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Introduction

Viral diagnosis and surveillance are necessary steps in containing the spread of viral diseases. These measures help in the
deployment of appropriate therapeutic interventions, thus ensuring effective management and control of disease. In the past, the
commonly employed viral detection methods were either cell-culture or molecule-level assay based. Most of these assays are
laborious and expensive, require special facilities, and provide a slow diagnosis. Biosensor-based approaches largely circumvent
these limitations and therefore provide an attractive alternative as validated after successful commercialization of glucose and
other biosensors.

In light of continuously emerging new viral strains, precise, timely and cost-effective viral diagnosis has become an
important factor for the effective management of viral disease. The past decades have seen a spurt in the development of
antiviral therapies and diagnostic protocols as against conventional culture-based methods. Viral diagnosis can be performed by
direct or indirect methods. Direct methods look for intact viruses or viral nucleic acids or proteins. Indirect methods involve
culturing of clinical samples followed by infection of cells, eggs or animals to isolate viruses. These viruses are then confirmed
via serological detection methods utilizing antibodies against viral antigens induced by viral infection. Indirect methods of viral
diagnosis include complement fixation tests, the hemagglutination inhibition test, immunofluorescence, the enzyme-linked
immunosorbent assays, and the Western blot assay. However, these methods have inherent disadvantages as they are limited to
laboratories, are time consuming, lack sensitivity, and most importantly, may not identify newly emerging viral strains.
Examples include Zika virus, swine and bird flu viruses, Nipah virus, and Chikungunya virus. These issues are largely cir-
cumvented by molecular diagnostic protocols based on nucleic acid amplification (NAAT) test. Molecular diagnostics rely on
the polymerase chain reaction (PCR) that amplifies the viral DNA or RNA using (RT-)PCR. This protocol has successfully
addressed the diagnostic issues for human immunodeficiency virus (HIV) (Mulder et al., 1994), hepatitis B and C viruses (Berger
et al., 1998), and cytomegalovirus (CMV) (Boeckh and Boivin, 1998; Pavel et al., 2016). Timely and precise diagnosis provided
via PCR has made this technique a gold standard for viral diagnosis. PCR is further improvised and diversified to nested-PCR,
real-time PCR, digital PCR ligase chain reaction, and loop-mediated isothermal amplification methods, etc. However, PCR-
based molecular diagnostics have their share of pitfalls as well, including requirements for well-equipped laboratory facilities
and qualified and trained personal as well as high costs. Optical biosensors have removed these disadvantages as they offer a
rapid, cost effective, sensitive, label free, reproducible method for diagnosing a particular virus. Due to their many advantages,
optical biosensors are increasingly used in a variety of clinical and nonclinical applications. A wide array of analytes that
includes toxins, drugs, antibodies, tumour biomarkers, tumour cells and intact viruses can be detected in highly sensitive and
selective manner. This article will focus on the detection protocols for intact viruses that utilize antibody, glycan and aptamer
based bioreceptor surfaces. The current review highlights progress and development toward the detection of intact viruses.
Additionally, this article emphasizes description and examples of applications of optical biosensors in medicine, with special
reference to viral diagnostics.
Optical Biosensors

Optical biosensors offer distinct advantages over traditional analytical techniques in providing real-time and label-free detection of
biological and chemical substances in a highly sensitive, specific and cost effective manner. The advantages include high specificity,
sensitivity, small size and cost-effectiveness. Optical biosensing is further complemented with multidisciplinary approaches like
microelectronics, microelectromechanical systems (MEMSs), micro/nano-technologies, molecular biology, biotechnology and
chemistry. These developments, coupled with the advantages of optical biosensing, have led to an exponential growth in appli-
cations over the last decade. Optical biosensors are applied in healthcare, environmental analyses, and the biotechnology industry.
These applications benefit from many advantages including low concentration and amount of analyte required, rapid analysis
completion, and sensor chip reusability (Dey and Goswami, 2011; Damborský et al., 2016).

An optical biosensor is a compact analytical device having a biorecognition element integrated with a transducer system.
Optical biosensors emit an optical signal, which is directly proportional to the concentration of the analyte. The biorecognition
elements used by biosensors are generally biological materials, including enzymes, antibodies, antigens, receptors, nucleic acids,
whole cells and tissues. Based on the signal transduction method utilized, biosensors can be grouped into different categories:
optical, electrochemical, thermometric, piezoelectric, and magnetic. Among these, optical biosensors are the most common.
Optical biosensors utilize the interaction of optical fields (i.e., the electric field) with the analyte for optical detection. Optical
biosensing can be performed in a label-free or label-based manner. Label-free protocols involve interaction of the analyte with the
transducer for signal detection while label-based protocols label the analyte and the optical signal is generated by colorimetric,
fluorescent or luminescent methods (Damborský et al., 2016).
Reference Module in Life Sciences doi:10.1016/B978-0-12-809633-8.12245-9 1

dx.doi.org/10.1016/B978-0-12-809633-8.12245-9


2 Surface Plasmon Resonance: A Boon for Viral Diagnostics
Surface Plasmon Resonance (SPR)

Pharmacia Biosensor AB (now Biacore) developed the first commercial SPR-based biosensor. Currently, SPR-based biosensors are
produced by a number of manufacturers. SPR-based biosensors are currently the most commonly used devices for optical
biosensing applications. SPR-based sensing has recently emerged as a valuable technique for measuring binding constants,
association and dissociation rate constants, and stoichiometry for bimolecular binding interaction kinetics in a number of
emerging biological areas (Singh, 2014, 2016a).

