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Abstract: Angiogenesis is the formation of new blood vessels from preexisting ones and is implicated
in physiologic vascular development, pathologic blood vessel growth, and vascular restoration.
This is in contrast to vasculogenesis, which is de novo growth of vessels from vascular precursors,
or from vascular repair that occurs when circulating endothelial progenitor cells home into an area
and develop into blood vessels. The objective of this review is to discuss the isoform-specific role of
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) in physiologic and pathologic
angiogenesis and vascular repair, but will not specifically address vasculogenesis. As the major source
of reactive oxygen species (ROS) in vascular endothelial cells (ECs), NOX has gained increasing
attention in angiogenesis. Activation of NOX leads to events necessary for physiologic and pathologic
angiogenesis, including EC migration, proliferation and tube formation. However, activation of
different NOX isoforms has different effects in angiogenesis. Activation of NOX2 promotes pathologic
angiogenesis and vascular inflammation, but may be beneficial in revascularization in the hindlimb
ischemic model. In contrast, activation of NOX4 appears to promote physiologic angiogenesis
mainly by protecting the vasculature during ischemia, hypoxia and inflammation and by restoring
vascularization, except in models of oxygen-induced retinopathy and diabetes where NOX4 activation
leads to pathologic angiogenesis.

Keywords: nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX); NOX2; NOX4;
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1. Introduction

Angiogenesis is the formation of new blood vessels from pre-existing ones [1] and includes
physiologic vascularization [2,3], vascular restoration in response to ischemia and other stresses
implicated in cardiovascular diseases [4,5], and pathologic neovascularization [6], such as that
seen in tumor growth [7–10] and ocular diseases [6,11–13]. Reactive oxygen species (ROS) act as
signaling molecules to promote endothelial cell (EC) proliferation, migration and tube formation,
which are essential events in angiogenesis. As a major source of ROS generation in vascular ECs [14],
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is of primary interest in
understanding the roles of ROS in these biologic events.

The NOX family has seven isoforms, NOX1-5, Dual oxidase 1 (Duox-1) and Doux-2. Of these
seven isoforms, catalytic subunits, Nox1, Nox2, Nox4 and Nox5 are expressed in vascular ECs [14,15].
Enzymatic activation of NOX1-2 requires assembly of the catalytic subunit, Nox1 or Nox2, with regulatory
subunits, p22phox (also known as cytochrome b-245 alpha chain), and p47phox or NADPH oxidase
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organizer 1 (Noxo1), p67phox or NADPH oxidase activator 1 (Noxa1), p40phox and ras-related C3
botulinum toxin substrate 1 (Rac1) [14]. Nox subunits and p22phox are membrane-bound proteins,
and p47phox (Noxo1), p67phox (Noxa1), p40phox and Rac1 are cytosolic. However, activation of NOX4
does not require the recruitment of cytosolic subunits and is constitutively active through its interaction
with p22phox. NOX5 is activated by Ca2+ and does not require other subunits to be active but may
interact with p22phox [4,14]. Activation of NOX is often measured by ROS generation. It is generally
accepted that under physiologic conditions, vascular NOX shows relatively low activity as assessed
by ROS generation; however, activity can be increased in response to both acute and chronic stimuli,
such as growth factors, cytokines, chemokines, hypoxia or ischemia [4].

Over the past decade, the roles of NOX in angiogenesis have been extensively studied.
In this review, we provide an update of the new findings of NOX in regulating physiologic
and pathologic angiogenesis in ocular vascular diseases, cardiovascular diseases, and tumor
angiogenesis, with emphasis on the roles of NOX2 and NOX4, which are best known in
vascular diseases. We also discuss molecular mechanisms involved in the activation of NOX and
NOX-mediated signaling pathways in angiogenesis and the crosstalk between vascular inflammation
and pathologic angiogenesis.

2. Regulation of NADPH Oxidase (NOX) Activation

In vascular ECs, activation of NOX isoforms is regulated through different signaling cascades that
lead to ROS generation in the form of either the superoxide radical (O2

−) or hydrogen peroxide (H2O2).

2.1. NADPH Oxidase 2 (NOX2)

Nox2 subunit was identified in leukocytes as having an important role in host defense as
a phagocytic respiratory burst oxidase [16]. In its inactive state, catalytic subunit, Nox2, initially
named a glycosylated 91-kDa glycoprotein (gp91phox), forms a complex with p22phox in the cell
membrane, and the regulatory subunits, p47phox, p67phox, p40phox, and the Rho GTPase protein, Rac1,
remain in the cytosol. In quiescent ECs, cytosolic subunits p47phox, p67phox and p40phox form a protein
complex, and Rac1 is in its guanine diphosphate (GDP)-form free from this complex. In response to
an inciting stimulus, Rac1 is activated when it becomes Guanosine triphosphate (GTP)-bound and
binds to p67phox in the protein complex [4]. Membrane translocation of p40phox, p47phox, and p67phox

involves serine or threonine phosphorylation. The complex translocates to the membrane to interact
with Nox2 and p22phox. Aggregation of all the subunits leads to ROS generation in the form of
O2
−. In vascular ECs, a number of kinases can mediate phosphorylation of the cytosolic subunits.

