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Abstract: Dissecting the genetic basis of yield traits in hybrid populations and identifying the
candidate genes are important for molecular crop breeding. In this study, a BC1F3:4 population, the
line per se (LPS) population, was constructed by using elite inbred lines Zheng58 and PH4CV as
the parental lines. The population was genotyped with 55,000 SNPs and testcrossed to Chang7-2
and PH6WC (two testers) to construct two testcross (TC) populations. The three populations were
evaluated for hundred kernel weight (HKW) and yield per plant (YPP) in multiple environments.
Marker–trait association analysis (MTA) identified 24 to 151 significant SNPs in the three populations.
Comparison of the significant SNPs identified common and specific quantitative trait locus/loci
(QTL) in the LPS and TC populations. Genetic feature analysis of these significant SNPs proved that
these SNPs were associated with the tested traits and could be used to predict trait performance of
both LPS and TC populations. RNA-seq analysis was performed using maize hybrid varieties and
their parental lines, and differentially expressed genes (DEGs) between hybrid varieties and parental
lines were identified. Comparison of the chromosome positions of DEGs with those of significant
SNPs detected in the TC population identified potential candidate genes that might be related to
hybrid performance. Combining RNA-seq analysis and MTA results identified candidate genes for
hybrid performance, providing information that could be useful for maize hybrid breeding.

Keywords: maize; testcross; yield per plant; hundred kernel weight; candidate gene

1. Introduction

With the increase in human population, it is expected that the production of staple food
crops should be doubled to feed the growing population by 2050 [1]. Hybrid crop breeding
can increase crop yield and meet human demand for food. As a successful example of
hybrid breeding, hybrid maize has played an important role in maize yield increase in
the last century [2]. To further increase the yield of hybrid maize by using molecular
design breeding, it is necessary to dissect the genetic and molecular mechanism of hybrid
performance in hybrid populations.

In maize, hybrid breeding generally requires selection of breeding materials according
to line per se (LPS) and testcross (TC) performance [3]. However, LPS performance can
only indirectly assess TC performance [4], and the accuracy of selection based on LPS
performance depends on the relationship between the LPS and TC population. The genomic
differences between an LPS population and its TC counterpart are the replacement of one half
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of its genome by the genome of the tester. Thus, the masking effect of the dominant alleles from
the tester and epistasis caused by the tester genome might influence the correlation between
the performance of the LPS population and that of the TC population [5,6]. Comparison of
the genetic basis of the LPS and TC populations would unravel the differences between the
two populations and help us understand their correlation.

Marker–trait association (MTA) analysis identifies the association between the tested
traits and molecular markers within a population. To date, many MTA analysis methods
have been developed, such as the general linear model, mixed linear model, and FarmCPU
(fixed and random model circulating probability unification) [7–10], but most methods
can only be used for MTA analysis in populations containing inbred lines. Because there
are both homozygous and heterozygous genotypes in the genotypic data of hybrid pop-
ulations, statistical methods and models that include both dominant and additive effects
should be developed. Huang et al. (2015) used different encoding schemes to detect the
genetic basis of additive, dominant and recessive effects [11]. Another study used a linear
mixed model fitting both additive and dominance effects to detect additive and dominant
quantitative trait locus/loci (QTL) [12]. Zhang et al. [13] provided a user-friendly pipeline
for detecting QTL in hybrid populations. The pipeline considered additive, dominance
and epistatic effects and used likelihood ratio test (LRT) statistics to declare the statistical
significance. These models have been proven reliable for performing MTA analysis in
hybrid populations.

Various methods provide evidence for the selection of candidate genes in QTL regions.
RNA sequencing (RNA-seq) was able to identify differentially expressed genes (DEGs)
among multiple samples or treatments and has been frequently used to find candidate
genes controlling various traits [14–16]. Gene annotation information was also used to
identify and confirm the candidate genes within a chromosomal interval. By analyzing the
DEGs in the mapping interval, the candidate gene controlling maize glossy phenotype was
identified and functionally characterized [14]. The candidate genes for a plant height QTL
were selected based on RNA-seq analysis and gene annotation information [15]. Taken
together, RNA-seq and gene annotation analysis could be used to select candidate genes in
QTL regions.