The practical applications of SPR analyses includes kinetic analysis, equilibrium analysis and concentration analysis. Kinetic
and equilibrium analyses are used to characterize bimolecular interaction (ligand–analyte binding, antibody–antigen interaction,
receptor characterization etc.) in a label-free, real-time manner (Fig. 1). Concentration analysis of an analyte can also be done
using SPR, provided a specific ligand is available and it can be immobilized on a sensor chip surface. Concentration is then
quantified by the measurement of direct binding or from the rate of binding in mass transport limited mode. Concentration
analysis has applications in healthcare, biopharmaceutical production, clinical point-of-care (POC) diagnostics, environmental
analysis, food monitoring, defense and security (Singh, 2014, 2016a). SPR analyses were utilized to diagnose different stages of
Epstein–Barr virus through detection of antibodies against different antigens present in the virus (Riedel et al., 2014). SPR-based
food monitoring includes detection of antibiotics in milk samples (using a portable six-channel SPR sensor) and mycotoxin
patulin (immunochemical SPR) (Hunt and Armani, 2010; Damborský et al., 2016). SPR was also utilized to monitor the binding
kinetics of dengue antibody with corresponding dengue antigen in real-time manner (Jahanshahi et al., 2016).
Detection and Quantification of Enterovirus 71

The SPR system can be miniaturized for wider application in the field and laboratory. Prabowo et al. (2017) have developed such
portable detection system for label-free, rapid quantification of human Enterovirus 71 (EV71). These are small RNA viruses belonging
to picornviridae family with a very high mutation rate (Fig. 2). The configuration allowed the system to run on low power with an
organic LED with red spectral emission as a disposable light source. The signal to noise ratio (SNR) was enhanced by intergrating the
area under the reflectivity curve. The detection system utilized the major capsid protein VP1 of EV71 as the biomarker. By combining
the SPR assay with the viral plaque assay, the assay time was reduced from days to minutes with a detection limit of approximately 67
virus particles of EV71 per milliliter (vp/ml) in Dulbecco’s modified Eagle’s medium. This platform could be further improved by
incorporating a highly sensitive, real-time, optical biosensor-based assay (Liu and Liu, 2017; Prabowo et al., 2017).
SPR Based on M13 Bacteriophage

Bacteriophage M13 has been recently utilized as a functional nanomaterial in electrical, chemical and optical applications owing
to its non-toxic, self-assembly, and specific binding properties. These features make M13 bacteriophage a potential candidate as a
receptor for transducing biochemical and bio-optical signals into electrical or optical signal. Additionally, surface properties of
M13 bacteriophage can be manipulated via genetic engineering. Kim et al. (2016) have described a novel M13 bacteriophage-
based, highly sensitive and selective SPR sensor. This sensor utilizes self-assembled, genetically engineered M13 bacteriophage.
Fig. 1 Surface plasmon resonance (SPR) biosensing platform: (a) SPR biosensing system; (b) Sensogram depicting the ligand interaction with
the immobilized biomolecule. Kumar, V., Tan, K.P., Wang, Y.M., et al., 2016. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV
3C-like protease inhibitors. Bioorganic and Medicinal Chemistry 24, 3035–3042. ©2016 by the author; licensee MDPI, Basel, Switzerland (Available
at: http://creativecommons.org/licenses/by/4.0/).
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Fig. 2 Enterovirus 71 structure and genome structure of the virion. Reproduced from Liu, C.C., Lian, W.C., Butler, M., Wu, S.C., 2007. High
immunogenic enterovirus 71 strain and its production using serum-free microcarrier Vero cell culture. Vaccine 25, 19–24.
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Self-assembly is advantageous over complicated photolithography or chemical conjugations in terms of simplicity. Sensitivity was
further improved by integrating the receptor-connector matrix (a device for interconnecting electronic components using a matrix
of independent but interconnectable conductive traces) in specific orientations to reduce measurement error (Kim et al., 2016).
Localized Surface Plasmon Resonance-Based Quantum Dot Nanobiosensors for Immunofluorescence
Detection of Viruses

LSPR biosensors detect biomolecules with nanoscale spatial resolution in a label-free manner. This technique finds useful
applications in the study of DNA-protein interactions, toxins, proteins and vesicles. Sensor miniaturization can go down to scales
unapproachable by other planar microfabrication/microlithography techniques. Also unique to LSPR is the nanoplasmonic
resonance condition, which is satisfied in a simple reflected or transmitted light geometry, common to both microscopy and
spectroscopy applications, whereas SPR excitation requires incident light that is totally internally reflected. This has given impetus
to the LSPR spectroscopy and imaging (LSPRi) integrated into live-cell microscopy studies for the detection of secreted proteins
while simultaneously imaging the cells with more traditional techniques such as fluorescence and bright field (Singh, 2016b)
(Fig. 3). Takemura et al. (2017) have developed a LSPR-induced immunofluorescence nanobiosensor for ultrasensitive, rapid and
specific detection of influenza virus and norovirus-like particles (NoV-LPs). This platform is based on a gold nanoparticle (AuNP)-
induced quantum dot (QD) fluorescence signal. The mechanism involves conjugation of an anti-neuraminidase (NA) antibody
(anti-NA Ab) to thiolated AuNPs and the conjugation of anti-hemagglutinin (HA) antibody (anti-HA Ab) to alloyed quaternary L-
cysteine-capped CdSeTeS QDs. A hot-injection organometallic route was employed for alloyed quaternary CdSeTeS QDs synthesis
followed by capping with L-cysteine via a ligand exchange reaction. Similarly, AuNPs were synthesized in HEPES buffer and
thiolated with L-cysteine. The detection limit for influenza H1N1 virus was 0.03 pg/ml in deionized water and 0.4 pg/ml in human
serum, while for the clinically isolated H3N2, the detection limit was found to be 10 PFU/ml.
PAMONO-Sensor for Quantification of Microvesicles

The plasmon assisted microscopy of nano objects (PAMONO) sensor is utilized for imaging nano objects of biological and non-
biological origin (Zybin et al., 2010; Gurevich et al., 2011). PAMONO sensors are ideal for detection and quantification of intact



Fig. 3 Workflow of the LSPR biosensing system. Reproduced from Lin, T.J., Chung, M.F., 2008. Using monoclonal antibody to determine lead
ions with a localized surface plasmon resonance fiber-optic biosensor. Sensors (Basel) 8, 582. ©2008 by MDPI.

Fig. 4 Schematic of PAMONO-sensor setup used for detection of biological nano-vesicles. Reproduced from Shpacovitch, V., Temchura, V.,
Matrosovich, M., et al., 2015. Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer
particles. Analytical Biochemistry 486, 62–69. Licensee MDPI, Basel, Switzerland (Available at: http://creativecommons.org/licenses/by/4.0/).