For example, p47phox is phosphorylated by protein kinase C (PKC), phosphoinositide 3-kinase (PI3K)
or Src [17–19]; p67phox is phosphorylated by PKC, extracellular signal-regulated kinase 2 (ERK2) or
p38 mitogen-activated protein kinase (p38MAPK) [19,20]; and p40phox is phosphorylated by PKC [19].
PKC has also been reported to phosphorylate catalytic subunit Nox2 directly [19], which promotes
the recruitment of cytosolic subunits and, therefore increases NOX2 activity. As oxidase activity of
NOX2 requires assembly of membrane subunits with cytosolic subunits, a mutation or deletion of any
subunit impairs ROS generation from the NOX2.

2.2. NADPH Oxidase 4 (NOX4)

NOX4, the most prevalent isoform of NADPH oxidase in vascular ECs [14,21], was initially
identified in the kidney [22]. Catalytic subunit Nox4 colocalizes with p22phox to form a complex.
In contrast to activation of NOX2, activation of NOX4 does not require the assembly of cytosolic
subunits and is, therefore, constitutively active. The enzymatic activity of NOX4 is mainly regulated
by the expression of Nox4 and p22phox. In response to hypoxia, Nox4 was upregulated in the retina
of rat pups exposed to oxygen-induced retinopathy (OIR) and colocalized with retinal vascular
ECs [21]. In human aortic ECs, Nox4 was upregulated by oxidized lipid, 1-palmitoyl-2-arachidonyl-
sn-glycerol-3-phosphocholine (Ox-PAPC) [23] and by tumor necrosis factor alpha (TNFα) [24]. Nox4
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expression in ECs also involves an epigenetic regulatory mechanism. Inhibition of histone deacetylase
by trichostatin A reduced Nox4 expression and H2O2 generation [25]. Transforming growth factor
beta1 (TGFβ1) can upregulate Nox4 subunit expression in ECs [26]. Activation of NOX4 generates
high levels of H2O2, which differs from NOX2, which generates O2

− when activated.

2.3. NADPH Oxidase 1 (NOX1)

NOX1 was first identified in colonic epithelium as a homologue of NOX2 [27,28]. Similar to the
Nox2 subunit, Nox1 interacts with p22phox to form a membrane- bound complex and requires p22phox

for activation. In contrast to NOX2, cytosolic subunits for NOX1 include Noxo1 (or p47phox in some
tissues) and Noxa1, which is in place of p67phox. Unlike p47phox, Noxo1 constitutively binds p22phox;
therefore, NOX1 activation is not regulated by membrane translocation of Noxo1. However, activation
of NOX1 requires membrane translocation of Noxa1 and is regulated by phosphorylation-dependent
signaling. Serine phosphorylation of Noxa1 by protein kinase A (PKA) [29], PKC [30], ERK1/2 [30] or
p38MAPK [31] decreased ROS generation from NOX1, whereas tyrosine phosphorylation of Noxa1
by Src increased NOX1 activity [32]. NOX1 activation also requires recruitment of active Rac1 [4,33].
In vascular ECs, activation of NOX1 produces O2

− [34].

2.4. NADPH Oxidase 5 (NOX5)

NOX5 is also expressed in vascular ECs in humans but is not expressed in rodents. Activation of
NOX5 does not require either p22phox or cytosolic subunits. Besides the six transmembrane helices,
NOX5 contains four calcium-binding helix-loop-helix structure domains (also called EF hand) in the
cytosolic N-terminal segment. By binding to the calcium binding domains, NOX5 can be activated by
intracellular Ca2+ to generate O2

− [34].

3. NADPH Oxidase (NOX) in Angiogenesis

Cumulative evidence indicates that NOX-generated ROS can promote or inhibit angiogenesis
depending in part on what signaling pathways are activated and in what cells, those that interact with
vascular ECs or the ECs themselves. Also important is the subcellular location of the NOX isoforms
in cells and vascular ECs. In diabetic retinopathy, interactions between oxidative stress-related
and inflammatory pathways appear important in pathologic neovascularization [35–37]. Similarly,
crosstalk between oxidative and inflammatory signaling occurs in neovascular age-related macular
degeneration [13,38] and tumor growth [39,40]. We summarize the evidence from in vitro studies
and in vivo animal models of OIR, laser-induced choroidal neovascularization (LCNV), diabetic
retinopathy, and brain, aorta and hindlimb ischemia. We also discuss the effects of NOX isoforms
in physiologic and pathologic angiogenesis and the signaling cascades involved. We will refer
to physiologic angiogenesis as angiogenesis in physiologic vascular development and vascular
recovery or restoration during hypoxia or ischemia, and pathologic angiogenesis as neovascularization
associated with vascular pathologies and dysfunction. Also discussed will be vascular repair, which can
involve homing of circulating endothelial progenitor cells (EPCs) into damaged vessels or tissue.

