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An area of ongoing concern in toxicology and chemical risk assessment is

endocrine disrupting chemicals (EDCs). However, thousands of legacy

chemicals lack the toxicity testing required to assess their respective EDC

potential, and this is where computational toxicology can play a crucial role.

The US (United States) Environmental Protection Agency (EPA) has run two

programs, the Collaborative Estrogen Receptor Activity Project (CERAPP) and

the Collaborative Modeling Project for Receptor Activity (CoMPARA) which aim

to predict estrogen and androgen activity, respectively. The US EPA solicited

research groups from around the world to provide endocrine receptor activity

Qualitative (or Quantitative) Structure Activity Relationship ([Q]SAR) models and

then combined them to create consensus models for different toxicity

endpoints. Random Forest (RF) models were developed to cover a broader

range of substances with high predictive capabilities using large datasets from

CERAPP and CoMPARA for estrogen and androgen activity, respectively. By

utilizing simple descriptors from open-source software and large training

datasets, RF models were created to expand the domain of applicability for

predicting endocrine disrupting activity and help in the screening and

prioritization of extensive chemical inventories. In addition, RFs were trained

to conservatively predict the activity, meaning models are more likely to make

false-positive predictions to minimize the number of False Negatives. This work

presents twelve binary and multi-class RF models to predict binding, agonism,

and antagonism for estrogen and androgen receptors. The RF models were

found to have high predictive capabilities compared to other in silico modes,

with somemodels reaching balanced accuracies of 93% while having coverage

of 89%. These models are intended to be incorporated into evolving priority-

setting workflows and integrated strategies to support the screening and

selection of chemicals for further testing and assessment by identifying

potential endocrine-disrupting substances.
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Introduction

Endocrine Disrupting Chemicals (EDCs) are a class of

chemicals that interfere with human endocrine systems. The

toxicity mechanisms for EDCs are diverse; however, certain

chemicals may mimic hormones and interact with specific

nuclear receptors, such as estrogen receptors (ER) or

androgen receptors (AR), leading to endocrine-related effects

(Diamanti-Kandarakis et al., 2009; Gore et al., 2015). EDCs are

known to cause a wide range of adverse effects, including learning

disabilities, cognitive and brain development problems, and

cancer (Kajta and Wójtowicz, 2013; Gore et al., 2015). Some

notable examples of EDCs are polychlorinated biphenyls,

polybrominated biphenyls, and bisphenol A (Diamanti-

Kandarakis et al., 2009; Gore et al., 2015). Global regulatory

authorities face challenges assessing the hazards and risks they

might pose for human and ecological health. The Organization

for Economic Co-operation and Development (OECD) has

developed guidelines for testing; however, differing legislation,

data requirements, and approaches across regulatory frameworks

continue to hinder the acceptance and broad integration of novel

EDC screening and assessment methods. In response to

recommendations by the House of Commons Standing

Committee on Environment and Sustainable Development on

strengthening CEPA (Canadian Environmental Protection Act)

1999, the Government of Canada is working to improve its ability

to screen and consider endocrine disrupting effects when it

assesses risks from substances (ECCC, 2018). A key element is

the development and consideration of New Approach Methods

(NAM) to advance priority setting and risk assessment and to

enable a greater focus on substances with an endocrine mode of

action. Through deliberations on opportunities to enhance

current practices evaluating potential EDCs, the Chemicals

Management Plan Science Committee proposed a conceptual

workflow that includes a tiered testing and evaluation framework

to best deal with the sheer number of substances that need to be

considered. Notably, advanced predictive methods, or

computational models, are a significant first step (level 1) in

the workflow to better address EDCs from priority setting

through assessment (Chemicals Management Plan Science

Committee, 2018). A tiered framework would include a range

of different testing approaches to efficiently guide the

prioritization of substances for higher-tier testing and/or risk

assessment, as appropriate (Barton-Maclaren et al., 2022). A

tiered testing approach can rapidly examine substances triaging

those with more significant potential for hazard and/or risk and

identify those that merit further investigation at another level

where more intensive methods are applied, offering a higher

confidence level in predictions about the expected adverse

outcome.

In vitro high throughput assays, such as accessing the

ToxCast Chemicals Inventory database, are an example of

level 2 data that can be used or generated in a cost and time-

efficient manner compared to in vivo testing methods (US

Enviromental Protection Agency, 2019). The ToxCast

database uses assays, testing a variety of endpoints, and that

information can be combined to determine if a chemical is likely

to cause endocrine disruption. The assays are typically high

throughput and can be conducted on a microliter plate and

study a wide variety of toxicological endpoints (US Enviromental

Protection Agency, 2021). While the ToxCast database currently

has endocrine-related testing results for numerous chemicals,

there is a significant portion of chemicals in the Canadian

marketplace listed on the domestic substance list (DSL)

inventory that have not been tested in the ToxCast program.