4 Surface Plasmon Resonance: A Boon for Viral Diagnostics
viruses, virus like particles (VLP), nano-vesicles, extracellular vesicles (EVs) and inorganic nanoparticles (NP) (Im et al., 2014; Zhu
et al., 2014; Shpacovitch et al., 2015; Figs. 4 and 5). EVs facilitate intracellular communication and information exchange within an
organism. PAMONO sensors provide for the imaging of EVs in a real-time, label-free manner without requiring advanced
technology for the preparation of sensor slides (Gyorgy et al., 2011; Yanez-Mo et al., 2015; Figs. 4 and 5). In a study, PAMONO
sensors were utilized to analyze the detection and quantification of microvesicles (MVs). This involved real-time binding analysis
of individual MVs to the sensor surface functionalized by protein A/protein G and anti-target antibody. This binding was followed
by elution of MVs from the sensor surface for post-PAMONO analysis of their content, which may act as an indicator of disease
status. PAMONO sensor-based diagnostic platforms may help in the analysis of liquid biopsy samples in which the pattern of MV
size distribution is indicative of different cargos being ferried.

Glycans

Glycoproteins present on the surface of most viruses are used to recognize the glycans expressed on the surface of host cells.
Therefore, an artificial glycan surface can be created for virus detection. This artificial glycan surface requires that affinity and
specificity of glycans on this surface must be higher for viral surface proteins than the affinities of host antibodies for the viral
proteins. Based on the above, possible glycan surfaces that can be created for viral capture using SPR can be one where glyco-
proteins express glycans recognized by the virus; natural, purified glycans on a liposome surface, or a multivalent synthetic glycan
surface. For example, in case of reovirus, glycoprotein binds to the host a-linked sialic acid residues. Resulting sialoglycoproteins
expressed on the red blood cells can be utilized as a biorecognition surface on the SPR platform. This gives an opportunity to
compare different strains of reovirus based on different binding capacities of sialic acid.

http://creativecommons.org/licenses/by/4.0/


Fig. 5 Schemes of the sensor surface functionalization approaches utilized in PAMONO-sensor. Cystein-conjugated protein A/G – antibody
(without any conjugated tag) (a) and biotin-thiol–streptavidin–biotinylated antibody (b) Gold sensor surface showing self assembling monolayers
(SAM) formation to capture the vesicles of interest. Reproduced from Shpacovitch, V., Temchura, V., Matrosovich, M., et al., 2015. Application of
surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Analytical Biochemistry 486,
62–69. Licensee MDPI, Basel, Switzerland (Available at: http://creativecommons.org/licenses/by/4.0/).

Fig. 6 Schematic of experimental set-up utilizing an aptamer as the biorecognition surface on the SPR platform. Kumar, V., Tan, K.P., Wang,
Y.M., et al., 2016. Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors. Bioorganic andMedicinal
Chemistry 24, 3035–3042. ©2016 by the author; licensee MDPI, Basel, Switzerland (Available at: http://creativecommons.org/licenses/by/4.0/).
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Monitoring Intact Viruses Using an Aptamer as a Bioreceptor

Aptamers are oligonucleotides or peptide molecules that bind to specific target molecules. These are produced by in vitro genetic
selection that involves isolation from a library of nucleic acids through the process of selection and amplification. Aptamers bind
with high affinity and specificity that could surpass the affinity obtained between antibody-antigen binding. In comparison with
antibodies, aptamers are smaller in size, easy to synthesize, lack toxicity and immunogenicity. Aptamers therefore find useful
application in the fields of imaging, diagnostics, and therapeutics (Misono and Kumar, 2005; Gopinath et al., 2006, 2008, 2012,
2013; Cho et al., 2009; Keefe et al., 2010; Park et al., 2011; Wang et al., 2013; Suenaga and Kumar, 2014; Dougherty et al., 2015).
Aptamers are available against corresponding cognate targets that include ions, small molecules, peptides, proteins, viruses and
organelles. Aptamers have been isolated against surface proteins of human pathogenic virus (Gopinath, 2007; Shum et al., 2013).
Interestingly, some of these aptamers are able to distinguish very closely related families and subtypes (Misono and Kumar, 2005;
Gopinath et al., 2006, 2013; Park et al., 2011; Wang et al., 2013; Suenaga and Kumar, 2014; Dougherty et al., 2015; Penmetcha,
2016). High affinity aptamers can be used for the direct detection of intact viruses in virus-contaminated samples. Aptamer-based
bioreceptor surfaces have been increasingly used with SPR and other sensing platforms (Fig. 6).

http://creativecommons.org/licenses/by/4.0/
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Fig. 7 Structure of Influenza virus. Racaniello, R., 2009. Structure of influenza virus (virology blog). Available at: http://www.virology.ws/2009/04/
30/structure-of-influenza-virus/.
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DNA Aptamers for Influenza Virus

Influenza viruses are negative-sense, single-stranded, segmented RNA viruses. Various subtypes are named according to an H
number (hemagglutinin) and an N number (neuraminidase). There are 18 different known H antigens (H1 to H18) and 11
different known N antigens (N1 to N11). Influenza virus was first isolated from a Peruvian bat (Tong et al., 2013; Fig. 7).
In a study, a DNA aptamer was selected against HA of avian influenza virus. It discriminated against all other strains of H5N1 and
subtypes of influenza virus (Gopinath and Kumar, 2013; Wang et al., 2013). This aptamer was utilized as a biorecognition surface
in a SPR sensing system for detection and evaluation of specific avian flu viruses. The analysis gave the concentration of targeted
avian influenza virus expressed as hemagglutination unit (HAU) while non-targeted influenza viruses elicited an insignificant
response signal (Bai et al., 2012). Similarly, avian influenza virus titers were estimated from poultry swab samples in
an hour, which is considerably less than conventional approaches. However, multiple samples cannot be analyzed via this method
due to limitations of regenerating the sensor surface. This limitation could be circumvented by using an agent that facilitates
simple and quick regeneration of sensor surface that could restore the sensor efficiency without impairing the efficiency of the
sensor chip (Bai et al., 2012). In a study, regeneration of the sensor surface involved immobilization of streptavidin (SA) on the
CM5 chip, anti-influenza virus (H3N2)-aptamer and bioinylated oligo with different amount (HAU) of influenza virus. Plotting
the response signals with HAU of influenza virus showed a linear response and the chip was used for more than 90 cycles. Signal
and sensitivity could further be increased by using shorter dextrans and self-assembled monolayers (SAM), thus indicating that a
shorter chain length SAM provides a better choice for analyzing intact viruses (Gopinath et al., 2006; Fig. 6).

