients With Glioblastoma. J Neurooncol
(2016) 129:221–30. doi: 10.1007/s11060-016-2178-x

100. Corsini E, Ciusani E, Gaviani P, Silvani A, Canazza A, Bernardi G, et al.
Decrease in Circulating Endothelial Progenitor Cells in Treated Glioma
Patients. J Neurooncol (2012) 108:123–9. doi: 10.1007/s11060-012-0805-8

101. Salmaggi A, Eoli M, Frigerio S, Silvani A, Gelati M, Corsini E, et al.
Intracavitary VEGF, bFGF, IL-8, IL-12 Levels in Primary and Recurrent
Malignant Glioma. J Neurooncol (2003) 62:297–303. doi: 10.1023/
A:1023367223575
Frontiers in Oncology | www.frontiersin.org 17
102. Yang J, Zhao Z, Zhong X. Correlation Analysis of the Clinicopathological
Features of Glioma and Expression of p53 and VEGF. Int J Clin Exp Med
(2017) 10:3606–11.
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