3.1. NADPH Oxidase 2 (NOX2) in Angiogenesis

NOX2 was originally reported to regulate inflammation [16,33]; however, the importance of
NOX2-generated ROS in angiogenesis, particularly in response to ischemia or hypoxia, has gained
more attention. NOX2 is involved in both physiologic and pathologic angiogenesis.
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3.1.1. NOX2 in Physiologic Angiogenesis and Vascular Repair

There is evidence that NOX2 can promote or inhibit physiologic angiogenesis. Animal models
of OIR are useful to study the effects of oxidative stress in both pathologic and physiologic or
developmental angiogenesis. For example, in the rat OIR model, newborn rat pups have incompletely
vascularized retinas at birth. Pups exposed to fluctuations in oxygenation experience delayed
physiologic retinal vascularization compared to room air-raised pups of the same developmental
ages [41]. We previously found that the Nox2 subunit co-localized with cluster of differentiation31
(CD31)-and CD68-positive cells in the retinas of rat OIR pups. Inhibition of NOX2 activation by
intraperitoneal injection of the anti-oxidant, apocynin, promoted physiologic retinal vascularization
and reduced active caspase 3-mediated apoptosis in retinal vessels [42]. These findings support
a hypothesis that NOX2-generated ROS inhibit physiologic retinal vascularization by activating
apoptosis-dependent signaling, and this may not be by direct inhibition of physiologic angiogenesis.
The inhibitory effect of NOX2-derived ROS in physiologic angiogenesis also is supported by a study
in an ischemic brain stroke-reperfusion model. The study reported that Nox2−/− mice had reduced
cerebral infarct volume in association with revascularization into the damaged brain [43]. The density
of newly-formed blood vessels in the damaged brain was reduced in both wild-type and Nox2−/− mice
compared to respective mice before stroke induction and recovered to pre-stroke levels in Nox2−/−

but not wild-type mice [43]. This evidence suggests that NOX2-derived ROS inhibit physiologic
angiogenesis and interfere with vascular recovery following ischemic stroke. Nox2−/− mice also
exhibited reduced neuronal cell loss at the core of the damaged brain. One hypothesis is that this
may have been due to greater vascular recovery in Nox2−/− mice following stroke. More neuronal
cells surviving ischemia in Nox2−/− mice can induce greater expression of angiogenic factors, such as
vascular endothelial growth factor (VEGF) and erythropoietin, which can contribute to physiologic
angiogenesis. Future study needs to address this potential mechanism.

However, the inhibitory effect of NOX2-derived ROS in physiologic angiogenesis is not supported
by studies in a hindlimb ischemic model. Increased ROS measured by dihydroethidium (DHE)
staining and labeling for the Nox2 subunit (gp91phox) were found in the ischemic hindlimb in which
new capillaries formed; administration of the antioxidant ebselen to scavenge ROS decreased capillary
density [44]. The essential effect of NOX2 in promoting capillary formation during ischemia was
further established in Nox2−/− mice, which had significantly reduced capillary density, blood flow
and ROS generation in the ischemic hindlimb [44]. However, VEGF expression did not change in the
ischemic hindlimb of Nox2−/− mice, suggesting that activation of NOX2 promotes ischemia-induced
angiogenesis independently of VEGF signaling [44]. Another study in the hindlimb ischemic model
also demonstrated that NOX2-derived ROS promoted bone marrow mobilization and enhanced the
angiogenic capacity of EPCs involved in tissue repair [33,45]. Cultured bone marrow-derived EPCs
isolated from Nox2−/− mice exhibited impaired stromal-derived factor (SDF)-induced migration and
tube formation involving inhibition of Akt-1 (protein kinase B) activation. These findings suggest that
NOX2-generated ROS regulate the angiogenic capacity of bone marrow EPCs.

Taken together, activation of NOX2 appears to play different roles in regulating physiologic
angiogenesis and may relate to the amount of ROS generated and the microenvironment. In the retina
and brain, NOX2-derived ROS have anti-angiogenic effects and inhibit physiologic angiogenesis by
activating apoptotic signaling and by a mechanism involving potential interactions between neurons
and vascular ECs, whereas in ischemic hindlimb, activation of NOX2 promotes vascular restoration
and vascular repair by increasing angiogenic capacity of bone marrow-derived EPCs (Figure 1). Further
studies are therefore warranted to demonstrate the roles of NOX2 in physiologic angiogenesis and the
potential mechanisms.
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Figure 1. Activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) in 
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physiologic angiogenesis through signaling pathways involved in physiologic retinal vascularization, 
vascular restoration through revascularization in brain and hindlimb ischemic models, and vascular 
repair through endothelial progenitor cells (EPCs). The stimuli designate pathways that have been 
reported in the literature but do not imply exclusivity. (┴: inhibit; →: promote). OIR: oxygen-induced 
retinopathy. 
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pathologic angiogenesis has been well studied, particularly in ocular vascular diseases. Most 
evidence provides support that NOX2-derived ROS promote and/or contribute to pathologic 
angiogenesis [46–51]. Our studies in the rat OIR model show that activation of NOX2 from 
supplemental oxygen (28% oxygen instead of 21% oxygen) induced intravitreal neovascularization 
(IVNV), i.e., abnormal blood vessels growing into the vitreous, instead of into the retina [47] and 
suggest that activation of NOX2 promotes pathologic angiogenesis. The evidence further shows that 
NOX2 induced IVNV by activating the Janus kinase–signal transducer and activator of transcription 
3 (JAK/STAT3) pathway and not by activation of VEGF-dependent signaling [47]. Studies in the 
mouse OIR model also support the roles of NOX2 in promoting pathologic neovascularization in the 
retina. NF-E2-related factor 2 (Nrf2) is a transcriptional factor that regulates stress-induced 
antioxidant and anti-inflammatory responses. Genetic deletion of Nrf2 interferes with the balance 
between oxidative and anti-oxidative mechanisms. Nrf2−/− mice exposed to 75% oxygen from 
postnatal day 7 (p7) to p12 had increased IVNV at p17 in association with exacerbation of  
NOX2-generated ROS in the mouse OIR model [48], whereas Nox2−/− mice had significantly reduced 
IVNV in association with decreased ROS generation and VEGF expression in the retina at p17 [49].  