A study has generated DNA aptamer against influenza virus H1N1 (A/PR/8/34) (Jeon et al., 2004). This aptamer was covalently
linked to a conductive polymer for the functionalization of microelectrodes in the microfluidic channel (Kiilerich-Pedersen et al.,
2013). This sensor detected virus in the saliva in a matter of a few minutes with a broad dynamic range. This sensor could have a
potential application in POC diagnostics for virus detection using aptamers specific for viruses (Kiilerich-Pedersen et al., 2013).
Aptamer Based Impedance Biosensor for Virus Detection

In a study, aptamer and glycan surfaces were combined in an impedance biosensor to facilitate detection of intact virus
(Wang et al., 2013). In this study, the authors developed an aptamer specific for avian influenza virus, followed by capturing
it on streptavidin-coated magnetic beads. Once the virus was captured on the bead, a complex containing concanavalin
A (ConA)–glucose oxidase immobilized on the AuNP was attached to the virus via glycans of ConA. The captured complex
comprising ‘aptamer-virus-Con-Glucose oxidase-AuNP’ was transferred to glucose solution that yields gluconic acid via an
enzymatic reaction. This results in increased ionic strength of the solution decreasing the impedance of screen printed inter-
digitated array electrode (IDE). The described biosensor displayed higher sensitivity compared to biosensors based on aptamers or
antibodies alone (Fu et al., 2014).
Sandwich-Type SPR Based Paired of Aptamers

A sandwich-type SPR biosensing platform was designed for the detection of whole avian influenza viruses H5Nx utilizing Multi-
GO-SELEX method. This platform has successfully screened aptamers with affinities ranging from 8� 104 to 1� 104 EID50/ml.

http://www.virology.ws/2009/04/30/structure-of-influenza-virus/
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The aptamers IF10 and IF 22 were specific for H5N1 and bind to the same sites of H5N1. Therefore, IF10 and IF22 were used to
design a sandwich-type SPR biosensor. The sensitivity of this biosensing platform was increased by signal amplification with the
secondary aptamer conjugated with AuNP (Nguyen et al., 2016).
Nanoparticle-Based Viral Detection

NanoBioAnalytical Platform for “On-Chip” Quantification of Microparticles

Microparticles (MPs) are fragments of submicron dimension (50–1000 nm) derived from different cell types. These particles are
shed into the extracellular space under the conditions of stress/injury and are present in plasma and other biological fluids. MPs
show altered levels under diseased condition like pre-eclampsia and hypertension and so act as an important biomarker for
various vascular and other types of disorders. Additionally, they may play a direct role in the pathology of a disease, thus acting as
both biomarker as well as mediator of disease. SPR coupled with atomic force microscopy (AFM) was utilized for the detection
and characterization of platelet-derived blood microparticles (PMPs) using surface-specific ligands. The combined platform
provides rapid, sensitive, reproducible, and label-free characterization and quantification of MPs (Dylan et al., 2013; Obeid et al.,
2016; Singh, 2016a).
Peptide-Functionalized Gold Nanoparticles

Two of the most severe limitations in nanomedicine-based therapy are the availability of appropriate targeting agents to deliver the
nanotherapeutics to the affected cells and the ability of the nanosystem to enter the cell. In a study, AuNP were synthesized to
target hepatocellular carcinoma (HepG2) cells transfected with SERPINB3 (SB3) protein. SB3 protein is usually undetectable in
normal hepatocytes but shows overexpression in hepatocellular carcinoma and hepatoblastoma. SB3 protein is proposed as a
cellular target for Hepatitis B virus (HBV). The AuNP were coated with thiols, phosphoryl choline and a 28-mer peptide corre-
sponding to the amino acid sequence of PreS1 protein (PreS1(21–47)) of HBV. SPR was utilized to analyze the interaction of SB3
protein with conjugated AuNP. Results show that PreS1(21–47) peptide is a suitable target for the cells overexpressing SB3 protein
as well as the successful internalization of AuNPs. It could be inferred that presentation of protein on the cell surface is integral for
efficient recognition (Singh, 2016a; Jha et al., 2017).
Gold Nanobipyramids for Ultrasensitive Detection of Influenza Virus

Gold nanoparticles (AuNPs) are frequently utilized for developing colorimetric biosensors. AuNPs with sharp edges provide
higher sensitivity. Gold nanobipyramids (NBPs) and nanorods (NRs) are elongated colloidal plasmonic metal nanocrystals. Their
longitudinal plasmon wavelengths can be tuned over a wide spectral range (Lin and Chung, 2008).

Xu et al. (2017) have developed highly uniform gold nanobipyramids (Au NBPs) for ultrasensitive colorimetric detection of
Influenza virus (H5N1 virus). Au NBPs utilize the ability of alkaline phosphatase (ALP) to decompose 4-aminophenyl phosphate
(4-APP) to generate 4-aminophenol (4-AP). 4-Aminophenol reduces silver nitrate to metallic silver, which is then deposited on Au
NBPs. The metallic silver changes the refractive index of gold, causing a blue shift of LSPR, with a linear range of 0.1–5 mU/ml
(corresponding to viral antigen concentrations of 0.001–2.5 ng/ml) and a limit of detection (LOD) of 0.086 mU/ml. This method
provides higher sensitivity than gold nanoparticles (AuNPs). Au NBPs also overcome the limitation of poor monodipersity of
AuNPs with sharp edges (Singh, 2016a; Xu et al., 2017). AuNBPs show better properties in terms of plasmon peak width, refractive
index sensitivity, figure of merit, two photon photoluminescence and Surface enhanced Raman scattering (SERS).
Magnetic Nanoparticles to Enhance the Detection Limit of SPR

Surface functionalized magnetic nanoparticles and magnetic particles are utilized for biosensing applications to recognize specific
molecular targets (Isaac and Josephson, 2009). Magnetic nanoparticles conjugated with antibodies specific to viral surfaces
undergo self-assembly in the presence of specific viral particles to create supramolecular structures with enhanced magnetic
properties. These structures can be detected by magnetic resonance methods like nuclear magnetic resonance (NMR) spectroscopy
and magnetic resonance imaging (MRI). Virus-induced assembly leads to changes in magnetic relaxation that allows for highly
sensitive detection of virus in biological media. This method has been successfully applied for the detection of adenovirus-5 and
HSV-1 at very low concentrations (o10 viral particles/10 ml). This technique has potential application in NMR-based viral
detection and MRI-based viral imaging (Perez et al., 2003).

