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Abstract

Background: Testing for clustering at multiple ranges within a single dataset is a common practice in spatial
epidemiology. It is not documented whether this approach has an impact on the type 1 error rate.

Methods: We estimated the family-wise error rate (FWE) for the difference in Ripley’s K functions test, when testing at
an increasing number of ranges at an alpha-level of 0.05. Case and control locations were generated from a Cox
process on a square area the size of the continental US (≈ 3, 000, 000 mi2). Two thousand Monte Carlo replicates were
used to estimate the FWE with 95% confidence intervals when testing for clustering at one range, as well as 10, 50,
and 100 equidistant ranges.

Results: The estimated FWE and 95% confidence intervals when testing 10, 50, and 100 ranges were 0.22 (0.20 - 0.24),
0.34 (0.31 - 0.36), and 0.36 (0.34 - 0.38), respectively.

Conclusions: Testing for clustering at multiple ranges within a single dataset inflated the FWE above the nominal
level of 0.05. Investigators should construct simultaneous critical envelopes (available in spatstat package in R), or
use a test statistic that integrates the test statistics from each range, as suggested by the creators of the difference in
Ripley’s K functions test.
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Background
When studying chronic disease in large cohort studies,
where geographic location of participants’ residences are
known, we can investigate whether disease rates, or risk
factors for the disease, vary geographically over the region
of interest (e.g., REasons for Geographic and Racial Differ-
ences in Stroke [REGARDS] study [1]). Geographic vari-
ation in these factors can result from variation in demo-
graphics, environmental exposures, dietary patterns, or
healthcare quality, among other things. When we observe
spatial variation in a chronic disease, a common next step
is to determine whether there is spatial variation in the
most important risk factors.

Difference in Ripley’s K functions test
The most popular test of overall clustering among epi-
demiologists when locations of cases and controls are
known is the difference in Ripley’s K functions test [2-4].
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Epidemiologists appreciate this method because it can be
used with inhomogeneous distributions of cases and con-
trols, a type of spatial process where the mean number of
points per unit area varies across the region of interest.
Population density varies across the US, being highest in
cities, so residential locations often follow an inhomoge-
neous spatial distribution. The difference in K functions
test determines whether there is clustering in the cases
above and beyond the clustering observed in the controls.
The general form of this test is, given an a priori range h,

D(h) = Kcases(h) − Kcontrols(h),

where Ki(h) = λ−1E [# of events of type i within h of
a randomly chosen event of type i], i ∈ (case, control)
and λ is the expected number of points per unit area
(“intensity”). The significance of an observed value, D̂(h),
is often determined by Monte Carlo procedures, where
the labels of “case” or “control” are randomly permuted
among the observed event locations. These random per-
mutations produce a distribution of D̂(h) under the null
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hypothesis of no clustering, to which the observed value
of D̂(h) can be compared.
Because of the exploratory nature of the test, investiga-

tors often set many values for h, and evaluate the signifi-
cance of D̂(hi), where i = 1, . . . , r. Many ranges are tested
because the observed dataset could have been generated
by a spatial process at any of several geographic scales. The
original work describing the difference in Ripley’s K func-
tions test provided an overall test for clustering, which
incorporated all of the values for D̂(hi) into one test statis-
tic (Equation 8 in [3]). Few studies that cite the difference
in K functions statistic by Diggle and Chetwynd (1991)
use this overall test statistic.Instead, they evaluate D̂(hi)
at each range individually. For an example of a paper that
did use the integrated test statistic, see [5]. Most investi-
gators choose r values for h, and then effectively perform
r hypothesis tests and conclude that there is evidence for
clustering up to ranges hi [6], or that there is evidence
of clustering in the overall dataset [7]. The potential for
type 1 error inflation in this context has been discussed in
the the ecology literature [8], but little attention is given
to the magnitude of potential inflation of the type 1 error
rate, especially as a function of the number of ranges
tested.

Simulation study of FWE when testing at multiple ranges
We estimated the family-wise error rate (FWE), or the
probability of committing at least one type 1 error (i.e.,
a false conclusion that clustering exists when it does
not), when testing for clustering at increasing numbers
of ranges. It is not currently known if, and if so to what
extent, the FWE becomes inflated above the nominal
level when using the difference in K functions test at
multiple ranges within a single dataset. We report the
results of a simulation study using datasets the size of the
REGARDS cohort (approximately 30,000 participants),
with discussion.