NOX2 activation requires the assembly of membrane and cytoplasmic subunits. Rac1-GTP, 
necessary for NOX2 activation, also plays an important role in EC migration [50]. We found that, in 
cultured choroidal ECs (CECs), VEGF activated Rac1 to become GTP-bound and upregulated p22phox 
and p47phox, and promoted CEC migration directly and through activation of NOX2 [51]. CEC 
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physiologic angiogenesis. NOX2 is activated by stimuli, including fluctuations in oxygenation, ischemia,
and stromal-derived factor (SDF), and generates the superoxide radical that mediates physiologic
angiogenesis through signaling pathways involved in physiologic retinal vascularization, vascular
restoration through revascularization in brain and hindlimb ischemic models, and vascular repair
through endothelial progenitor cells (EPCs). The stimuli designate pathways that have been reported in
the literature but do not imply exclusivity. (

Antioxidants 2017, 6, 40 5 of 17 

 

Figure 1. Activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) in 
physiologic angiogenesis. NOX2 is activated by stimuli, including fluctuations in oxygenation, 
ischemia, and stromal-derived factor (SDF), and generates the superoxide radical that mediates 
physiologic angiogenesis through signaling pathways involved in physiologic retinal vascularization, 
vascular restoration through revascularization in brain and hindlimb ischemic models, and vascular 
repair through endothelial progenitor cells (EPCs). The stimuli designate pathways that have been 
reported in the literature but do not imply exclusivity. (   ┴   : inhibit; →: promote). OIR: oxygen-
induced retinopathy. 

3.1.2. NOX2 in Pathologic Angiogenesis 

In contrast to its role in physiologic angiogenesis and vascular repair, the role of NOX2 in 
pathologic angiogenesis has been well studied, particularly in ocular vascular diseases. Most 
evidence provides support that NOX2-derived ROS promote and/or contribute to pathologic 
angiogenesis [46–51]. Our studies in the rat OIR model show that activation of NOX2 from 
supplemental oxygen (28% oxygen instead of 21% oxygen) induced intravitreal neovascularization 
(IVNV), i.e., abnormal blood vessels growing into the vitreous, instead of into the retina [47] and 
suggest that activation of NOX2 promotes pathologic angiogenesis. The evidence further shows that 
NOX2 induced IVNV by activating the Janus kinase–signal transducer and activator of transcription 
3 (JAK/STAT3) pathway and not by activation of VEGF-dependent signaling [47]. Studies in the 
mouse OIR model also support the roles of NOX2 in promoting pathologic neovascularization in the 
retina. NF-E2-related factor 2 (Nrf2) is a transcriptional factor that regulates stress-induced 
antioxidant and anti-inflammatory responses. Genetic deletion of Nrf2 interferes with the balance 
between oxidative and anti-oxidative mechanisms. Nrf2−/− mice exposed to 75% oxygen from 
postnatal day 7 (p7) to p12 had increased IVNV at p17 in association with exacerbation of  
NOX2-generated ROS in the mouse OIR model [48], whereas Nox2−/− mice had significantly reduced 
IVNV in association with decreased ROS generation and VEGF expression in the retina at p17 [49].  

NOX2 activation requires the assembly of membrane and cytoplasmic subunits. Rac1-GTP, 
necessary for NOX2 activation, also plays an important role in EC migration [50]. We found that, in 
cultured choroidal ECs (CECs), VEGF activated Rac1 to become GTP-bound and upregulated p22phox 
and p47phox, and promoted CEC migration directly and through activation of NOX2 [51]. CEC 

: inhibit; →: promote). OIR: oxygen-induced retinopathy.