A study by Phan et al. (2016) has provided a protocol to enhance the detection limit of HIV diagnostic assays utilizing magnetic
NPs with cynovirin-N. This protocol also provides for the effective concentration of viral particles from larger sample volumes. A
cynovirin mutant was expressed and biotinylated, followed by complexing with a thermally responsive polymer-streptavidin
conjugate. Binding of a biotinylated mutant with immobilized gp120 was characterized by SPR. Biotinylated Q62C exhibited a
disassociation constant (Kd) of 0.6 nM to gp120 (Phan et al., 2016; Singh, 2016a).
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Membrane Interaction Studies for Virus Detection

Kinetic Studies of Peptide-Membrane Interactions

The advent of a hydrophobic association (HPA) chip and the lipid-capture (L1) chip has revolutionized the SPR sensing platform
to study kinetics of protein/peptide-membrane interactions (Franquelim et al., 2010; Del and Stahelin, 2016). These chips can
differentiate between surface adsorption and insertion into the hydrophobic core of the membrane (Besenicar et al., 2006; Singh,
2017). A study using SPR applied a rigid artificial membrane system on the sensor surface to unravel the mechanisms of the HIV
fusion inhibitors sifuvirtide and enfuvirtide binding to the membrane. The new fusion inhibitor laid its focus on the HR1 region of
gp41 (Dwyer et al., 2008; Naito et al., 2009; Nishikawa et al., 2009). Both sifuvirtide and enfuvirtide interact with the lipid
membranes; however, interaction with other lipids like sphingomyelin (SM), characteristics of viral envelopes and lipid rafts is not
fully understood (Simons and Vaz, 2004; Veiga et al., 2004; Brugger et al., 2006, 2007; Waheed and Freed, 2009; Franquelim et al.,
2008, 2010). SPR studies have shown that sifuvirtide might interact with membrane system by surface adsorption and it might get
inserted into the outer leaflets of SM bilayers. HIV membranes have several-fold higher SM and saturated phosphocholine (PC)
relative to the eukaryotic membranes. SPR analysis has shown that sifuvirtide has 32-fold higher affinity for saturated phos-
pholipids like DPCC than POPC, suggesting its capacity to bind saturated phospholipid in a selective manner (Brugger et al., 2006;
Franquelim et al., 2010; Cao et al., 2017).
Relationship Between Binding Characteristics of Fusion Inhibitors to Biomembranes and Their Clinical Efficacies

Enfuvirtide and sifuvirtide are first and second generation fusion inhibitors, respectively. These fusion inhibitors have different
functional domains and target sites. Sifuvirtide is clinically more effective as compared to enfuvirtide, largely due to its adsorption
on rigid lipids like DPPC and SM on the viral envelop, the site where most of the fusion-related glycoprotein receptors are inserted
(Chungen et al., 2009; Franquelim et al., 2010; Veiga et al., 2004; Ping et al., 2010; Brugger et al., 2006; Sargent and Schwyzer,
1986). However, both can combine together to exert a synergistic effect in HIV inhibition (Pan et al., 2009). Findings from SPR-
based studies have revealed the mode of interaction of peptide-HIV fusion inhibitors with biomembrane systems and the
importance of rigid lipids that act as the additional targets of HIV fusion inhibitors (Besenicar et al., 2006).
Inhibition of the Membrane-Attack Complex by Dengue Virus NS1 through Interaction With Vitronectin and Terminal
Complement Proteins

Dengue virus is single-stranded positive RNA virus. It belongs to family Flaviviridae. Five serotypes of this virus have been reported
so far. All of these serotypes can lead to the full spectrum of disease, i.e., Dengue fever. Dengue virus has a genome size of 11 kbp
of positive single-stranded RNA genome that encodes structural (capsid protein C, membrane protein M, envelope protein E) and
non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5) (Rodenhuis-Zybert et al., 2010). Nonstructural protein 1 (NS1)
of Dengue virus is a conserved glycoprotein that interacts with the membrane and is secreted into the plasma of Dengue infected
patients. NS1 inhibits the terminal complement pathway involving the important complement-regulator prote in vitro nectin (VN).
A study by Conde et al. (2016) has characterized the NS1-VN interaction through ELISA and SPR. Mechanistic details show that
NS1 alone or in conjugation with VN inhibits the formation of membrane attack complex (MAC) and C9 polymerization. The
findings from the study indicate the role of NS1 as a terminal inhibitor of the complement system (Conde et al., 2016).
Membrane Binding of HIV Protein

The viral assembly process in HIV involves binding of viral structural protein Gag with plasma membrane. This assembly is
required for the viral particle formation, as any defect in membrane binding of Gag will lead to the impairment of the viral particle
production. Molecular mechanisms underlying the Gag-membrane binding were characterized by SPR NMR, liposome flotation
centrifugation, and fluorescence lipid bead binding (Olety et al., 2016).
Immunological Assays for Viral Detection

Natural Killer (NK) Cells

Natural killer (NK) cells, as a part of the innate immune response, kill virally infected cells and malignant cells. NK cells depend on
surface receptors for their function. Among the diverse array of surface receptors, homodimeric Ly49 receptors regulate the activity
of NK cells by sensing major histocompatibility complex class I molecules (MHC-I). However, the mechanism of binding is yet to
be understood. A study has evaluated and characterized the thermodynamic and kinetic parameters for the interaction of NK Ly49
receptors and MHC-I ligands. Results show that interactions are diffusion controlled and enthalpy driven in contracts with the
activation-controlled and entropy-driven interactions between Ly49s with the viral immune-evasin m157. This mechanistic dif-
ference is attributed to the different functional responses, for example, one where NK cells scan for killing the virus infected cells
and the other to escape the immune-evasins like m157 by virus (Takemura et al., 2017).
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Monitoring Intact Viruses Using an Antibody as a Bioreceptor