Results and discussion
Figure 1 shows a plot of the locations and case status
of an example dataset from the simulation, as well as
a map of smoothed risk for being a case. Clusters of
points were generated, with the radius of the clusters rela-
tively small compared to the total area, in order to mimic
human population distribution. The numbers of cases and
controls within each cluster were approximately equal.
The mean(±sd) sample size was 29,980(±1,746), and the
mean(±sd) proportion of cases was 0.50(±0.002).

Estimated FWE
The estimated type 1 error rates and 95% confidence inter-
vals are presented in Table 1. The FWE was conserved at
the nominal level of 0.05 when only one range was tested
[FWE (95% confidence interval): 0.05(0.04 - 0.06)]. The
FWE increased in a nonlinear fashion as the number of
ranges tested increased. The FWE for 10 tests was 0.22
(0.20 - 0.24), for 50 tests was 0.34 (0.31 - 0.36), up to
a maximum of 0.36 (0.34 - 0.38) when 100 ranges were
tested.

Discussion
Our simulation study has shown that when testing for
overall clustering using a large cohort that covers a large
area, we should use caution when testing for clustering
at many ranges. Multiple testing is well-known to endan-
ger proper inference by inflating the probability of a false
positive. Although the potential for inflation of the FWE
is clear when testing for clustering at multiple ranges,
the magnitude of the inflation has not been documented.
Specifically, if r null hypotheses of constant risk are tested,
then the probability of falsely finding evidence of clus-
tering, when none exists at any ranges, is quite high. For
instance, testing 10 ranges is not uncommon, and doing
so can lead to a FWE of 0.2, which is four times the
usual nominal rate of 0.05. In large cohort studies like

Figure 1 Example simulated dataset. Point map of locations of cases and controls, each simulated from independent Cox processes with
expected sample sizes of 15,000 events, as well as smoothed risk estimates using Nadaraya-Watson estimator.
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Table 1 Estimated FWE and 95% confidence intervals, by
number of ranges tested

Number of tests FWE (95% confidence interval)

1 0.05 (0.04 - 0.06)

10 0.22 (0.20 - 0.24)

50 0.34 (0.31 - 0.36)

100 0.36 (0.34 - 0.38)

REGARDS, however, there are far more than 10 potential
ranges one could test, which could lead to even further
inflation of the FWE.
Beyond the danger of wrong conclusions for the differ-

ence in K functions test is the danger that an error could
be carried through to downstream analyses. For instance,
an investigator might want to use a Bayesian hierarchical
model for creating a map of risk for the disease, and might
use the ranges suggested by the difference in K functions
test as informative priors for the range parameter of a
covariance function. Or, an investigator using semi para-
metric regression for smoothing might choose the num-
ber of basis functions based upon the number of ranges
suggested by the difference in K functions test. These
errors could lead to insufficient or excessive allocation of
public health resources to particular areas.

Correlationamong the tests
Although the FWE is inflated when testing multiple
ranges, the inflation is not as severe as if the same num-
ber of independent statistical tests were performed, due
to the correlation among tests at nearby ranges. Figure 2
further illustrates this point, showing the high correlation
between tests at neighboring ranges. Readers of studies
testing for clustering at multiple ranges using the dif-
ference in Ripley’s K functions test should acknowledge
this decreased inflation of the FWE, compared to studies
with independent tests, in order to draw proper conclu-
sions.We note that, keeping the number of tests constant,
the FWE could be decreased by decreasing the maxi-
mum range tested, and/or the interval between the tests.
The decrease in FWE would be caused by the increased
correlation among the tests, thus decreasing the effec-
tive number of independent tests. However, investigators
often want to test for clustering at as many ranges as is
feasible, in order to not miss evidence of clustering at a
particular scale. Decreasing the maximum range tested
and/or the interval between the tests might not be an
optimal strategy.