In this study, we constructed a BC1F3:4 population by using elite inbred lines Zheng58
(donor parent) and PH4CV (recurrent parent). The population was testcrossed to Chang7-2
and PH6WC. The three populations were evaluated for hundred kernel weight (HKW) and
yield per plant (YPP). Additionally, we performed RNA-seq analysis using two widely
used hybrid varieties and their parents to find the DEGs between hybrids and their parental
lines. The objectives of this study were to dissect the genetic basis of HKW and YPP in the
three populations and to assess the genetic features of the significant SNPs. We also found
the DEGs between hybrid varieties and their parental lines and identified the candidate
genes by comparing the locations of the significant SNPs and DEGs.

2. Results
2.1. Phenotypic Data of the Three Populations

The PH6WC TC population had the highest HKW and YPP across all the environments
(Figure 1, Table 1), followed by the Chang7-2 TC population, suggesting that PH6WC
generally had better combining ability with the LPS population than Chang7-2. Both traits
of the LPS population had a higher coefficient of variance and broad-sense heritability,
indicating that the genetic variation was greater and more stable than that of the two TC
populations. Furthermore, HKW had higher heritability than YPP, indicating that HKW was
more stable than YPP across environments (Table 1). The correlation of either HKW or YPP
across environments was generally significant for each population (Figure S1), suggesting
that the genetic basis plays a major role in determining the two traits across environments.
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(Table S1). The SNP density was sufficiently high for MTA analysis [17]. MTA found that 
the numbers of significant SNPs for HKW were 24, 30 and 121 in the LPS population, 
Chang7-2 and PH6WC TC populations, respectively (Table S2). These SNPs were distrib-
uted on all chromosomes (Figure 2a). The top large-effect SNPs controlling HKW of the 
LPS population were on chromosomes 2, 3, 4, 5, 6, 8, 9 and 10 (Figure 2b), whereas those 
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Figure 1. Boxplot showing the distribution of HKW and YPP of the three populations. (a) and
(b) Distribution of HKW and YPP, respectively.

Table 1. Basic statistical analysis of HKW and YPP of the three populations.

Trait Population Mean ± SD (g) N CV (%) Range (g) H2 (%)

HKW
LPS 28.88 ± 2.45 481 8.49 21.73–35.52 82.47

Chang7-2 31.94 ± 1.22 481 3.81 28.43–35.30 79.07
PH6WC 36.96 ± 1.33 481 3.59 33.09–41.41 78.91

YPP
LPS 101.50 ± 16.52 475 16.27 52.23–181.65 61.63

Chang7-2 169.56 ± 9.13 469 5.38 145.28–202.65 55.09
PH6WC 179.58 ± 9.14 475 5.09 154.86–204.93 58.27

SD—standard deviation, N—population size, CV—coefficient of variance, H2—broad-sense heritability.

2.2. Genotypic Data Analysis and Genetic Dissection of Yield Traits of the Three Populations

In total, 15,386 SNPs were obtained after genotype processing, and these SNPs were
distributed evenly across the maize physical map. The number of SNPs ranged from
1056 on chromosome 10 to 2477 on chromosome 1, and the SNP density ranged from
6.62 SNP/Mb on chromosome 2 to 8.80 on chromosome 9, with a mean density of 7.5 SNP/Mb
(Table S1). The SNP density was sufficiently high for MTA analysis [17]. MTA found that
the numbers of significant SNPs for HKW were 24, 30 and 121 in the LPS population,
Chang7-2 and PH6WC TC populations, respectively (Table S2). These SNPs were dis-
tributed on all chromosomes (Figure 2a). The top large-effect SNPs controlling HKW of the
LPS population were on chromosomes 2, 3, 4, 5, 6, 8, 9 and 10 (Figure 2b), whereas those of
the Chang7-2 TC population distributed on chromosomes 1, 4, 6, 5, 7 and 8 (Figure 2c), and
those of the PH6WC TC population distributed on chromosomes 1, 2, 3, 4, 5, 6, 7, 9 and 10
(Figure 2d). The significant SNPs for HKW totally explained 14.20%, 50.51% and 43.69%
of phenotypic variance in the LPS population, Chang7-2 and PH6WC TC population,
respectively (Figure 2b–d).
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The correlation coefficients between the number of favorable genotypes and HKW were 
0.28, 0.49 and 0.36 for the LPS, Chang7-2 and PH6WC TC populations, respectively (Fig-
ure 3a). The correlation coefficients between the number of favorable genotypes and YPP 
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(Figure 3b). The strong positive correlation indicates that the LPS performance and TC 
performance increased with the accumulation of favorable genotypes, which further 
proved the reliability of the MTA results. 