To detect intact virus, three different types of bioreceptor surfaces are used, viz. antibody-, glycan-, and aptamer-based. Of these,
aptamer-based bioreceptor surfaces have been increasingly used with SPR and other sensing platforms. Schofield and Dimmock
have pioneered the analysis of intact virus using SPR (Schofield and Dimmock, 1996). They immobilized a mAb (HC10 recog-
nizing hemagglutinin HA derived from influenza virus, A/fowl plague/Rostock/34 (H7N1)) via amine coupling on a CM5 sensor
chip. Results have established the protocol, where the interaction of entire viral particles having dimension of 120 nm with mAb
could be monitored. Since then many plant and animal viruses have been analyzed using SPR systems (Hardy and Dimmock,
2003; Boltovets et al., 2004; Baac et al., 2006; Nilsson et al., 2010; Wang et al., 2010; Chenail et al., 2011; Yakes et al., 2013).
Another study reported quantification of influenza virus based on inhibition of HA antibody binding (Nilsson et al., 2010). This
method was found to be several-fold more sensitive than an immunodiffusion assay.

Antibodies (both monoclonal and polyclonal) have been utilized as biorecoginition surfaces for detecting intact viruses with a
variety of sensing platforms. These platforms include nanowire field effect transistors (Patolsky et al., 2004), interferometers (Ymeti
et al., 2007), impedance-based detectors (Hnaien et al., 2008; Wang et al., 2009, 2011; Shirale et al., 2010), electrochemical
detectors (McClellan et al., 2012), resonators (Lum et al., 2012), waveguide-mode (Gopinath et al., 2013), and surface acoustic
wave sensors (Baca et al., 2015). These biosensors are very promising for the detection of wide range of viruses. However, use of
antibodies for biorecoginition for binding to viral surface proteins has limitations, as the sensitivity is entirely decided by the
affinity and stability of antibodies, which may also show cross reactivity with other proteins. There might be variability in different
batches of antibodies, and the stability of an antibody may decrease during the course of analysis. Therefore, it is not possible to
compare the sensitivity and specificity of these sensors (Baker, 2015).

Label Free Checkerboard Assay to Determine Overlapping Epitopes of Ebola Virus VP-40

Ebola virus was first reported from erstwhile Zaire. The genus Ebolavirus belongs to family Filoviridae and order Mononegavirales.
The primary reservoir is bat, and it is transmitted to humans through body fluids. The disease caused by Ebolavirus is ebolavirus
disease (EVD), which has very high mortality rate in infected humans, particularly in the developing world (Kuhn et al., 2010).

SPR provides a robust and sensitive method to evaluate monoclonal and recombinant antibodies in label-free fashion. A panel
of antibodies targeting VP40 of Ebola virus were examined for their binding with immobilized VP40. Through this process several
anti-V40 antibodies were identified that can be utilized for the detection of Ebola virus through sandwich type immunoassays
(Anderson et al., 2017).

Fluoroimmunosensor Based SPR for Norovirus Detection

Norovirus is highly infectious and can cause acute gastroenteritis infection in all age groups with a relatively low viral load (o20
virus particles) (Morillo and Timenetsky, 2011). Norovirus shows huge diversity, displaying more than 33 genotypes, thus
necessitating a diagnostic device with the ability to detect all the available genotypes of the virus (Kageyama et al., 2004). However,
the strain GII.4 is responsible for most of the epidemics, indicating its persistence in the population. It can cause re-infection or
affect individuals infected with similar or different strains in the previous exposure. The emergence of new mutations in the P2
subdomain of P domain of the virus capsid protein results in altered antigenicity and binding properties with histo-blood group
antigens (HBGA), resulting in new strains causing epidemics (Allen et al., 2008, 2009; Shanker et al., 2011; Debbink et al., 2012;
Eden et al., 2013; Jones et al., 2014). Lack of in vivo disease models and reproducible in vitro replication systems has hindered the
study of norovirus (Jiang et al., 1992; Tan et al., 2003; Tan and Jiang, 2005; Siebenga et al., 2007; Lindesmith et al., 2008, 2011).
Immunoassay-based detection of norovirus is not feasible as developing corresponding antibodies for different antigens related
with different genotypes is not possible. Recently, cross-reactive antibodies for different genotypes of norovirus were isolated
(Higo-Moriguchi et al., 2014). In a recent work, cross-reactive antibodies for various genotypes of norovirus have been isolated
(Higo-Moriguchi et al., 2014). Surface plasmon resonance-assisted fluoroimmunoassay (SPRF), or surface plasmon field-enhanced
fluorescence spectroscopy (SPFS) provide extremely sensitive biosensing platforms (Attridge et al., 1991; Libermann and Knoll,
2000; Roy et al., 2002; Toma et al., 2013). SPRF works through electric field induction via SPR using a fluorescent label. This sensor
excites quantum dot florescent dyes by SPR induced electric field on an aluminum film. A study has developed a compact and
sensitive V-trench biosensor for onsite detection of norovirus (Nomura et al., 2013; Ashiba et al., 2017; Figs. 8 and 9). However,
evaluating higher concentrations of norovirus in the environment will require further sensitivity enhancement for SPRF to
distinguish between multiple similar or related strains. This study utilized a fluorescent label with large Stokes shift and quantum
dot fluorescent label to increase the sensitivity. Detection of norovirus was done involving sandwich assay with phosphonic acid,
SAM and cross-reactive antibodies. This platform was found applicable to all the genotypes of norovirus, while captured antibody
was reactive to genogroup II and detection antibody to 13 genotypes in genogroup I and II.

Herpes Simplex Virus Particles Interact With Chemokines and Enhance Cell Migration

Glycoprotein G has important immunomodulatory function to play in viral life cycles, for example, Herpes simplex virus (HSV). A
study has characterized the chemokine binding ability of HSV and its functional consequences. SPR was utilized to characterize the
binding of human chemokine with HSV with high affinity. This interaction is mediated by envelope glycoprotein gG in case of



Fig. 8 Experimental set up of an V-trench optical biosensor. Reproduced from Ashiba, H., Sugiyama, Y., Wang, X., et al., 2017. Detection of
norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized forquantum dot fluorescent labels.
Biosensors and Bioelectronics 93, 260–266.