Furthermore, although the ToxCast assays are considered high

throughput, there is still a limit to the number of chemicals that

can be tested moving forward, and it is impractical to test all

remaining chemicals on the DSL. These testing challenges lead to

the need for applying in silico models as a first screening step

before using high throughput assays for potentially thousands of

substances in a prioritization workflow.

A subsection of in silico models is machine learning (ML)

models, which are computational programs that learn underlying

patterns to make predictions. In chemical-based fields, a popular

branch of ML models is Qualitative (or Quantitative) Structure-

Activity Relationships ([Q]SAR) models) (Q)SAR models, and

the broader group ML models, work by using easily calculable

values, termed descriptors, to predict activities or properties. For

example, in (Q)SAR models used in regulatory toxicology,

structural or physical-chemical properties of a substance may

be used to predict a toxicological endpoint of concern. In one

such example, a variety of (Q)SARmodels for different endpoints

are available within the OECD (Q)SAR Toolbox (Dimitrov et al.,

2016), which uses the chemical structure of substances to make a

wide array of predictions, such as blood-brain barrier

permeability, dermal absorption, and toxicity flags. There has

been focused work in developing computational EDC

classification models, including statistically based (Q)SAR

models such as ACD (Advanced Chemistry Development)

Percepta (Advanced Chemistry Development, 2019), VEGA

(Satyanarayan et al., 2016), CaseUltra (Saiakhov et al., 2013),

ADMET Predictor (Simulations-Plus, 2020), Oasis TIMES

(Todorov et al., 2011), and those presented by Ciallella and

co-workers (Ciallella et al., 2020). Some of the most

comprehensive work for predicting EDC activity was carried

out by the United States Environmental Protection Agency (US

EPA), under the Collaborative Estrogen Receptor Activity

Prediction Project (CERAPP) (Mansouri et al., 2016) and

Collaborative Modeling Project for Androgen Receptor

Activity (CoMPARA) (Mansouri et al., 2020).

CERAPP and CoMPARA are models which combine

multiple (Q)SAR models to predict ER and AR activity,

respectively, and are currently available to use through the

freely available OPEn structure-activity Relationship App

(OPERA) (Mansouri et al., 2018). The projects include binary
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and multi-class (based on potency) data for three types of

activity; binding, agonism, and antagonism. For CERAPP and

CoMPARA, EDC relevant information was gathered from

ToxCast and Tox21 (Dix et al., 2007; Richard et al., 2016) in

line with approaches for other in silico models that used the

ToxCast in vitro data to make predictive tools (Chushak et al.,

2018; Gadaleta et al., 2018; Manganelli et al., 2019; Correia et al.,

2021). CERAPP and CoMPARA were developed by providing

research groups with training data, usingMLmethodologies such

as k-nearest neighbors, support vector machines, random forests

(RFs), and artificial neural networks to develop predictive

models. For these methods, a variety of different descriptors

were utilized, such as AutoDock scores (Hill and Reilly, 2015),

Leadscope (Roberts et al., 2000), DRAGON fingerprints

(Todeschini et al., 2007), and GLIDE scores (Friesner et al.,

2004). The US EPA weighted and combined the results of those

models into a single model known as a consensus model.

Consensus models seek to minimize the faults of any one

model by combining the predictions from individual models

(Papa et al., 2014; Grisoni et al., 2019). Although many models

are already developed for EDC prediction, the predictive

capabilities of the models on a wide range of various

substances are currently unknown. Furthermore, some of

these models rely on commercial software, making

accessibility challenging if predictions on new substances are

required.

In this work, we develop (Q)SARmodels to predict endocrine

receptor activity, specifically estrogen and androgen receptor

activity, to cover a broader range of substances than previous

models, aiming to cover more of the Canadian DSL while

maintaining high predictive capabilities. Using large datasets

from US EPA, RF models were trained and optimized to be

incorporated into a priority setting workflow that further

compiles, integrates, and interprets various sources and types

of information, such as in vitro and in vivo results as available.

Twelve unique models were developed, six for estrogen activity

and six for androgen activity, using the Evaluation datasets from

CERAPP and CoMPARA, respectively. The six models for each

receptor type were binary and multi-class for each activity:

binding, agonism, and antagonism. The large datasets

provided more data for the models to learn. Descriptors used

were from widely available software such as Open Babel and

PubChem. These models were developed to be robust, have

predictive capabilities over a diverse and considerable number

of substances, and be freely available so that any user can readily

make new predictions. In addition, models were developed to be

conservative, meaning that if the choice is to label a model as

Inactive or Active, it will be more likely to be classified as Active.

A conservative model will have fewer Active substances classified

as Inactive at the expense of more Inactive substances to be

classified as Active. The RF models developed in this work will be

integrated into a priority-setting workflow to achieve a fuller

understanding of the data landscape and toxicological profiles of

substance inventories in Canada. These models will be one

element of a tiered and integrated framework, providing

robust in silico information to be weighed with further

evidence from in vitro and in vivo information if available

across the chemical space of interest.