Figure 2. Distributions and effects of significant SNPs. (a) Distribution of significant SNPs control-
ling each trait of each population; the colors show the density of significant SNPs within a 1 Mb
interval; red asterisk indicates common QTL between LPS and Chang7-2 TC populations; blue
asterisk indicates common QTL between LPS and PH6WC TC populations; green asterisk indicates
common QTL between Chang7-2 TC and PH6WC TC populations; dark asterisk indicates common
QTL among LPS, Chang7-2 TC and PH6WC TC populations. (b–d) PVE of the large-effect SNPs
controlling HKW of the LPS, Chang7-2 and PH6WC TC populations, respectively. (e–g) PVE of the
large-effect SNPs controlling YPP of the LPS, Chang7-2 and PH6WC TC populations, respectively.
In (b–g), only SNPs with PVE larger than 1% are shown; PVE_LPS, PVE_Chang7-2 and PVE_PH6WC
indicate phenotypic variance explained by the significant SNPs in the LPS, Chang7-2 and PH6WC
TC populations, respectively.

The number of significant SNPs for YPP was 151, 27 and 29 in the LPS population,
Chang7-2 and PH6WC TC populations, respectively (Table S2). These SNPs mainly dis-
tributed on chromosomes 1, 2, 3, 5 and 8 (Figure 2a). The top large-effect SNPs controlling
YPP of the LPS population were on chromosomes 2, 3 and 8 (Figure 2e), whereas those of
the Chang7-2 TC population were on chromosomes 1 and 2 (Figure 2f), and those of the
PH6WC TC population were on chromosomes 1, 2, 3 and 5 (Figure 2g). The significant
SNPs for YPP totally explained 16.01%, 13.60% and 20.86% of phenotypic variance in the
LPS, Chang7-2 and PH6WC TC population, respectively (Figure 2e–g).

2.3. Genetic Features of the Significant SNPs

We calculated the cumulative effects of favorable genotypes of the significant SNPs.
The correlation coefficients between the number of favorable genotypes and HKW were 0.28,
0.49 and 0.36 for the LPS, Chang7-2 and PH6WC TC populations, respectively (Figure 3a).
The correlation coefficients between the number of favorable genotypes and YPP were 0.30,
0.22 and 0.38 for the LPS, Chang7-2 and PH6WC TC populations, respectively (Figure 3b).
The strong positive correlation indicates that the LPS performance and TC performance
increased with the accumulation of favorable genotypes, which further proved the reliability
of the MTA results.

To test the effect of these significant SNPs in predicting LPS and TC performance,
we performed genomic prediction (GP) and marker-assisted selection (MAS) analysis.
The analysis revealed that the prediction accuracies (PAs) of GP models were larger than
those of the MAS.Sig model (Figure 4a–c), suggesting that some genetic factors were not
identified due to the problem of false negatives for both traits in each population. We also
found that the PAs of the MAS.Sig model were larger than those of MAS.Random model
(Figure 4d–f) for each trait in each population, further proving that the significant SNPs
were in linkage disequilibrium with the genes controlling the tested traits.
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Figure 3. HKW and YPP increased with the increase of the number of favorable genotypes of
significant SNPs. (a) showed that HKW increased with the increase of the number of favorable
genotypes of significant SNPs in the LPS (yellow), Chang7-2 TC (blue), and PH6WC TC (gray)
populations; (b) showed that YPP increased with the increase of the number of favorable genotypes
of significant SNPs in the LPS (yellow), Chang7-2 TC (blue), and PH6WC TC (gray) populations.
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Figure 4. Using the significant SNPs to predict phenotypes in each population. (a–c) PAs of the GP,
MAS.Sig and MAS.Random model in predicting HKW in the LPS (a), Chang7-2 TC (b) and PH6WC
TC (c) populations, (d–f) PAs of the GP, MAS.Sig and MAS.Random models in predicting YPP in the
LPS (d), Chang7-2 TC (e) and PH6WC TC (f) populations. GP indicates GP models using all SNPs;
MAS.Sig indicates MAS models using the significant SNPs; MAS.Random indicates MAS models
using the same number of randomly selected SNPs. p values indicate significant levels of Wilcox.test.
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2.4. Identification of Common QTLs between LPS and TC Populations

