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Oxygen sensing mechanisms are vital for homeostasis and survival. When oxygen

levels are too low (hypoxia), blood flow has to be increased, metabolism reduced, or

a combination of both, to counteract tissue damage. These adjustments are regulated

by local, humoral, or neural reflex mechanisms. The kidney and the carotid body

are both directly sensitive to falls in the partial pressure of oxygen and trigger reflex

adjustments and thus act as oxygen sensors. We hypothesize a cooperative oxygen

sensing function by both the kidney and carotid body to ensure maintenance of whole

body blood flow and tissue oxygen homeostasis. Under pathological conditions of

severe or prolonged tissue hypoxia, these sensors may become continuously excessively

activated and increase perfusion pressure chronically. Consequently, persistence of their

activity could become a driver for the development of hypertension and cardiovascular

disease. Hypoxia-mediated renal and carotid body afferent signaling triggers unrestrained

activation of the renin angiotensin-aldosterone system (RAAS). Renal and carotid

body mediated responses in arterial pressure appear to be synergistic as interruption

of either afferent source has a summative effect of reducing blood pressure in

renovascular hypertension. We discuss that this cooperative oxygen sensing system can

activate/sensitize their own afferent transduction mechanisms via interactions between

the RAAS, hypoxia inducible factor and erythropoiesis pathways. This joint mechanism

supports our view point that the development of cardiovascular disease involves afferent

nerve activation.

Keywords: hypoxia, kidney, carotid body, hypertension, angiotensin II

INTRODUCTION

Oxygen is essential for aerobic metabolism, a fundamental mechanism for energy production.
However, the delivery of optimal levels of oxygen to tissues must be highly regulated as both
insufficient (hypoxia) or excessive oxygen levels (hyperoxia) are highly detrimental. Indeed, tissue
oxygenation has been found to be reduced during pathological conditions such as cancer (Liu
et al., 2016), diabetes (Palm et al., 2003), hypertension (Welch et al., 2001), chronic kidney
disease (Milani et al., 2016), and stroke (Ferdinand and Roffe, 2016). We will explore the idea
that an inappropriate activation of some of the signaling pathways that counteract hypoxia can
contribute to the development of hypertension and cardiovascular disease through activation of
the sympathetic nervous system.
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Adaptation to low partial pressure of oxygen, for instance
at high altitude, triggers a protective mechanism that includes
an increase in sympathetic activity, vascular resistance, and
blood pressure (Hainsworth and Drinkhill, 2007). The kidney
and carotid body both participate in this adaptation for the
maintenance of systemic oxygen levels and blood flow (Marshall,
1994; Dunn et al., 2007; Jelkmann, 2011). For example, within the
kidney the number of erythropoietin-producing cells increases
proportionally to the degree of hypoxia, which correlates directly
with the concentration of erythropoietin in blood (Koury
and Haase, 2015), ensuring higher blood oxygen carrying
capacity (Marshall, 1994; Dunn et al., 2007; Jelkmann, 2011). In
comparison, the carotid body triggers reflex increases ventilation
and sympathetic activity to maintain oxygen tension and delivery
(Marshall, 1994). Interestingly the kidney and the carotid body
are both innervated by efferent and afferent nerve fibers and are
both targets and modulators of sympathetic activity. Hypoxic-
hypoperfusion of the kidney and carotid body is a likely trigger
for increased reflex sympathetic activity (Koeners et al., 2016)
and aberrant afferent drive from these organs is implicated in
the etiology of neurogenic hypertension (Fisher and Paton, 2012;
Narkiewicz et al., 2016; Silva et al., 2016; Osborn and Foss, 2017).

We wish to explore whether there is cooperative oxygen
sensing between the kidney and the carotid body that plays a role
in homeostasis. We will consider this notion under physiological
conditions where it counteracts moderate or brief tissue hypoxia
over an acute short time scale (minutes to hours). We will
also assess the long term (days) cooperative oxygen sensing
where hypoxia afferent signaling from these organs persists and
drives the progression of cardiovascular disease. We initiate our
discussion by examining the effect of short and long term hypoxia
on the kidney and carotid body.