Methods

Data sources

The information used for model development and testing

came from the databases used for the US EPA’s CERAPP and

CoMPARA large-scale modeling efforts. The US EPA training

data was high throughput screening (HTS) in vitro data which

was combined using a mathematical model to calculate an area

under the curve score, which the authors noted was “roughly

proportional to the consensus AC50 value across the active

assays” (Judson et al., 2015; Kleinstreuer et al., 2017). In

contrast, the original CERAPP Evaluation data, which was

used for training the current model, was in vitro data

collected through literature and available datasets, with the

value being an average of the AC50 of the collected results for

each substance. The choice was made to use the Evaluation

dataset to train the RF as the datasets are larger and are expected

to cover a broader chemical space, at the expense of the results

representing in vitro data compared to the training data that

aimed to mimic in vivo. This was considered a reasonable trade-

off as the intended use is within a multi-tiered framework where

the RFmodels will be used to screen a broad and diverse chemical

space as an element of an integrated screening and prioritization

process. The breakdown of the Training and Evaluation datasets

is shown in Tables 1, 2. In this work, the in vitro data from the

Evaluation datasets were used to develop the models to cover a

wide range of chemical space while maintaining high predictive

performance. The CERAPP and CoMPARA Training datasets

contained 1,812 and 1,855 substances, respectively, with HTS

in vitro data from the ToxCast and Tox21 programs. The

Evaluation datasets had data for 7,522 and 5,064 substances

for CERAPP and CoMPARA, respectively, from literature and

compiled datasets such as the US Food and Drug Administration

Estrogenic Activity Database (Shen et al., 2013) and the ChEMBL

database (Gaulton et al., 2012). It should be noted that the

data for both the Training and Evaluation datasets for all

endpoints were imbalanced, with most substances being

labeled Inactive.

The number of substances presented in this work and thus

used to train the RFs may differ from other sources as the datasets

were further curated. The substances were converted to the (Q)

SAR ready structures and then compared to each other to

minimize duplication of substances (additional details in

Supplementary Material). For example, 144 structures were

removed from CoMPARA binding data as their structures
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were duplicated within the dataset. This was done to minimize

overfitting models to those structures or confusion of the models

if the activities differed.

In work by Mansouri et al., the estrogen activity information

was gathered from various sources supported by literature results

(Mansouri et al., 2016). Due to the nature of the dataset, most

substances have data frommultiple sources. Mansouri showed in

their work that the predictions made on substances with an

increasing number of sources (i.e., a threshold based on the

number of sources used) had increased predictive capability. This

was also noted during preliminary analysis for the RF model

development and shown in Figure 1; as the required number of

sources increased, so did the model’s predictive power.

Additionally, as the number of minimum sources increased,

the number of substances decreased.

A cut-off requiring four or more sources was chosen as it gave

the highest balanced accuracy (BA) while also containing many

substances. BA is a term used in classification problems, such as

for activities of substances, and is the average of the sensitivity (or

recall) and specificity. A more generalized term is that the BA is

the average of the recalls for each class in a classification problem,

shown in the equation below. In that equation, n is the number of

classes, i is the class examined at that time, TPi is the number of

TABLE 1 Information for binary receptor activity for the training and evaluation datasets.

Training dataset Evaluation dataset

Binding Agonist Antagonist Binding (≥4 sources) Agonist Antagonist

CERAPP Inactive 1,440 1,458 1,636 5,301 (5,051) 5,969 6,255

Active 237 219 41 1,982 (350) 350 284

CoMPARA Inactive 1,464 1,616 1,366 3,298 4,494 3,539

Active 198 43 159 440 166 343

For the CERAPP evaluation set, the number of substances for which data was derived from four or more sources is shown in brackets.

TABLE 2 Information for classification of receptor activity for the training and evaluation datasets.

Training dataset Evaluation dataset

Binding Agonist Antagonist Binding (≥4 sources) Agonist Antagonist

CERAPP Inactive 1,488 1,505 1,645 5,042 (5042) 5,892 6,221

Very Weak 133 122 25 685 (43) 19 76

Weak 45 41 5 894 (215) 179 188

Moderate 4 3 1 72 (34) 31 10

Strong 7 6 1 77 (31) 42 10

CoMPARA Inactive 1,462 1,616 1,371 3,298 4,494 3,539

Very Weak 107 12 92 141 17 148

Weak 61 6 55 216 83 176

Moderate 2 0 2 15 9 6

Strong 30 25 5 63 55 10

For the CERAPP evaluation set, the number of substances for which data was derived from four or more sources is shown in brackets.

FIGURE 1
Random Forest Balanced Accuracy and Number of
Substances as a function of Minimum Number of Sources.
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correctly identified substances in class i, and FNi is the number of

incorrectly predicted substances in class i. The BA is used as it is

well-suited for imbalanced datasets (such as the datasets used to

train the RF models in this work) and easy and unambiguous to

apply to multi-class problems.