Fig. 9 Schematic of V-trench biosensor used for the detection of Norovirus virus-like particles. Reproduced from Ashiba, H., Sugiyama, Y.,
Wang, X., et al., 2017. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized
forquantum dot fluorescent labels. Biosensors and Bioelectronics 93, 260–266.
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HSV1. For HSV2, gG is cleaved, releasing the chemokine binding domain. The findings provide the mechanistic details of how
HSV modulates the host immune system (Martínez-Martín et al., 2016).

SPR & ELISA Combined Ultrasensitive Detection of Influenza A Nucleoprotein

Immunoassay-based diagnostics are available for influenza virus but these are marred by lower sensitivity and reproducibility. This
study utilized a SPR platform and digital ELISA for the detection of influenza virus utilizing neutralizing antibodies against viral
nucleoprotein A. Selected antibodies that have displayed good reactivity in both the systems (SPR and ELISA) showed high
disassociation constants. Only one antibody was found to capture the nucleoprotein directly in the lysis buffer. Results provide
another alternative for the ultrasensitive immunoassay-based detection of influenza virus (Leirs et al., 2016).

Antigenic Fingerprinting via SPR

SPR binding analysis was performed to characterize infections with H7 highly pathogenic avian influenza (HPAI) viruses. Results
show strong correlation between HA1 binding antibodies (HA1 binding mostly contributed by IgA antibodies) and H7N7 HI
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titres. Antibodies against NA7 are less frequent but have binding sites close to the sialic acid binding site. Strong antibody response
was also found against PA-X, a putative virulence factor in H7N7 exposed individuals, thus indicating immune recognition of the
virus during infection. This was unknown so far in human. This will pave the way for effective prophylactic and therapeutic
strategies against the influenza virus (Khurana et al., 2016a,b).
Kinetic and Structural Studies of Interactions Between Glycosaminoglycans and Langerin

Langerin expressed in Langerhans cells is a C-type lectin, crucial for blocking HIV transmission by capturing and internalizing HIV
into Birbeck granules for their elimination. Zhao et al. have performed real-time, label-free quantitative binding studies involving
Langerin and GAGs under variable physiological conditions of pH, salt, etc. and also varied concentrations of Ca2þ and Zn2þ

ions. They observed strong binding of langerin to heparin, particularly with longer heparin oligosaccharides. Such studies are
important to elucidate the underlying molecular mechanisms for the design of therapeutics for HIV (Zhao et al., 2016).
Proteomics-Based Protocols for Viral Detection

SPR Based Analysis of Coronavirus Protease Inhibitors

Corona viruses (CoV) are emerging at a fast pace, attaining pandemic proportions in no time. Severe acute respiratory syndrome
(SARS) is a fatal respiratory illness caused by CoV, SARS-CoV. It was a highly contagious infection, affecting around 8000 people
and killing around 800 globally (Stadler et al., 2003). Around 2012, a new CoV emerged as Middle East respiratory syndrome
coronavirus (MERS-CoV), causing large-scale death in Asia (Chan et al., 2015; Durai et al., 2015; Kumar et al., 2016). SARS-CoV
is an RNA virus sharing very little homology with other CoVs (Holmes, 2003). Two proteases in SARS-CoV, namely
3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro) are conserved across the CoV genera and serve as a
crucial antiviral targets as they are cleaved to generate mature active proteins (Anand et al., 2003; Stadler et al., 2003). Poly-
phenols are potent inhibitors of these protease though more strongly affecting PLpro than 3CLpro. SPR was utilized to
investigate the structural properties that impart polyphenols with this characteristic. Using SPR, PLpro was immobilized on the
sensor chip and the test compounds were allowed to pass over the sensor surface to check the interaction. The study shows
polyphenols from Broussonetia papyrifera have inhibitory activity against CoV proteases. This inhibitory action stems from the
number of prenyl groups present in the polyphenol (Fernandes et al., 1991; Papandreou et al., 2002; van de Laar et al., 2005;
Whitby et al., 2005; Ryu et al., 2010; Chang et al., 2013; Ji-Young et al., 2017). The SPR-based investigation identified the most
potent anti-CoV agent.
Evolution of Betacoronavirus Receptor Binding Motifs

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a bat-derived coronavirus (Fig. 10). This virus can cross species
barriers and spread among circulating bats. It is very important to put bats and virus under surveillance to check its spread. The
receptor binding domain (RBD) of the coronavirus spike (S) protein recognizes host receptors to mediate virus entry and is
therefore a key factor determining the viral tropism and transmission capacity. A study by Huang et al. (2016) has characterized
RBD to the host receptors via SPR providing structural details of RBD being composed of core and external subdomain and
Fig. 10 Coronavirus virion. Reproduced from Belouzard, S., Millet, J.K., Licitra, B.N., Whittaker, G.R., 2012. Mechanisms of coronavirus cell entry
mediated by the viral spike protein. Viruses 4, 1011–1033.



Fig. 11 Structure of Zika virus. Racaniello, R., 2016. Structure of Zika virus (virology blog). Available at: http://www.virology.ws/2016/01/28/zika-virus/.
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intersubdomain that anchors external subdomain to core subdomain. The structural insights provide crucial information on the
evolutionary trajectory of betaCoV (Huang et al., 2016).

Human SAMD9 Interaction With M062

Deleterious mutation in human Sterile a motif domain protein 9 (SAMD9) gene may lead to cancer, inflammation, attenuated
immune response and developmental arrest. A crucial host range factor M062 from myxoma virus (MYXV) is found to be
antagonistic to the human SAMD9. Using SPR, in vitro kinetics of interaction between SAMD9 and M062 was characterized to
identify the regions critical to the function of SAMD9. An infection assay revealed that exogenously expressed N-SAMD9 inhibits
wild type MYXV infection. The findings provide molecular insight into the mechanism that leads to the suppression of antiviral
function of SAMD9 (Nounamo et al., 2017).