Given the significant correlation between the tested traits of the LPS population and
the TC population (Figure 5a), we considered that there should be common QTLs con-
trolling LPS and TC performance. To prove this hypothesis, we examined whether the
significant SNPs of the LPS population take effect in the TC populations. The results
showed that the significant SNPs for HKW of the LPS population explained 25.82% and
12.24% of phenotypic variance in the Chang7-2 and PH6WC TC populations, respectively
(Figure 5b). Furthermore, the significant SNPs controlling YPP of the LPS population
explained 16.58% and 16.51% of phenotypic variance in the Chang7-2 and PH6WC TC pop-
ulations, respectively (Figure 5b). The analysis proved that the significant SNPs controlling
LPS performance also controlled TC performance.
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We further compared the locations of significant SNPs detected for each trait. Two com-
mon QTLs on chromosomes 4 and 6 were associated with HKW of the LPS, Chang7-2 and
PH6WC TC populations. In addition, one QTL at the end of chromosome 6 was commonly
detected in LPS and Chang7-2 TC populations; three common QTLs on chromosomes 2,
3 and 9 were identified in LPS and PH6WC TC populations; and two common QTLs on
chromosomes 1 and 7 were identified between Chang7-2 TC and PH6WC TC populations
(Figure 2a, Table S2). For YPP, one common QTL on chromosome 1 was detected in LPS and
Chang7-2 TC populations, one common QTL on chromosome 2 was detected in LPS and
PH6WC TC populations, and two common QTLs on chromosomes 1 and 2 were detected
in Chang7-2 and PH6WC TC populations (Figure 2a). The analysis revealed that there
were common QTLs between each pair of the three populations, reflecting their strong
phenotypic correlations (Figure 5a).

2.5. RNA-seq Analysis Identified the Candidate Genes in the Surrounding Region of the
Significant SNPs

To find the candidate genes associated with hybrid performance of Chang7-2 TC lines,
we found common DEGs between ZD958 and each of its parents (Zheng58 and Chang7-2)
and compared the locations of these DEGs with those of significant SNPs. RNA-seq analysis
identified 4593 common DEGs (Figure 6a). According to the candidate genes found in our
previous article, the orthologs of 57 and 102 DEGs (Table S3) were related to the control of
kernel weight and yield, respectively [18]. Among the 57 DEGs, the locations of nine DEGs
were close to four HKW QTLs detected in the Chang7-2 TC population (Figure 6a, Table S3),
including GRMZM2G159456, GRMZM2G399072, GRMZM2G445634, GRMZM2G420357,
GRMZM2G034876, GRMZM2G092749, GRMZM2G059939, GRMZM2G328988 and GR-
MZM2G034647. Meanwhile, five of the 102 DEGs were found in the surrounding regions
of one YPP QTL detected in the Chang7-2 TC population, including GRMZM2G095968, GR-
MZM2G159456, GRMZM2G399072, GRMZM2G445634 and GRMZM2G420357 (Figure 6a,
Table S3).
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mance. (a) Co-localization of significant SNPs detected in the Chang7-2 TC population and the DEGs
between ZD958 and its parental lines (Zheng58 and Chang7-2). The five circles, from inner to outer,
indicate the location of common DEGs identified between ZD958 and each of its parental lines, the
MTA results for YPP in the Chang7-2 TC population (red points indicate significant SNPs), the MTA
results for HKW in the Chang7-2 TC population (blue points indicate significant SNPs), SNP density
heatmap and the candidate genes in the surrounding regions of significant SNPs, and maize chromo-
somes. (b) Co-localization of significant SNPs detected in the PH6WC TC population and the DEGs
identified between XY335 and its parental lines (PH6WC and PH4CV). The five circles, from inner to
outer, indicate the location of common DEGs between XY958 and each of its parental lines, the MTA
results for YPP in the PH6WC TC population (red points indicate significant SNPs), the MTA results
for HK in the PH6WC TC population (blue points indicate significant SNPs), SNP density heatmap
and the candidate genes in the surrounding regions of significant SNPs, and maize chromosomes.

To find the candidate genes in the surrounding regions of the significant SNPs detected
in the PH6WC TC population, we first found 1801 DEGs that were commonly detected
between XY335 and each of its parents. Among the 1801 DEGs, 12 and 20 DEGs (Table S4)
were related to the control of yield traits [18]. Among the 12 DEGs, two candidate genes
(GRMZM2G007288 and GRMZM5G875502) were found in the surrounding regions of
two HKW QTLs detected in the PH6WC TC population. Meanwhile, three DEGs (GR-
MZM2G050305, GRMZM2G034876 and GRMZM2G463904) were found in the surrounding
regions of two YPP QTLs detected in the PH6WC TC population (Figure 6b, Table S4).
The genes mentioned in this section could be considered candidate genes for the QTLs
controlling HKW and YPP.