BA � 1
n
∑

i�1
TPi

TPi + FNi
(1)

Descriptors

The descriptors were comprised of multiple freely available

structural fingerprints and some calculated physical-chemical

properties for all chemicals. The structural fingerprints included

were PubChem fingerprints (Kim et al., 2019), MACCS

fingerprints, and the FP2, FP3, and FP4 fingerprints from

OpenBabel (O’Boyle et al., 2011), as well as 15 physical

chemistry properties calculated using OpenBabel. Most

structural fingerprints are a series of 1’s and 0’s indicating the

presence or absence of a chemical feature or substructure, such as

if the substance has four or more carbon atoms or contains an

aldehyde. The physical-chemical properties included molecular

weight, number of atoms and bonds, and predicted values such as

melting point and logP. These descriptors were chosen as they

cover various substructures and properties. In total,

2,456 descriptors were calculated for each substance and

combined to create a single fingerprint. Before the datasets

were used to train the RF models, the fingerprints were

pruned to remove unnecessary descriptors to make training

the models easier and potentially increase the accuracy of RF

models. When RF models are trained, each node only tests on a

subset of all descriptors to determine the ideal split. By removing

low variance and highly correlated descriptors, the remaining

descriptors likely contain more relevant information to the

models and are represented more often in the descriptor

subsets. The first feature reduction step was removing

descriptors that had no variance across the datasets. The

second pruning step removed descriptors with high

collinearity, which was achieved using Pearson correlations.

Pearson correlations were calculated between descriptors, and

if two descriptors had a Pearson correlation greater than 0.98,

only one was used for training.

Random forest methodology

The previously described descriptors and activities were used

to train the RF models. The RF code and underlying Decision

Trees (DTs) were written in-house using Python programming.

A pictorial example of a DT and an RF is given in Figure 2,

showing that an RF is a collection of DTs. The RF prediction

combines the prediction of its compositional DTs, typically a

simple majority voting. The use of in-house codes was done to

allow for complete control of the training process. For example,

the code allowed the trees to be trained using different cost

functions: Gini Impurity, BA, Matthews Correlation Coefficient,

and F-Score. For multi-class-based models, BA and F-scores used

were macro-averaged, as that helped account for the imbalanced

nature of the datasets. In addition, in-house written codes were

developed to allow the training protocol to be conservative for

screening and prioritization of substances for further exploration.

In the case of a tie, conservative predictions were achieved by

giving preference to the stronger activity, e.g., equal Inactive and

Active predictions would deliver a result of Active, or a tie

between Weak and Moderate will generate a result of

Moderate. For each RF model, 101 DTs were trained for each

combination of the receptor (estrogen or androgen), activity

(binding, agonism, and antagonism), the classifier (binary or

class), and cost function. At the beginning of training each DT, all

non-binary descriptors were binned into twenty equal-sized bins.

This is done for each DT, as they are trained on randomly

selected subsets of all substances, thereby changing the spacing of

each bin. When the non-binary descriptors were tested for

splitting the node, the boundary of each bin is tested, with the

split being substances below and above the boundary value. For

FIGURE 2
Example of (A) a Decision Tree and (B) a Random Forest. DTs are a flowchart with each node being a test on an attribute, leading down to a leaf,
which gives the prediction. An RF is a collection of DTs, where the final prediction is based on the predictions of the DTs from which it is comprised.
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example, if the molar mass range were 50–250, the split would

test when substances were above and below 60 g/mol, 70 g/mol,

80 g/mol, and so on up to 240 g/mol. This effectively turned the

non-binary descriptors into multiple binary descriptors. Further

details of the RF and DT training can be found in the

Supplementary Material.

For each RF, after it was trained, an in-house written genetic

algorithm (GA) was used to optimize the RF (Whitley, 1994;

Mirjalili, 2019). The GA was allowed to alter the depth of each

tree independent of all other trees and was even allowed to turn

off DTs. By allowing the DTs to be reduced in size or turned off,

the RF may be less overfit and give better overall predictions. The

GA was designed to improve a scoring similar to the CoMPARA

work, which looked at improving the BA of the training and

testing data; equations are given in the Supplementary Material

(Mansouri et al., 2020). After the RFs were optimized, the single

best RF for each combination of receptor, activity, and classifier

(binary or multi-class) was chosen as the representative RF for

that combination. For example, for binary ER binding, the

representative RF was one where the Gini Impurity was used

to train the DTs. Forty-eight unique RFs were trained and

optimized, with 12 RFs presented in this work.

In addition to optimization of the RF models, applicability

domains (ADs) were developed for each model. ADs are a region

of chemical space in which accurate predictions about a chemical

are likely to be made as the substance is chemically similar to the

substances used to train the models. The ADs were calculated

using an in-house program that used density k-nearest neighbors

(dkNN) neighbors. The AD was developed using only the

substances included in each RF model training data. For this

approach, the pruned fingerprints were combined using principal

components analysis (PCA) (Pearson, 1901), with enough

principal components accounting for at least 95% of the

fingerprints variance. The methodology and approach of the

dkNN were taken from Sahigara et al., who recommend using a

threshold cut-off of n1/m to consider what is in and out of the AD,

where n is the number of data points used to create the AD andm

is a value determined to optimize the AD (Sahigara et al., 2013).