3.1.2. NOX2 in Pathologic Angiogenesis

In contrast to its role in physiologic angiogenesis and vascular repair, the role of NOX2 in pathologic
angiogenesis has been well studied, particularly in ocular vascular diseases. Most evidence provides
support that NOX2-derived ROS promote and/or contribute to pathologic angiogenesis [46–51].
Our studies in the rat OIR model show that activation of NOX2 from supplemental oxygen (28% oxygen
instead of 21% oxygen) induced intravitreal neovascularization (IVNV), i.e., abnormal blood vessels
growing into the vitreous, instead of into the retina [47] and suggest that activation of NOX2 promotes
pathologic angiogenesis. The evidence further shows that NOX2 induced IVNV by activating the Janus
kinase–signal transducer and activator of transcription 3 (JAK/STAT3) pathway and not by activation
of VEGF-dependent signaling [47]. Studies in the mouse OIR model also support the roles of NOX2 in
promoting pathologic neovascularization in the retina. NF-E2-related factor 2 (Nrf2) is a transcriptional
factor that regulates stress-induced antioxidant and anti-inflammatory responses. Genetic deletion
of Nrf2 interferes with the balance between oxidative and anti-oxidative mechanisms. Nrf2−/− mice
exposed to 75% oxygen from postnatal day 7 (p7) to p12 had increased IVNV at p17 in association
with exacerbation of NOX2-generated ROS in the mouse OIR model [48], whereas Nox2−/− mice had
significantly reduced IVNV in association with decreased ROS generation and VEGF expression in the
retina at p17 [49].

NOX2 activation requires the assembly of membrane and cytoplasmic subunits. Rac1-GTP,
necessary for NOX2 activation, also plays an important role in EC migration [50]. We found that,
in cultured choroidal ECs (CECs), VEGF activated Rac1 to become GTP-bound and upregulated
p22phox and p47phox, and promoted CEC migration directly and through activation of NOX2 [51].
CEC migration is necessary for the development of CNV, which threatens vision in age-related macular
degeneration. The development of CNV involves a number of events, including compromise of the
retinal pigment epithelial (RPE) barrier integrity and activation of CECs to migrate across the RPE
monolayer [13]. The laser-induced injury model of CNV is a useful model to study oxidative stress
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in pathologic angiogenesis. We found that through NOX-dependent signaling, laser injury reduced
RPE barrier integrity in cells surrounding the laser injury [52,53] and increased the activation of Rac1
in CECs, which was necessary for CEC activation and migration [51,54]. We found that activation of
the GTPase protein, Ras-related protein 1 alpha (Rap1a), in retinal pigment epithelium (RPE) or CECs
inhibited NOX2 activation. Overexpression of active Rap1a in RPE increased RPE barrier integrity
and resisted CEC transmigration of the RPE monolayer [53]. Overexpression of Rap1a in CECs
inhibited CEC migration [55]. Our in vivo study using the laser-induced CNV model showed that
RPE-specific expression of active Rap1a delivered by the RPE65 promoter-driven self-complementary
adeno-associated virus 2 significantly reduced CNV volume in association with increased adherens
junction protein, cadherin, in the RPE [55]. This finding is also supported by our study in mice with
a deletion of p47phox to inhibit NOX2 enzymatic activity. p47phox−/− mice had smaller CNV volumes
and less DHE fluorescence, indicative of O2

−, within isolectin-stained CNV lesions compared to
wild-type controls [51]. Taken together, these findings from our studies suggest that NOX2 promotes
pathologic angiogenesis in choroidal neovascularization and may translate to neovascular age-related
macular degeneration.

NOX2 activation was required for pathologic angiogenesis stimulated by urotensin-II in tumor
tissues [56]. Urotensin increased the expression of Nox2 subunit mRNA and protein in human
umbilical ECs by promoting transcriptional activity of hypoxia-inducible factor-1 (HIF-1). Furthermore,
NOX2 derived ROS also increased urotensin-induced HIF-1 in ECs. Knockdown of Nox2 inhibited
urotensin-II-mediated angiogenesis and vascular HIF-1 expression [56]. Altogether these results
suggest that NOX2 activation led to angiogenic signaling in pathologic events in tumor growth.

These findings from our lab and others’ suggest that activation of NOX2 activation in hypoxia
and ischemia functions as a pro-angiogenic factor to promote pathologic angiogenesis in retinopathy,
CNV and tumor growth (Figure 2).
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Figure 2. Activation of NADPH oxidase 2 (NOX2) in pathologic angiogenesis. NOX2 is activated
by stimuli, including hypoxia, vascular endothelial growth factor (VEGF), laser injury and urotensin,
and generates the superoxide radical that promotes pathologic angiogenesis through signaling
pathways involved in intravitreal neovascularization, choroidal neovascularization and tumor growth.
The stimuli designate pathways that have been reported in the literature but do not imply exclusivity.
CECs: choroidal endothelial cells; HIF-1: hypoxia-inducible factor-1; LCNV: laser-induced choroidal
neovascularization; RPE: retinal pigment epithelial; (JAK2)/STAT3: Janus kinase 2/Signal transducer
and activator of transcription 3.
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3.1.3. NOX2 Interaction between Vascular Inflammation and Pathologic Angiogenesis