3. Discussion

Maize has rich genetic diversity and rapid linkage disequilibrium, and MTA analysis
of various traits has been performed in maize [19–22]. Many methods have been developed
to increase the calculation speed and statistical power of MTA, such as the general linear
model (GLM), mixed linear model (MLM), etc., but most of them only work for inbred line
populations [23]. At present, there are only a few published MTA methods suitable for
performing MTA analysis in hybrid populations, including EMMAX software, which uses
different encoding schemes to discriminate additive, dominant and recessive effects [10];
the linear mixed model, which fits additive and dominant effects [24]; and the PEPIS
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pipeline, which contains all genetic effects [12]. However, various genetic effects (additive,
dominant and recessive) are dissected in the former two methods, which complicates the
results of MTA analysis. Moreover, the epistasis effect is not considered in the former
two methods. The PEPIS pipeline comprehensively dissects the main effect and calculates
the LRT values of each SNP in a user-friendly manner. Therefore, PEPIS was used for MTA
analysis in this study.

Identification of QTLs and candidate genes controlling agronomic traits is the basis
for developing functional markers and molecular design breeding in maize [25,26]. Al-
though many QTLs have been identified using family-based QTL mapping or association
mapping [18,27], the QTLs or genes identified using family-based or homozygous lines are
different from those detected using hybrid populations [26,28], and most of these QTLs
were not proven functional in hybrid lines. In this study, we not only detected common
QTLs in the LPS and TC populations but also detected specific QTLs in TC populations.
The results showed that the genetic basis of LPS and TC populations is not completely
different. The two common QTLs for HKW on chromosomes 4 and 6 with effects in all
the three populations required further investigation. Although no common QTLs were
detected in the three populations for YPP, there are still common QTLs shared between at
least two populations, indicating that YPP might have a complex genetic basis [28]. These
common QTLs indicated that manipulating QTLs in the LPS population could increase
the yield traits of the hybrid population. Additionally, because the four parental lines of
the tested populations were parents of the two most popular hybrid varieties in China,
the detected QTLs for yield-related traits could explain why the two hybrid varieties are
high-yield and popular in China.

Compared with the results of previous studies, it was found that the significant SNPs
Chr3_104753320 (on chromosome 3) and Chr4_9699802 (on chromosome 4) associated
with HKW were detected in the LPS and TC populations, respectively, which coincides
with the results of a previous study [29]. A significant locus, Chr2_130338518, associated
with YPP was detected in the LPS population, and this locus was also detected in an RIL
population [29]. Because research on genetic mapping is scarce in maize hybrid populations,
most QTL detected in this study were specific. This study has some limitations; although
some significant epistatic QTLs (additive × additive, additive × dominant and dominant
× dominant) were associated with hybrid performance [29–31], we only considered the
main effect and did not identify their modes of inheritance [12]. However, this drawback
did not influence the identification of common QTLs in LPS and TC populations or the
process of finding candidate genes by colocalization.

GP has been proven as a reliable method for predicting both LPS and TC perfor-
mance [32,33]. Because GP relies on the genetic basis of the population [17,34], the distance
between the molecular markers and the QTLs of the target traits could influence the PAs
of GP models. In this study, we used GP models to prove that the significant SNPs are
reliable because the PAs of GP models fitting significant SNPs were larger than those fitting
random SNPs [32]. However, the PAs of GP models fitting significant SNPs were lower
than those of GP models fitting genome-wide SNPs, indicating that some QTLs were not
detected in each population, which might be related to the high threshold level used in
MTA analysis. Furthermore, the realness of the detected QTLs was also supported by the
results that both HKW and YPP increased with increased favorable genotypes.