To optimize the ADs, the values of m were chosen such that the

BA would increase, removing a minimal number of substances,

typically 15% of the data.

The RF, DT, and AD codes, as well as instructions for

installing and running the codes, are available on GitHub

under the Massachusetts Institute of Technology Licence

(https://github.com/SeanPCollins/RandomForest).

Results

The RFs and their underlying DTs were designed to give as

high predictive power over as wide a range of substances as

possible. Another consideration put into the work was to develop

models that would give conservative results. This is because the

RF models, along with other in silico models, would be used as a

first tier in a multi-tiered screening and priority setting approach

for chemical risk assessment activities. With the RF models

designed how they are, (Q)SAR models that cover a broad

chemical space were needed to implement into a workflow

approach where the results are used in a weight of evidence

approach. For substances that require more detailed information

(such as in vitro or in vivo), the (Q)SAR models can be weighted

into the overall conclusion. The conservative approach allows for

substances that have the potential to be EDC to be flagged to

prioritize further information gathering, research, or evaluation.

This is seen in the confusion matrix seen in Table 3. The results’

sensitivity and specificity are both high (88.0% and 87.9%,

respectively), leading to a BA of 88.0%. However, due to the

imbalanced nature of the data sets, there is a high number of false

positives (607 out of 915 total positives), leading to low precision

of 33.6%. This result may sound poor compared to the sensitivity

and specificity; however, this is in line with other models of its

type, with precisions ranging from 25.2% to 56.6%. As this

method is designed to be a component of an early screening

approach, a low false negative rate is more desirable. Confusion

matrices for all RF models and performance metrics for all

models are given in the Supplementary Material.

In addition to the BA, coverage is an important term that is

examined. The coverage is the percentage of dataset substances

within the model AD. Higher coverage indicates a greater

number, and likely more diverse, substances within the AD.

Finally, when applicable, the precision and the recall are also

examined. Precision is the ratio of substances predicted active by

a model that are observed active. Precision gives an idea of how

many substances are falsely predicted active (low precision

means a high number of false actives) that, if not high

enough, may lead to extraneous work in later stages of the

workflow. The recall is the ratio of active substances predicted

to be active. The recall is a crucial factor for this work, as these

models are intended to be integrated into a priority setting

workflow, so it is critical to have a high recall, even at a

potential loss of precision.

The results of this work use the CERAPP and CoMPARA

Evaluation datasets, which are the same data used to train the RF

models. For each RF model training, only 75% of the data was

used to train. The remaining 25% was known as the test set for

TABLE 3 Confusion matrix of the estrogen antagonist ER model
results when looking at all CERAPP evaluation set substances with
four or more data sources.

Predicted

Inactive Active

Observed Experimentally Inactive 4,444 607

Experimentally Active 42 308

Frontiers in Toxicology frontiersin.org06

Collins and Barton-Maclaren 10.3389/ftox.2022.981928

https://github.com/SeanPCollins/RandomForest
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2022.981928


each model and used to validate the models. Therefore, when

discussing the performance of the RF models, a focus will be

placed on the performance of the models on their respective

test sets.

Binary estrogen receptor activity

Multiple models, including the novel RF models, were tested

using the CERAPP Evaluation data. Statistics of the models are

shown in Figure 3, specifically, the BA, the coverage, the

precision, and the recall. Specific values for the results are

given in the Supplementary Material. The best models would

both have a large BA, coverage, precision, and recall, which

would be in the upper right corner of each figure. It should be

noted that the results for the binding models (Figures 3A,B)

showed that only substances which were created from four or

more sources were used to evaluate them. The reason to use

substances with a minimum number of sources is that it was

found that increasing the number of sources leads to an increase

in predictive power, which was noted in this work as well as in

that by Mansouri et al. (Mansouri et al., 2016). Based on

Mansouri’s and our early work, the RF binding models were

trained on those high-sourced substances. Results for when all

data was included for binding activity are given in the

Supplementary Material. For all endpoints, all models were

tested on the entire Evaluation dataset from CERAPP (except

for removing low-sourced binding information); however, for the

RF models, information is also provided for when only

substances in their respective test sets were included. For the

remainder of the work, statistics of the models discussed will be

when their ADs are applied.