The interaction of vascular inflammation and angiogenesis involves NOX activation, particularly
NOX2. Our studies provided evidence for the effects of the proinflammatory cytokine, TNFα,
on promoting pathologic angiogenesis in CNV through activation of NOX2. In CECs, TNFα activated
NOX2 to generate ROS, which then led to Rac1 activation and CEC migration via NF-κB-dependent
signaling [55]. Laser treatment not only increased ROS generation, but upregulated TNFα in
RPE/choroids. Inhibition of TNFα using an intravitreal neutralizing antibody significantly reduced
CNV volume and Rac1 activation in association with decreased ROS determined by DHE fluorescence
density at CNV lesions [55]. Our studies also found that TNFα upregulated VEGF expression in
cultured RPE cells via β-catenin-dependent signaling [57]. Treatment with TNFα reduced RPE barrier
resistance by decreasing cadherin and β-catenin complexes and led to increased CEC transmigration
of the RPE monolayer [58]. CEC transmigration of the RPE and RPE barrier compromise are necessary
events in the development of CNV. Taken together, our studies suggest vascular inflammation activates
NOX2 and therefore leads to pathologic angiogenesis in the form of CNV.

The role of NOX2 in vascular inflammation and pathologic angiogenesis is supported by
studies in pulmonary microvascular ECs (PMVECs) and developing lung. Silencing Nox2, but not
Nox4, inhibited lipopolysaccharide (LPS)-induced human pulmonary microvascular EC activation
determined by phosphorylation of toll-like receptor [59]. In developing lung silenced for Nox2,
alveolar remodeling after LPS exposure was inhibited in association with decreased angiopoietin-2,
Tie2, VEGFA protein [59] and intercellular adhesion molecule 1 (ICAM-1) [60,61].

Animal models of diabetes are useful to study mechanisms of vascular inflammation and retinal
microvascular EC dysfunction and pathologic neovascularization that are thought to be important
in diabetic retinopathy. Increased ROS, VEGF, ICAM-1, leukocyte adhesion and blood–retinal
barrier breakdown are observed in the retinas of diabetic mice, suggesting the hypothesis that
hyperglycemia promotes retinal vascular inflammation and dysfunction. These diabetes-induced
retinal changes were ameliorated in Nox2−/− mice [62–65]. Anti-oxidant treatment reduced
streptozotocin (STZ)-induced diabetic microvascular complications by suppressing production of
pro-inflammatory factors, interleukin-1 beta (IL-1β), nitric oxide synthase 2 (NOS2) and NF-κB from
bone marrow progenitor cells [66] in association with decreased Nox2. In cultured bovine retinal ECs,
high glucose (25 mM) upregulated ICAM-1 and VEGF via NOX2-dependent activation of STAT3 [67],
leading to vascular inflammation and increased angiogenic capacity of retinal ECs.

Altogether, these findings suggest that vascular inflammation promotes pathologic angiogenesis
through NOX2-generated ROS (Figure 3).

3.2. NADPH Oxidase 4 (NOX4) in Angiogenesis

NOX4 is the most prevalent isoform of NADPH oxidase in vascular ECs. Catalytic subunit
Nox4 is localized to multiple sites in the cell, including the nucleus, endoplasmic reticulum, plasma
membrane and mitochondria. Therefore, NOX4 may have myriad cell functions. Most evidence
supports a beneficial role of NOX4 in angiogenesis.

3.2.1. NOX4 in Physiologic Angiogenesis

Animal models with ischemia are useful to study vascular restoration through revascularization.
In the hindlimb ischemia model, compared to non-transgenic littermate mice, transgenic mice with
overexpression of WT human Nox4 (EWT mice) in ECs had enhanced recovery of blood flow, whereas
transgenic mice with the endothelial-expressing dominant negative form of human Nox4 (EDN) had
impaired recovery of blood flow [26]. Recovery of blood flow in EWT mice was associated with
upregulation of mRNAs of VEGFR2, endothelial NOS (eNOS) and TGFβ1 in ECs [26]. Either VEGF or
TGFβ1 promoted proliferation, migration and capillary tube formation in ECs isolated from EWT mice,
but not in ECs from EDN mice. Blocking TGFβ1 inhibited the phosphorylation of VEGFR2 and eNOS
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in EWT murine ECs, suggesting the hypothesis that endothelial NOX4 mediated ischemia-induced
angiogenesis through TGFβ1-dependent activation of eNOS [26,68]. The premise was also supported
by another study, in which Nox4 protein was upregulated by hypoxia in ECs, and increased capillary
sprouting after hindlimb ischemia was found in transgenic mice with Nox4 overexpression in ECs
driven by the vascular endothelial cadherin (VE-cadherin) promoter (VeCad-Nox4 mice) but not in
VeCad-Nox4 mice on an eNOS−/− background. The tamoxifen-inducible Nox4−/− mice had delayed
reperfusion in the hindlimb ischemia-reperfusion model [69]. Altogether, these findings suggest that
ischemia-induced activation of endothelial NOX4 promotes physiologic angiogenesis through the
eNOS-dependent signaling, thereby enhancing vascular restoration [70].Antioxidants 2017, 6, 40 8 of 17 
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Figure 3. Activation of NADPH oxidase 2 (NOX2) in interactions of vascular inflammation and
pathologic angiogenesis. NOX2 is activated by inflammatory factors, including tumor necrosis
factor alpha (TNFα), lipopolysaccharide (LPS), hyperglycemia and high glucose, and generates the
superoxide radical that promotes pathologic angiogenesis through signaling pathways involved in
choroidal neovascularization and diabetic retinopathy. The stimuli designate pathways that have been
reported in the literature but do not imply exclusivity. ICAM-1: intercellular adhesion molecule 1;
STZ: streptozotocin; NOS2: nitric oxide synthase 2; PMVECs: pulmonary microvascular ECs; NF-κB:
nuclear factor kappa-light-chain-enhancer of activated B cells.