RNA sequencing analysis has been used to dissect the genetic basis of crop traits
in combination with genetic methods such as association mapping and linkage-based
QTL mapping [15,16]. In this study, in order to find candidate genes underlying hy-
brid performance, we identified the DEGs between F1 and its parental lines and com-
pared the locations of these DEGs with those of the significant SNPs. The DEGs between
F1 and the parental lines might be candidate genes, especially the 14 candidate genes
for yield traits (Figure 6b, Tables S3 and S4). Among the 14 candidate genes for ker-
nel weight, GRMZM2G159456, GRMZM2G399072, GRMZM2G445634, GRMZM2G034876,
GRMZM2G007288 and GRMZM5G875502 are orthologous genes of rice BU1 [35], SNB [36],
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TIFY [37], GL2 [38], GW2 [39] and OsiEZ1 [40] genes, respectively, which have been reported
to regulate rice seed weight; GRMZM2G420357, GRMZM2G092749, GRMZM2G059939
and GRMZM2G034647 are orthologs of Arabidopsis IKU1 [41], FERONIA [42], DPA4 [43]
and CYCB1:4 [44] genes, respectively, and these genes are associated with Arabidopsis
seed weight. Furthermore, GRMZM2G328988, GRMZM2G463904, GRMZM2G095968 and
GRMZM2G050305 are orthologous to UPL3 in oilseed rape [45], to RLK7 in maize [46], to
IbEXP1 in sweet potato [47] and to GmMYB14 in soybean [48], respectively. These genes
were also reported to be associated with seed weight or overall yield. Therefore, the 14 DEGs
for kernel weight might be candidate genes because they were close to the positions of the
significant SNPs identified in the TC populations.

4. Materials and Methods
4.1. Population Construction, Phenotype Evaluation and Phenotypic Data Analysis

Four elite inbred lines were used in this study, including Zheng58, Chang7-2, PH6WC
and PH4CV. Zheng58 and Chang7-2 were the female and male parents of ZD958, respec-
tively. PH6WC and PH4CV were the female and male parents of XY335, respectively.
ZD958 and XY335 are popular hybrid varieties in China [49,50]. The 481 BC1F3:4 fami-
lies were introduced in detail in [32]. Briefly, PH4CV was used as the recurrent parent,
and Zheng58 was used as the donor parent to develop a BC1F3 population, which was
self-pollinated to develop the BC1F3:4 families. The BC1F3:4 families were defined as an
LPS population. The 481 BC1F3 plants testcrossed to Chang7-2 and PH6WC in the winter
of 2015 in Sanya (Hainan province), producing Chang7-2 and PH6WC TC populations,
respectively. These materials were frequently used in maize genetic improvement research
(https://maizedata.cn/, accessed on 3 October 2021) [33,51,52]. The materials and popula-
tions were provided by the molecular genetic improvement group of the Institute of Crop
Sciences, Chinese Academy of Agricultural Sciences.

The LPS and TC populations were sown in Shunyi (Beijing municipality) and Changji
(Xinjiang Uygur Autonomous region) in the summer of 2016 and 2017. The two TC
populations were also sown in Xinxiang (Henan province) in the summer of 2017. The five
environments were identified as 16BJ, 17BJ, 16XJ, 17XJ and 17HN, where BJ, XJ and HN
indicate Beijing, Xinjiang and Henan locations, respectively, and 16 and 17 indicate the years
2016 and 2017, respectively. The field experimental design was an incomplete block design,
as explained in detail in in our previous publication [33]. The row length and row space
were 5 m and 60 cm, respectively, and the planting density was 4444 plants per mu, where
mu is a traditional Chinese unit for measuring field size. At the harvest stage, the yield of
each plot was measured and adjusted to 14% water content. YPP was calculated by dividing
the plot yield into the number of plants in the plot. The hundred kernel weight (HKW) of
each plot was measured manually. For HKW, the Chang7-2 and PH6WC TC populations
were evaluated in five environments (16BJ, 17BJ, 16XJ, 17XJ and 17HN), whereas the LPS
population was evaluated in four environments (16BJ, 17BJ, 16XJ and 17XJ). For YPP,
the Chang7-2 and PH6WC TC populations were evaluated in four environments (16BJ,
17BJ, 17XJ and 17HN), whereas the LPS population was evaluated in three environments
(16BJ, 17BJ and 17XJ). All experimental research on plants, including collection of plant
materials, complied with institutional, national or international guidelines. Field studies
were conducted in accordance with local legislation.

The model for calculating BLUEs is as follows [53,54]:

yikmb = µ + gi + τk + gτik + δ(k)m + β(m)b + εikmb

where yikmb is the phenotypic data of the ith genotype in the bth block nested in the mth
replication that is nested in the kth environment, µ is the overall mean, gi is the genotype
effect, τk is the environmental effect, gτik is the G × E effect, δ(k)m is the replication effect
nested in each environment, β(m)b is the block effect nested in the replication effect, and
εikmb is the residual error. When calculating the BLUEs, the other variables (except the
genotype) are treated as random effects and assume to follow normal distributions. All

https://maizedata.cn/
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factors are random effects when calculating broad-sense heritability; the formula is as
follows [55]:

H2 =
σ2

g

σ2
g +

σ2
gτ

n + σ2
ε

n∗r

where σ2
g is the genotype variance; σ2

gτ is the variance of G × E; σ2
ε is the error variance;

and n and r are the number of environments and replicates, respectively. The models for
calculating BLUEs and broad-sense heritability are fitted by using the lme4 package [56].
The phenotypic data of the LPS and TC populations are available in Table S5.