Recommendations
Two approaches can keep the FWE near the nominal level
when testing multiple ranges. The first is to use a test
statistic which integrates the values of D̂(h) over all val-
ues of h, taking into account the number of ranges tested,

and provides the most suggestive scale of spatial cluster-
ing [9]. This procedure achieves the goal of combining
information from all ranges tested, similar to the statistic
provided in Equation 8 of Diggle and Chetwynd (1991),
while having the added benefit of suggesting a particular
scale for the clustering. One such method was originally
suggested by Diggle and Chetwynd (1991) in Equation 9.
This method defines the statistic

D = maxi=1,...,r

{
D̂(hi)/

√
var(D̂(hi))

}
,

which has the approximate distribution under the null
hypothesis given in Equation 10 of their manuscript, as
long as r is large enough. This method can be imple-
mented in the splancs package of the R statistical
environment by using the khvc function to calculate the
variances of estimates D̂(·) at different ranges [10,11].
A limitation of using this method is that splancs has
no option to change the edge correction used. Thus, for
larger epidemiological cohorts like REGARDS, the border
edge correction cannot be used, and computation time
might be prohibitive. This lack of ability to change the
edge correction, as well as the additional steps needed
from the user to compute the overall statistic, might deter
investigators from using this method.
Other methods that account for testing multiple ranges

while suggesting a specific scale of clustering are Tango’s
MEET [12] and some of the likelihood based methods
proposed in [13]. These methods identify the scales most
suggestive of clustering, and then use the p-value at that
scale as the test statistic [12,13]. The magnitude of the

Figure 2 Correlations among tests when testing 100 ranges.
Estimated correlations of the outcome of whether the null hypothesis
was rejected or not among the 100 ranges tested.
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FWE inflation shown in our study suggests increased use
of the alternative methods described here, as opposed to
testing multiple ranges individual using the difference in
Ripley’s K functions test.
A second approach to temper FWE inflation is to use

simultaneous critical regions when evaluating the sig-
nificance of the difference in K functions. When using
simultaneous critical envelopes, the null hypothesis of
constant risk is rejected if any of the D̂(hi) lie outside
the critical envelopes. Further details of the envelope
function in the spatstat package can be found in the
documentation [14] in R.
Both of the two methods mentioned here essentially

reduce r hypothesis tests to one hypothesis test. The one
hypothesis test is whether there is evidence of clustering
at any range h, and if so, suggests the most likely range.
A final approach might be to adjust the critical envelopes
to correct for the multiple testing, while accounting for
the correlation structure among the tests. For instance,
the estimated covariances between the D̂(·) at different
ranges could be used to derive the covariances among the
tests themselves. However, the overall test statistic and
simultaneous critical envelopes are already implemented
in common software, and can serve to test for clustering
at any range.

Study strengths
This study simulated conditions that could reasonably
occur in public health settings, which usually have a
few thousand observations [15-17]. Additionally, with the
move towards “big data” by government organizations
[18] and industry, both the number of observations and
the size of the areas being routinely studied could increase
substantially. Increased sample sizes and study areas bring
increasingly larger numbers of potential ranges to test
for evidence of clustering. Therefore, inflation of FWE
might become a concern in public health studies with
spatially-referenced data.
Both the case and control locations in the simulated

datasets were generated using an inhomogeneous pro-
cess. Thus, the results of this study can be applied
to many datasets documenting human disease patterns
where point locations of cases and controls are available.
Finally, this study has been conducted in a

reproducible manner, with all code available at
github.com/mloop/kdiff-type1-error-rate.
Other investigators can modify the code and investigate
how the FWE could be affected in their own contexts.

Limitations
The results of this simulation study can be directly applied
only to datasets with tens of thousands of observations,
spanning an area the size of the continental US. We
suspect that the number of effectively independent tests

would increase with an increase in the intensity (num-
ber of points per unit area), an increase in the area of
the region of interest, or both. An increase in the number
of independent tests could inflate the FWE to a greater
degree than we observed in this study.
A minor limitation was that the lengths of the confi-

dence intervals for the FWEs across the different number
of ranges tested are not of identical length. This limitation
occurred for two reasons. First, the number of simulations
performed was chosen to produce confidence intervals of
length 0.02 assuming the nominal FWE, but the width of
the confidence interval for the mean of a Bernoulli distri-
bution, p, depends upon the value of p. Since the FWEs
were not known before the simulation study, but were esti-
mated, we had no way to know how many iterations each
condition would need to produce confidence intervals of
identical lengths. Second, eight nodes of the High Perfor-
mance Computing cluster failed during the computation,
producing marginally different sample sizes for the esti-
mates of the FWE. However, the differing lengths of the
confidence intervals do not change our interpretation of
the results.

Conclusions
Testing multiple ranges for evidence of clustering using
the difference in K functions appreciably inflates the
FWE. Investigators should use a statistic that combines
the estimates of D(hi) at all ranges, use simultaneous crit-
ical envelopes, or modify the critical envelopes to account
for multiple correlated tests when testing multiple ranges
for evidence of clustering.