For binary ER activity, the RF model results showed good

performance, with the lowest BA being 82% and the lowest

FIGURE 3
Statistics of performance of the binary ER activity models for binding (A,B), agonism (C,D), and antagonism (E,F). A, C, and E show the results of
BA as a function of Coverage while B, D, and E show Precision as a function of Recall. Orange squares are for RF models when all substances are
considered, gray diamonds are when only the substances in the RF test substances are considered, and blue circles are for other models.
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coverage of 88%. Compared to the other models tested, the RF

models appeared to have a good compromise as the results

appear closest to the upper right corner of the graph, which is

where the best performance is. For ER binding, the RF model is a

good compromise between coverage and balanced accuracy and

appears to have one of the highest recalls, although at the cost of

precision. One model, specifically the CaseUltra ER Binding

model, had a higher recall; however, that model had a low

coverage of 64.9%. The overall trend appears similar to ER

agonism, where the RF model shows a good trade-off between

balanced accuracy and coverage and a high recall at the cost of its

precision. The two ER agonismmodels that outperformed the RF

model in the recall were the CaseUltra Agonist and Agonist

Alpha models; however, their coverages were lower (69.4% and

79.1%, respectively) while having similar or worse precisions. For

ER antagonism, the trends were not as consistent. Although the

RF model performed well for BA and coverage, it was one of the

lowest performing models in terms of recall and precision. The

three with better precision-recall performance underperformed

in terms of their coverage, with the highest value being 80%

compared to the 88.4% of the RF model.

Multi-class estrogen receptor activity

In addition to the binary models (Inactive/Active), multi-

class models were also developed that categorized the potency

of the ER effect into five classes from Inactive to Strong. BAs

continued to be used as the key statistic for comparison;

however, it should be noted that a theoretical minimum BA

is the inverse of the number of classes, so for five classes, the

minimum is 20%. This is because if all substances were

classified as a single activity, that activity would have a

100% recall, but all others would be 0%, for an average of

20%, or the inverse of the number of classes. Confusion

matrices for multi-class models are more complex than for

binary models due to the increase in classes, with an example

shown in Table 4. All multi-class confusion matrices are

available in the Supplementary Material. For multi-class

models, the BA is the average of each class’s correctly

identified (recall or sensitivity) substances, so for the

example in Table 4, it would be 72.2%. For tiered multi-

class models, such as the predicting strength of an ED activity,

some misclassifications are not as problematic as others are.

For example, if a Moderate substance is classified as Strong, it

is not as concerning as a Moderate active substance being

classified as Inactive. In a workflow approach, Inactive

substances may be removed from consideration, and both

Moderate and Strong substances may move on to the next step

in a tiered screening and risk assessment approach. To the best

of our knowledge, there does not appear to be a method or

statistic to deal with those sorts of errors in the predictions, so

analyzing the results will be done using the currently known

and used methods where all errors are treated equally.

The results for all ER multi-class models are in Figure 4,

with specific values given in Supplementary Material. It

should be noted that for multi-class models, the definitions

of precision and recall are not as well defined as for binary

models. For multi-class models, only the BA and coverage will

be examined. There were fewer models found for predicting

multi-class activity, the RF models developed here and the

CERAPP consensus models, so for multi-class models, the

individual models that make the CERAPP consensus models

were included. The multi-class models were not available in

OPERA; therefore, the results for the multi-class models were

taken from the original CERAPP work. This means in terms of

coverage, the CERAPP and consensus models all had 100%,

while the coverage for the RF models ranges from 84.6% to

90.8%. The loss of decrease was seen with a substantial

increase in BA values, with the RF models outperforming

the best CERAPP models, having balanced accuracies of

23.7–47.0 points (e.g., 22.5% vs. 69.5%) higher. This

difference was most noticeable in the antagonism activity.

The high BAs of the RF models can likely be attributed to the

use of the CERAPP Evaluation dataset to train the models as

opposed to the Training dataset that the component models

were trained on. This increase in data can be significant for

imbalanced multi-class classification problems, such as ER

activities. For example, in the CERAPP Training dataset, there

was only one Moderate and one Strong antagonist compared

TABLE 4 Confusion matrix for the RF model predicting the multi-class binding potency of the CERAPP Evaluation Dataset.

Predicted

Inactive Very weak Weak Moderate Strong Recall (%)

Observed Inactive 3,416 854 73 128 113 74.5

Very Weak 3 35 0 2 0 87.5

Weak 23 72 67 22 5 35.4

Moderate 0 1 0 24 5 80.0

Strong 0 0 0 5 25 83.3
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to ten and ten, respectively, in the CERAPP Evaluation

Dataset. This is a consistent trend for all Active classes

across the three activities. The lack of data in each class

can make it difficult for any model to learn the underlying

patterns of what makes a substance have a particular activity.

A marked decrease in the BAs was observed between the RF on

all substances and when only testing the Test set substances.

This decrease may be due to the overfitting of the models due

to a small number of substances, or it could be that a single

misclassification of the Test set data can potentially lead to

substantial changes in the BA. For example, there are

31 Strong binding substances (when the AD is ignored),

and only five of the substances are in the Test Set. Each

class contributes 20% to the BA, so if one of the five Strong

substances is misclassified, that will decrease the BA by 4%.