4.2. Genotype Processing

Leaf samples of the 481 BC1F3 plants and two testers (Chang7-2 and PH6WC) were
sampled, and DNA of these samples was extracted following the cetyltrimethyl ammonium
bromide method [57]. DNA was sent to Beijing Capital Bio for genotyping using DNA
chips containing 55,000 SNPs [58]. The genotypic data were filtered by following the steps:
(1) SNPs with a calling rate lower than 97% were removed; (2) SNPs with no physical
position information were removed; (3) SNPs with a missing rate greater than 5% were
removed; (4) SNPs with minor allele frequencies lower than 0.05 were removed; and (5) the
missing genotypes were input using the codeGen function of the R package “synbreed”,
the method “beagle” was used and the other settings were default [59,60]. The minor and
major alleles were coded as 2 and 0, respectively, and the heterozygous genotypes were
coded as 1 [60]. The genotypes of the testcross population were deduced from the testers
(Chang7-2 and PH6WC) and 481 BC1F3 parents. Because some loci of the BC1F3 population
were heterozygous (Figure S2), we deduced the genotype of the testcross population as
described by Cui et al. [61]. Assuming the genotype code of a loci is defined as aa = 0,
Aa = 1, AA = 2, if the genotype of the tester is aa, the genotypes of the testcross progeny
would be 0, 0.5 and 1; if the genotype of the tester is AA, the genotypes of the testcross
progenies would be 1, 1.5 and 2. The genotypic data of the LPS, Chang7-2 TC and PH6WC
TC populations are available in Table S6.

4.3. Marker–Trait Association Analysis and Calculation of PVE

In this study, we used PEPIS software to perform MTA analysis. PEPIS software
is one of the few public user-friendly tools for performing genetic mapping of hybrid
populations [12]. The PEPIS software package is based on a linear mixed model [62], and
the statistical method of PEPIS is as follows:

First, the genotype of individual j in marker k is encoded into two numerical variables:

Zjk=


+1 A
0 H
−1 B

, and Wjk=


0 A
1 H
0 B

,

where Zjk and Wjk are indicators of additive and dominant effects, respectively. A (the
first homozygous genotype), H (heterozygous genotype) and B (the second homozygous
genotype) indicate genotypes of each marker.

Then, the following statistical model is used:

y = Xβ + ∑m
k=1 Zkak + ∑m

k=1 Wkdk
+∑m−1

k=1 ∑m
k′=k+1(Zk#Zk′)(aa)kk′ + ∑m−1

k=1 ∑m
k′=k+1(Zk#Wk′)(ad)kk′

+∑m−1
k=1 ∑m

k′=k+1(Wk#Zk′)(da)kk′ + ε

where y is the n × 1 vector of the phenotypic data (BLUE); Xβ is a non-genetic ef-
fect; and ak and dkare the additive and dominance effects, respectively. For markers
k and k′, (aa)kk′ , (ad)kk′ , (da)kk′ , (dd)kk′ are additive × additive, additive × dominant,
dominant × additive and dominant × dominant epistatic effects, respectively [63]. For
each population, we first constructed the additive genotype matrix and the dominance



Int. J. Mol. Sci. 2022, 23, 5074 11 of 15

genotype matrix. Then, we input the two matrices and BLUE data into PEPIS software to
run marker–trait association analysis (http://bioinfo.noble.org/PolyGenic_QTL, accessed
on 7 June 2019). The LRT threshold for declaring significance was −log10(0.05/the number
of markers) according to the PEPIS pipeline [12]. The LRT threshold should be 5.49, given
that the number of markers is 15,386. The SNPs with LRT values over 5.49 were identified
as significant SNPs.

To calculate the phenotypic variance explained by SNPs (PVE), the significant SNPs
were fitted in a multiple linear model [64], from which SSreg and SStol for each SNP were
computed. SSreg is the sum of square of each SNP, whereas SStol is the sum of square of
the linear model. The PVE of each SNP was calculated by dividing SSreg into SStol.