Methods
Generation of datasets
The datasets were generated from a Cox process [19],
using the spatstat v. 1.31-2 package [14] in the R
v. 3.0.1 statistical environment [10]. For each dataset,
a set of “parent” events were generated from a homoge-
neous Poisson point process, with intensity κ = 0.0001,
onto a square region the size of the continental US
(3,000,000 mi2). Then, a random number of “child” events
were generated from a Poisson distribution with mean
λ = 100, within a circle of radius 15 mi. For each parent
point, both case and control children were generated
independently. For each of the four sets of ranges tested (1,
10, 50, or 100 ranges), we generated 2,000 datasets, lead-
ing to a total of 8,000 datasets. We chose 2,000 datasets
for estimation of the FWE for each set of ranges in order
to achieve a 95% confidence interval length of 0.02 for
the estimated FWE, assuming the nominal significance
level of 0.05. Each dataset was generated using a differ-
ent random seed, with seeds 30,000 numbers apart. The
Mersenne-Twister random number generator was used
[20]. The code that generated the datasets can be found at
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github.com/mloop/kdiff-type1-error-rate/
blob/master/data/genesis.R.

Estimating FWE
Using the spatstat v. 1.31-2 package in R v.
3.0.1, for each range tested in each dataset, we esti-
mated the value for the difference in K functions, D̂(h).
The ranges were chosen by dividing the interval from 0 to
one quarter the length of a side of the simulated region
into a number of equidistant intervals equal to the number
of tests being done. The code to calculate the difference
in K functions was taken from [21]. The border edge cor-
rection was used for all estimates of the K function, given
the expected sample sizes of the datasets (15,000 cases and
15,000 controls) [22]. Then, we performed 199 random
labelings to generate the null distribution of values for
D̂(h) at each range. Although some investigators use larger
numbers of Monte Carlo replicates, it has been shown
by previous investigators that 39 Monte Carlo replicates
can be sufficient to create Monte Carlo tests with power
approximately equal to the power of tests based upon true
sampling distributions, such as the Gaussian, t, and expo-
nential distributions [23]. Based upon this work, Diggle
(2014) suggests that 99 Monte Carlo replicates is suffi-
cient for a one-sided test (p. 14 of [24]). Therefore, we
approximately doubled the number of Monte Carlo repli-
cates for the two-sided test using the difference in Ripley’s
K functions. The choice of 199 Monte Carlo replicates
balanced computation time for the simulation against suf-
ficient numbers of Monte Carlo replicates that provide
power approximately equal to a test based upon the true
sampling distribution of D̂(h) under the null hypothe-
sis, which is unknown. Random labeling refers to the
“random” permutation of the labels “case” and “control”
among the observations in a dataset, keeping the total
number of cases and controls constant. Random labeling
generates data under the null hypothesis of constant risk
[25]. The 5th- and 195th-ranked simulated values of D̂(hi)
were used as critical values, providing a two-sided size
α = 0.05 test at each range. Again, the Mersenne-Twister
random number generator was used, along with seeds that
were 30,000 numbers apart between iterations.
A rejection of the null hypothesis for a single iteration

was defined as an observed value for D̂(h) being outside
the critical regions for any value of hi, i = 1, . . . , r. We
estimated the FWE for each condition (1, 10, 50, or 100
ranges tested) by dividing the number of rejections by
the number of iterations (2,000; 1,998; 1,997; and 1,997,
respectively). The number of iterations were just under
2,000 for the 10, 50, and 100 range conditions due to
the failing of 8 nodes on the HPC cluster during specific
runs of the simulation. We chose to regard this number
of missing iterations as trivial, and unlikely to affect our
conclusions. Approximately Gaussian 95% confidence

intervals were estimated for each estimated FWE. The
code that calculated the values for D̂(hi) can be found at
https://github.com/mloop/kdiff-type1-error
-rate/blob/master/analysis/simulation.R,
and the code that estimated the values for α̂ can be
foundathttps://github.com/mloop/kdiff-type1-
error-rate/blob/master/analysis/summarize.
Rmd.

Hardware and software
Dataset generation and type 1 error rate estimation was
performed on the University of Alabama at Birmingham’s
(UAB) high performance computing (HPC) cluster. Plots
were created using the ggplot2 package in R [26]. Data
manipulation was performed using the dplyr and plyr
packages in R [27,28]. Plot creation and data manipulation
were done on a 2012 Mac Mini.
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