Another difficulty in multi-class-based models is that not

every misclassification has the same meaning when looking

at potential outcomes. What is meant by this is if a Strong

substance were classified as Moderate, they might still have the

same next step applied, such as moving ahead for risk

assessment. The same may not be valid for a Strong

substance being misclassified as Inactive, where it may not

be considered for risk assessment. In this respect, classifying a

Strong substance as Moderate could be viewed as a minor

error instead of misclassifying a Strong substance as Inactive.

To the best of our knowledge, there is not a methodology

widely used to account for these errors; therefore, we choose to

use the standard BA we used for the binary models.

Binary androgen receptor activity

In addition to the ER activity, RF models were developed for

AR activity; the results for the binary models are shown in

Figure 5, with values given in the Supplementary Material.

When looking at the BA and coverages (Figures 5A,C,E), the

RF models show that coverages do not go below 85%; however,

they have ranges of BAs from 78.9% to 93.6%. Some models have

higher BAs than the RFmodels, such as the CaseUltra Antagonist

HEKmodel being 8.8 points higher than the respective RFmodel;

however, this increase is seen with a decrease in the coverage

(86.7% compared to 75.6%). A similar trend is also seen in the

other direction, such as AR binding where the CoMPARA

consensus model had much higher coverage (97.2% compared

to 85%), although its BA was much lower, 65.8% compared to

84.9%. There was also a notable difference in performance for the

antagonist RF model when comparing the Evaluation and Test

sets, the BA dropped from 88.3% to 78.9% and the coverage

dropped from 88.5% to 86.7%. This may be attributed to the

overfitting of the RF model to the data that even the GA

optimization was unable to overcome. Across all AR activities,

the RF models appeared to have good trade-offs between

coverage and BA.

The precision and recall were also assessed for all binary AR

models, with those results shown in Figures 5B,D,F. The RF

models had reliable performances for AR binding and agonism

predictions with recalls of 85% and 88%, respectively, and

respective precisions of 42.5% and 80.4%. These results

compared well with the other models having precisions and

recalls, which showed good performance. In the example of AR

binding, VEGA had the highest precision of 59.1% but with a

recall of 28.0%. In comparison, the RFmodel precision was 42.5%

but had a recall of 84.9%. AR agonism shows a similar trend

FIGURE 4
BA vs. coverage for ER multi-class models tested in this work
for (A) binding, (B) agonism, and (C) antagonism. Orange squares
are for RF models when all substances are considered, gray
diamonds are when only the substances in the RF test
substances are considered, and blue circles are for other models.
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where the CaseUltra Agonist MDA model had a recall of 98.7%

compared to the RF recall of 88.1% however its precision was

30.9%, compared to the 80.4% precision of the RF model. AR

antagonism showed poor performance compared to other

models for recall and precision, where the CaseUltra

Antagonist HEK model had a higher recall (91.7% and 72.7%)

and precision (39.3% and 30.6%). The RF models perform well

when considering all four metrics; BA, coverage, precision, and

recall. This is because the RF models are superior at balancing all

four statistics while not excelling in any single aspect (apart from

precision for the agonist models). The one exception is the

performance of the antagonist models, where both versions of

the CaseUltra appear to do better in terms of BA, precision, and

recall. The only metric in which the RF model outperforms them

is the coverage. Overall, the RF models have good statistics

demonstrating suitability for use in a workflow to support the

identification of priority substances for further evaluation.

Multi-class androgen receptor activity

The results for the multi-class models for AR activity are

shown in Figure 6, with specific results in the Supplementary

Material. It should be noted that, unlike the other activity

endpoints, no other published models were found, even from

CoMPARA. The US EPA did not develop multi-class models

for CoMPARA; however, the results from the submitted

models were used for comparison. The multi-class AR

activity RF models were the highest performing models

developed when considering both the coverage and the BA.

The RF models far outperformed the competing models, with

the BAs being 19.9% and 34.2% higher than the following

closest models. The substantial increase of predictive power of

the RF models is seen without much loss of AD size, where

ADs for the RF test sets ranged were around 88%, compared to

nearly 100% of some of the other models. The overall

FIGURE 5
Statistics of performance of the binary ER activity models for binding (A,B), agonism (C,D), and antagonism (E,F). A, C, and E show the results of
BA as a function of Coverage while B, D, and E show Precision as a function of Recall. Orange squares are for RF models when all substances are
considered, gray diamonds are when only the substances in the RF test substances are considered, and blue circles are for other models.
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performance increase can be attributed to the increased size of

the dataset used to train the models. For example, there are

43 active agonists in the CoMPARA Training dataset, with

25 labeled as Strong and noModerate substances, compared to

164 agonists in the Evaluation dataset, 55 labeled as Strong

and 9 Moderate. The lack of active agonists in the Training

dataset and their bias toward Strong substances meant little

information for the CoMPARA models to learn about the

other classes.