4.4. GP and MAS Analysis

We used the ridge regression best linear unbiased prediction (rrBLUP) model to run
GP analysis. The rrBLUP model is [65]:

y = Xβ + Zµ + ε

where y is the BLUEs, β is a vector of the fixed effects including only the overall mean,
u is the vector of random effects including only additive effect, ε is the residual error, X
and Z are the design matrices. GP was implemented by running five-fold cross validation
for 200 repeats. The effects of genome-wide markers were estimated, and the predicted
phenotypic values were calculated by inputting the effects of genome-wide markers into
the rrBLUP model. PA was calculated as the Pearson correlation coefficient between the
observed and predicted phenotype. The R package rrBLUP was used to implement the GP
model [66], and the code is available in File S1.

To calculate the PA of MAS model fitting the significant SNPs (defined as MAS.Sig
model), a multiple regression model was fitted using the lm function in R. The phenotype
was predicted using the predict function [53]. The PA was calculated by running five-fold
cross validation for 200 repeats. In order to prove the effect of the MAS model fitting
significant SNPs, we also calculated the PA of the MAS model fitting the same number of
randomly selected SNPs. The model was defined as the MAS.Random model. We used
Wilcox.test to compare the differences among the PAs of the three prediction models (GP,
MAS.Sig and MAS.Random models).

4.5. Identification of Common QTLs among LPS and two TC Populations

Previously, all QTLs within a 20 cM interval were considered a single QTL [67].
According to a previous report, the average recombination rate was 1 cM/Mb [68], which is
approximately 1 Mb. Therefore, we defined SNPs within 20 Mb as in linkage with one QTL.

4.6. RNA-seq Analysis and Identification of Differentially Expressed Genes around
Significant SNPs

The six materials, including two hybrids (ZD958 and XY335), and their parents
(Zheng58, Chang7-2, PH6WC and PH4CV) were sown in July 2018 in Haidian, Beijing.
Decapitated shoot tips at the V7 stage were used for RNA extraction. For each material,
three biological replicates were used, with each replicate containing three samples. We
extracted RNA using an RNeasy plant mini kit (Qiagen, Germany) and checked RNA
purity using a kaiaoK5500 spectrophotometer (Kaiao, Beijing, China). Then, we assessed
RNA integrity and concentration using an RNA Nano 6000 assay kit of a Bioanalyzer 2100
system (Agilent Technologies, Santa Clara, CA, USA). After purifying mRNA from total
RNA using poly-T oligo-attached magnetic beads, we generated the sequencing libraries
using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina (NEB, Ispawich,
MA, USA). The libraries were sequenced using the Illumina Novaseq system with a read
length of 150 bp (pair end) at Annoroad Gene Technology (Beijing, China).

The RNA sequencing data were analyzed according to the procedure used in our
laboratory [69]. Briefly, the raw data were filtered to remove low-quality reads, adaptor-
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polluted reads and reads with more than 5% N bases. The filtered clean reads were mapped
to the B73 RefGen_V3 genome (www.maizegdb.org, accessed on 5 August 2019) using
Hisat2 with default settings. The expression level of each sample was estimated using
FPKM (fragments per kilobase of transcripts per million fragments mapped), which is
calculated by normalizing raw reads. The threshold for identifying the DEGs was false
discovery rate (FDR, p value < 0.05), which was computed by using Cufflinks. The code is
available in File S1.

Some studies have shown that differentially expressed genes between hybrids and
their parental lines contribute to hybrid performance [70–73]. Therefore, we first identified
the DEGs between ZD958 and its parental lines (Zheng58 and Chang7-2) and between
XY335 and its parental lines (PH6WC and PH4CV). For the Chang7-2 TC population, the
physical positions of common DEGs between ZD958 and each of its parents were compared
to those of the significant SNPs identified in the Chang7-2 TC population. Those DEGs
located within 20 Mb of significant SNPs were identified as potential candidate genes. In
the same way as stated above, common DEGs between XY335 and each of its parental
lines were identified, and the physical positions of these DEGs were compared to those
of the significant SNPs identified in the PH6WC TC population. In the same way, those
DEGs located within 20 Mb of significant SNPs were identified as potential candidate
genes. To prioritize the candidate genes for HKW, the DEGs in the surrounding regions of
significant SNPs associated with HKW were compared to the candidate genes for kernel
weight [18]. In the same way, in order to prioritize the candidate genes for YPP, the DEGs
in the surrounding regions of significant SNPs associated with YPP were compared to the
candidate genes for yield and yield-related traits [18].
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www.mdpi.com/article/10.3390/ijms23095074/s1.
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