The beneficial effect of NOX4 in physiologic angiogenesis is also observed in animal models
of cardiac stress. In cardiomyocytes, Nox4 was upregulated by hypoxia or pressure overload [71].
Transgenic mice with cardiomyocyte-specific Nox4 overexpression had preserved myocardial capillary
density and myocardial protection from chronic overload-induced dysfunction [71], whereas genetic
deletion of Nox4 exaggerated cardiac dysfunction from increased myocardial capillary loss after chronic
overload [71]. Overexpressed Nox4 in cardiomyocytes increased H2O2, HIF-1α protein and VEGF
release, which may have been involved in the underlying protective mechanism of NOX4 in response
to chronic overload [71]. The protective effects of NOX4 on ischemia-induced angiogenesis were also
found in cultured aortae, in which NOX4 promoted aortic vessel sprouting and recovery of blood flow
through PKA-dependent ERK activation [72]. However, the beneficial effect of NOX4 in physiologic
angiogenesis is not observed in physiologic retinal vascularization. We found that retinal Nox4
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expression was not increased in room air-raised rat pups with normal retinal vascular development [21].
Also, retinal vascular development was normal in room air-raised Nox4−/− mice [73], suggesting
NOX4 activation was not necessary for physiologic angiogenesis in the developing retina.

Altogether, findings from different studies demonstrate that NOX4-mediated angiogenic signaling
protects tissues and cells and promotes vascular recovery after hypoxic and ischemic stresses (Figure 4).
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Figure 4. Activation of NADPH oxidase 4 (NOX4) in physiologic angiogenesis. NOX4 is activated by
stimuli, including ischemia, pressure overload and VEGF, and generates hydrogen peroxide that
mediates physiologic angiogenesis through signaling pathways involved in vascular restoration
through revascularization in hindlimb ischemia and cardiac stress, and in ex vivo aortic sprouting.
The stimuli designate pathways that have been reported in the literature but do not imply exclusivity.
PKA: protein kinase A; ERK: extracellular signal-regulated kinase; VEGFR2: VEGF receptor 2; TGFβ1:
transforming growth factor beta1; eNOS: endothelial NOS.

3.2.2. NOX4 in Pathologic Angiogenesis

Previously we found that in human retinal microvascular ECs, VEGF activated NOX4 to generate
ROS. Knockdown of Nox4 significantly inhibited VEGF-mediated cell proliferation and STAT3-induced
pathologic intravitreal angiogenesis by reducing activation of VEGF receptor 2 (VEGFR2) [21]. In the rat
OIR model, we also found that Nox4 protein was increased in the retina and localized to retinal vascular
ECs at the point time when maximal hypoxia-induced intravitreal neovascularization formed [21].
Increased NOX4 expression in retinal microvascular ECs occurred in the mouse OIR model [74].
Nox4−/− mice exposed to OIR model had decreased IVNV in association with reduced VEGF
expression [73]. In cultured retinal microvascular ECs, overexpression of NOX4 increased VEGFR2
activation and VEGF-induced EC migration and tube formation [73]. Altogether, findings from our
study and studies from other groups provide evidence that NOX4 functions as a pro-angiogenic factor
to promote pathologic angiogenesis in OIR (Figure 5).
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Figure 5. Activation of NADPH oxidase 4 (NOX4) in pathologic angiogenesis. NOX4 is activated by
stimuli, including hypoxia and vascular endothelial growth factor (VEGF), and generates hydrogen
peroxide that mediates pathologic angiogenesis through signaling pathways involved in intravitreal
neovascularization. The stimuli designate pathways that have been reported in the literature but do
not imply exclusivity.

3.2.3. NOX4 Interaction Vascular Inflammation and Pathologic Angiogenesis

In STZ-induced diabetic mice, activation of the transcription factor, peroxisome proliferator-
activated receptor-alpha (PPARα), attenuated retinal capillary apoptosis and pericyte loss in retinas by
inhibiting NF-κB dependent-NOX4 activation [75]. PPARα−/− mice had increased retinal cell death
and glial activation in OIR. Activation of PPARα by its ligand, fenofibric acid, inhibited OIR-induced
Nox4 upregulation [76]. These findings support the line of thinking that activation of NOX4 regulates
the interaction of vascular inflammatory and pathologic angiogenesis in diabetic retinopathy.