Zika Virus Envelope Protein Interaction With Glycosaminoglycans

Zika virus (ZIKV) belongs to family Flaviviridae obtaining its name from the Zika forest of Uganda from where it was first isolated
in 1947. Zika virus spreads infection through daytime-active Aedes mosquitoes, such as A. aegypti and A. albopictus (Fig. 11). From
the time of its origin, it was confined to the equatorial belt from Africa to Asia. However, it is now showing an eastward spread
across the Pacific Ocean to the western hemisphere, leading to epidemics, particularly in Latin America. A recent pandemic of Zika
virus has posed a serious threat due to its role in development of severe fetal abnormalities. The situation has become so alarming
that Brazil, where this virus emerged most strongly has declared that women should avoid conceiving until the threat is over. SPR-
based binding studies involving Zika virus envelop protein to glycosaminoglycans (GAGs) were examined in real-time to elucidate
the role of GAGs in cell entry, placenta and brain. Envelop protein binds strongly to heparin, which is a highly sulfated GAG,
suggesting electrostatic interactions. SPR-based competition assays utilizing variable chain length heparin oligosaccharides show
that envelop binds strongly with longer heparin oligosaccharides. This study highlights the role of GAGs as attachment factors to
reveal the mechanism of pathogen entry (Kim et al., 2017).

Molecular Inhibitors Against Serine Protease From Zika Virus

The Zika NS2B/NS3 protease plays an important role in viral replication, and hence, forms a crucial drug target to block viral
replication. Competition SPR and Inhibition analysis by enzyme kinetics were applied to identify a compound with optimum
inhibitory activity and binding affinity (Lee et al., 2017).

Inhibition of Chikungunya Virus by Picolinate That Targets Viral Capsid Protein

Chikungunya virus (CHIKV) belongs to genus alphavirus and family Togairidae. It has a single-stranded positive RNA genome of
11.6 kb. CHIK contains both structural (capsid and envelop glycoproteins E1 and E2) and non-structural proteins. E2 mediates
host cell entry through receptor mediated endocytosis. E1, through its fusion peptide, initiates membrane fusion, releasing
nucleocapsids into the host cytoplasm and causing infection (Caglioti et al., 2013). The binding of transmembrane glycoprotein E2
with capsid proteins in a hydrophobic pocket plays a crucial role in the Alphavirus life cycle. A study has characterized the
interaction of dioxane-based derivatives like picolinic acid in the conserved hydrophobic pocket of capsid protein by SPR, ITC and
fluorescence spectroscopy. Subsequent reduction in the viral mRNA and viral load was confirmed by QRT-PCR. This study will
pave the way for developing pyridine based antiviral thereupeutics particularly against alphavirus (Sharma et al., 2016).
Identification of a Novel Complex Between the Nucleoprotein and PA (1–27) of Influenza A Virus Polymerase

SPR was utilized to study the binding kinetics of ribonucleoprotein (RNP) complexes with polymerase acidic subunit of influenza
virus. RNPs are crucial to viral replication and transcription. Therefore, elucidating the mechanism involved in their assembly may

http://www.virology.ws/2016/01/28/zika-virus/
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provide a target to block/inhibit the replication of virus. In a study, polymerase acidic subunit PA(1� 27) and NP complex
assembly was characterized by SPR, fluorescence utilizing RNP and Pull down assays in infected cells (Vidic et al., 2016).
Vaccines

SPR Aided Vaccine Design

Enveloped viruses like HIV and influenza viruses are studied with respect to the neutralizing sites for antibodies for vaccine
design. However, non-enveloped viruses are less studied with respect to the neutralizing antibody response. Reovirus was studied
with respect to the binding of two neutralizing antibodies with attachment to protein s1 of reovirus. The study revealed the
vulnerable sites for viral neutralization, mechanism to block viral infection and conformation adopted during viral cell entry.
During cell entry, protein s1 attaches with glycan receptors and junctional adhesion molecule-A (JAM-A). SPR and cell binding
assays show that the tested antibodies interfere with JAM-A attachment through steric hindrance (Dietrich et al., 2017; Singh,
2014, 2016a,b).

VSV-Ebola Vaccination

In a study, Vescicular stomatitis virus (VSV)-Ebola vaccine was administered at 3 million, 20 million and 100 million plaque-
forming units (pfu) along with homologous VSV-Ebola vaccine boost in healthy volunteers. Whole genome fragment phage
display libraries displayed linear and conformational epitopes of ebola virus glycoprotein and showed rich diversity of antibody
epitopes in individuals vaccinated with higher pfu. SPR studies also revealed higher glycoprotein binding following single
vaccination with higher pfu correlating strongly with neutralization titers. Isotype analysis showed major IgM response following
second vaccination leading to in vitro neutralization of virus. These findings may provide a clue to the development and evaluation
of new vaccine targets effective against ebola (Khurana et al., 2016a,b).
Conclusions

Timely diagnosis of viral infections is crucial for predicting the outbreak of disease before it assumes endemic and pandemic
proportion. This is particularly important in wake of continuously emerging newer and more virulent strains of virus. Rapid
evolution of virus has outpaced the conventional surveillance protocols like antigenic, serological and agglutination assays,
which lack robustness, reproducibility, simplicity and shelf-life. Current need is for a protocol that is rapid, portable and cost-
effective, with high sensitivity and specificity. In this regard, optical biosensors that feature portability, sensor miniaturization,
and the ability to screen many samples at a time are finding more use in biomedical diagnostics as compared to other
comparable techniques that lack miniaturization and high throughput. Surface Plasmon resonance is particularly important as it
offers highly sensitive and specific kinetic analysis of biomolecular interaction in label-free manner. However, optical biosensors
require highly trained manpower, advance laboratory infrastructure, which might be a limiting factor for resource-constrained
setups in developing or under developed countries or in far-flung remote areas. Therefore, there is a need to rationalize and
improvise the optical biosensing platforms in terms of portability, cost involved, affordability, user-friendliness and ready-to-
use mode. This will maximize its benefit in the field based diagnostic applications in remote areas aiding it to emerge as a
reliable diagnostic tool for common man than being a ultra-sophisticated device within the confines of laboratory accessible to
few academic elites.
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