Discussion

Using (Q)SAR models can provide valuable information for

screening and prioritizing substances for chemical testing and

risk assessment. In the context of data-poor substances,

incorporating in silico and computational approaches can

provide predictions about a toxicity endpoint of potential

concern for human health on many substances that may

otherwise go undetected (Q)SAR models are routinely used in

regulatory toxicology (Madden et al., 2020; Cronin et al., 2022),

such as the US EPA developing CERAPP for ER activity

(Mansouri et al., 2016), CoMPARA for AR activity (Mansouri

et al., 2020), or the Danish EPA developing (Q)SAR models for

thyroid receptor activity (Rosenberg et al., 2017). These models

can rapidly make predictions on models with minimal trade-offs

of accuracy. A challenge related to the application of in silico

models in regulatory contexts is determining those with high

predictive capabilities and cover a wide range of chemical space.

The datasets used in this study were large, containing in vitro

data developed initially by the US EPA for use under CERAPP

and CoMPARA and further used to evaluate other (Q)SAR

models. The datasets were subject to a consistency check

where duplicated information was removed. Additionally the

CERAPP dataset binding information had a threshold applied

where only substances that contained more than three sources of

information were considered, based on the current analysis and

findings in the original CERAPP work (Mansouri et al., 2016).

RF models were developed using the US EPA CERAPP and

CoMPARA evaluation datasets using in-house developed DT

and RF models. After training the RFs, they were further

optimized using an in-house developed genetic algorithm,

which aimed to maximize the predictive capability of the

models, both for the substances they were trained on and an

unseen test set of data. After optimization, ADs were developed,

and the thresholds were selected to maximize the predictive

capability and the number of substances within the AD. This

procedure was done for binary and multi-class information for

ER and AR binding, agonism, and antagonism, for 12 RF models

developed in this work.

The performance of RF models was compared against other

in silico models across several endocrine disrupting toxicological

endpoints, specifically for estrogen and androgen receptors. The

number of comparison models varied based on the endpoint. It

was found that the RF models were consistently high performing,

if not the best performing, models in terms of both BA and

coverage. This was most notable in the multi-class models as

there were few models for comparison, making them one of the

few available. In addition, the models had higher overages and

BAs without sacrificing precision or recall too much. The RF

models did not have the highest values in terms of precision or

recall. However, considering the four statistics in this work, the

RF is among the highest performing, if not the highest

performing models.

FIGURE 6
BA vs. coverage for AR multi-class models tested in this work
for (A) binding, (B) agonism, and (C) antagonism. Orange squares
are for RF models when all substances are considered, gray
diamonds are when only the substances in the RF test
substances are considered, and blue circles are for other models.
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The overall development of this work demonstrates that

these models are well suited to fit into a weight of evidence

workflow for priority setting of substances for chemical risk

assessment activities. These models can provide predictions on

substances that may lack higher-level data (such as in vitro or in

vivo studies) while still providing confidence that the substances

most likely to have the potential for hazard and risk are detected.

Although previous models have been developed for these

endpoints, the RF models developed and described here

demonstrate high performance compared to a variety of other

models tested on the same dataset with a broader AD, providing

added value for rapid screening of large chemical inventories.

Conclusion

The RF models were developed and optimized to give

predictions of estrogenicity and androgenicity for substances,

given only their structure, offering significant value where there is

a need for high throughput screening to gain a better

understanding of the potential for toxicity of data-poor

substances in the context of prioritization and tiered testing

frameworks. The RF model used simple, freely available

descriptors, such as PubChem descriptors, and used data from

the US EPA CERAPP and CoMPARA projects. For estrogenicity

and androgenicity, binary (Inactive/Active) and multi-class

(Inactive to Strong) models were developed. A comparative

analysis of the models showed that for the studied

toxicological endpoints, the RF models developed in this work

were the highest performing models when considering the BAs

and the coverage. These results were also found without the RF

models having a decrease in precision or recall, which is

advantageous for models which would be incorporated into

an integrated workflow for priority setting. The high

performance was especially notable in the multi-class models,

which can be attributed to using a large dataset with enough

substances to have a reasonable number and distribution across

most classes. Overall, the RF models developed and examined in

this work provide high accuracy predictions from simple

descriptors while covering a diverse range of substances.

These models are well suited to support large-scale screening

efforts of diverse chemistries to determine if they are likely to be

endocrine active and may warrant further exploration for

potential as EDCs. These models are good candidates for

integrating into a workflow for priority setting and tiered

testing and assessment approaches. By implementing the

predictions into a workflow that uses a weight of evidence

approach, the predictions from these models can be used to

support the identification of substances or groups of substances

in a priority setting when in vivo or in vitro is unavailable.

Further, the application of in silico and computational

approaches offers important evidence for identifying critical

data needs in support of future research and information

generation efforts to link early indicators of toxicity to adverse

outcomes. Future work will investigate finding trends in these

models for poor predictions and training the RF model on

different endpoints relevant for human health risk assessment,

such as acute toxicity and genotoxicity.
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