However, evidence from other studies suggests that activation of NOX4 inhibits vascular
inflammation. Nox4 was reduced in plaques from patients with cardiovascular events or diabetes [77].
STZ-induced diabetic ApoE−/− mice exhibited accelerated plaque formation with decreased
Nox4 [77]. Genetic deletion of Nox4 in diabetic ApoE−/− mice increased plaque area, the release of
pro-inflammatory factors MCP-1, TNFα and IL-1β, and led to macrophage accumulation within the
aortic wall [77]. Aortae from tamoxifen-inducible Nox4−/− mice generated by crossing Nox4flox/flox

mice with Cre-ERT2 mice had increased aortic wall thickness and inflammatory factors, IL-6 and IL-1β,
localized in the aortic wall. These data suggest that deletion of Nox4 promotes aortic hypertrophy
through inflammatory mechanisms [69]. Nox4−/− lung ECs had reduced Nrf2 protein and promoter
activity. Nrf-2 transcriptionally regulates heme oxygenase-1 (HO-1), an inhibitory factor for vascular
inflammation. HO-1 was reduced in Nox4−/− lung ECs [69] in association with increased IL-6 and
IL-1β. Taken together, these findings suggest that the activation of endothelial NOX4 inhibits vascular
inflammation and, therefore, reduces pathologic angiogenesis (Figure 6).
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3.3. Other NADPH Oxidase (NOX) Isoforms in Angiogenesis

Besides NOX2 and NOX4, NOX1 and NOX5 are also expressed in vascular ECs. In murine lung
ECs, Nox1 mRNA was upregulated and activated by angiogenic factors, VEGF or basic fibroblast
growth factor (bFGF) [78]. Vascular density was decreased in matrigel plugs supplemented with bFGF
in Nox1−/− mice. Nox1−/− mice also had reduced tumor volume and vasculature in a tumor growth
assay model [78]. Inhibition of NOX1-generated ROS by the inhibitor, GKT136901, or knockdown
of Nox1 by siRNA transfection inhibited EC migration in a wound-healing assay in association with
increased expression of the transcription factor, PPARα [78]. These findings show that activation
of NOX1 promotes angiogenesis in tumor growth. However, the effect of NOX1-generated ROS in
promoting angiogenesis is not supported by studies in NoxO1−/− mice. NoxO1, the homologue to
p47phox, facilitates the assembly of NADPH oxidase subunits and, therefore, promotes NADPH oxidase
activation mainly through NOX1 [79]. NoxO1−/− mice had faster retinal vascular development with
less avascular retinal area at both postnatal day 5 (p5) and p7 and increased capillary density at p7 [80].
In the hindlimb ischemic-reperfusion model, NoxO1−/− mice had faster restoration of blood flow and
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capillary density with increased VEGF expression in the muscles of the ischemic legs [80]. Lung ECs
isolated from NoxO1−/− mice had increased angiogenic capacity and expression of VEGFR2 and the
tip cell marker, Notch ligand Delta-like 4 (DLL4) [80]. These findings suggest that activation of NoxO1
inhibits angiogenesis in physiologic vascular development and vascular recovery from ischemic insults.
These findings differ from those in Nox1−/− mice in which activation of NOX1 increased angiogenesis
in tumors. NoxO1 is believed to be a regulatory subunit mainly for the NOX1 [81], but is not necessary
for NOX1 activation since its homologue, p47phox, can also activate NOX1. In addition, it is recognized
that NoxO1 activates NOX3 and NOX2 [82], but less efficiently than p47phox activates NOX2 [83].
Therefore, differential enzyme activity of other NOX isoforms, like NOX3 and NOX2, may contribute
to different angiogenic phenotypes seen in Nox1−/− and NoxO1−/− mice.

In bovine aortic ECs (BAECs), knockdown of either Nox5 or p22phox, a requisite subunit for
NOX1/NOX2/NOX4 activation, reduced ROS generation and cell migration in response to the
potent angiogenic chemokine, SDF-1α [84]. SDF-1α-induced activation of c-Jun N-terminal kinases
(JNK3), an essential regulator for SDF-1α-induced angiogenesis, was inhibited in BAECs after
Nox5 knockdown [84]. These findings suggest that SDF-1α-regulated angiogenesis is dependent
on NOX5-derived ROS.

4. Conclusions

NOX-generated ROS function as signaling molecules to regulate angiogenesis. The NOX isoforms
have different effects, potentially due to differences in cells involved and their interactions with vascular
ECs, the localization of NOX isoforms within the cell, the amount of ROS generated, and the activation
by different stimuli. In angiogenesis, NOX2 and NOX4 are the most studied isoforms. Nox2 is present
in the cell membrane and Nox4 can be in different cell organelles [4]. Activation of either isoform
generates ROS and can have pathologic or physiologic effects on angiogenesis. NOX2 appears to
promote pathologic angiogenesis and vascular inflammation, except in the hindlimb ischemia model
where it may serve a beneficial role. NOX2 is also involved in vascular repair mechanisms. NOX4 seems
to protect vascular endothelial dysfunction from ischemic and hypoxic stresses, inhibit vascular
inflammation and promote physiological angiogenesis during tissue revascularization, except in
the models of OIR and diabetic retinopathy where NOX4 contributes to pathologic intravitreal
neovascularization and diabetic retinopathy.

Our results are in line with other studies that suggest NOX-generated ROS can mediate either
physiologic or pathologic angiogenesis [85,86].
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