HYPOXIA, AFFERENT NERVE
ACTIVATION/SENSITIZATION AND
HYPERTENSION

Hypoxia
Oxygen delivery to different organs is a product of cardiac
output and arterial oxygen content per unit of time (Habler
and Messmer, 1997; Leach and Treacher, 2002). The majority
of oxygen transported throughout the body is reversibly bound
to hemoglobin, and its diffusion to the cell is dependent on the
local tissue partial pressure gradient. Oxygen consumption in a
given tissue is the volume of oxygen consumed per unit of time,
which in aerobic conditions corresponds to the metabolic rate
[adenosine triphosphate (ATP) formation/consumption] (Habler
and Messmer, 1997; Leach and Treacher, 2002). Each organ has a
different metabolic rate, and hence a different oxygen demand.
Every organ has the capacity of altering their metabolic rate
(except skin), as part of the local dynamics which, in most
cases, directly influences local blood flow. Due to an oxygen
reserve, oxygen consumption is independent of oxygen delivery
within a wide range of delivered oxygen. In addition, organs have
different oxygen extraction ratios (fraction of oxygen delivery)
and different oxygen reserves. Organs that have a lower oxygen

extraction, such as the skin, have a higher oxygen venous reserve.
Conversely, the heart and the brain have a limited oxygen
reserve due to the high oxygen extraction (Habler and Messmer,
1997). In case of systemic low oxygen delivery or systemic
high oxygen demand, blood can be redistributed to sustain
high extraction organs, without compromising oxygen supply
to the ones with higher oxygen reserves. However, increases in
oxygen consumption or decreases in oxygen delivery will increase
oxygen extraction to maintain aerobic metabolism. When the
critical oxygen delivery limit is reached, any increase in oxygen
consumption or decrease in oxygen delivery will lead to tissue
hypoxia, as reviewed in Leach and Treacher (2002).

The term hypoxia represents a reduced partial pressure of
oxygen and deoxygenation of tissue. Such a condition triggers
a series of responses that manifest themselves over different
sequential time frames: First, acute systemic reduction of tissue
oxygen partial pressure stimulates peripheral chemoreceptors
that triggers respiratory and cardiovascular responses to elevate
oxygen uptake and delivery to bodily organs (Lahiri et al., 1980;
Marshall, 1994; Blessing et al., 1999). Second, persistent subacute
hypoxia activates cellular pathways through the stabilization
of hypoxia inducible factor (HIF)-1 and HIF-2 complexes
(Greer et al., 2012). HIF-1 is understood to be the most
important regulator of cellular responses to hypoxia. This
long term adaptation is triggered in order to enhance the
oxygen delivery capacity and maintain organ function, including
glycolysis, angiogenesis, erythropoiesis, iron metabolism, pH
regulation, apoptosis, cell proliferation as well as cell-cell,
and cell-matrix interactions (Haase, 2006; Greer et al., 2012).
Examples of classic HIF target genes are phosphoglycerate
kinase-1, glucose transporter-1, vascular endothelial growth
factor, and erythropoietin. Pathologic conditions like renal
disease and diabetic nephropathy have shown to impede
this adaptation via, for example, desensitization of renal
erythropoietin-producing cells by uremic toxins (Chiang et al.,
2012) or direct inhibition of HIF activity (Nordquist et al.,
2015; Tanaka et al., 2016). Indeed, treatment which increased
HIF activity corrected abnormal renal metabolism (oxygen
consumption, efficiency) and hemodynamics (renal blood flow,
glomerular filtration) in a rat model of chronic kidney disease
(Deng et al., 2010). Interestingly these effects were similar
to RAAS inhibition but involved a significantly different
molecular pathway. Third, chronic sustained tissue hypoxia
can result from stenosis/partial occlusion of conduit arteries
that may be of congenital or atherosclerotic origin. In case
of obstruction of blood flow ischemic injury will follow due
to the reduced nutrient and oxygen supply. As proposed
previously (Koeners et al., 2016), hypoxic-hypoperfusion may
trigger aberrant renal and/or carotid body afferent tonicity and
initiate/amplify sympathetic hyperactivity accentuating arteriolar
vasoconstriction and further compounding blood flow and
oxygen delivery; this results in hypertension.

Renal Oxygenation
Renal oxygenation is tightly regulated (both short and long term)
to maintain the balance between oxygen supply and demand.
Under normal conditions, but under anesthesia, renal partial
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pressure of oxygen varies from 15 to 50 mmHg in the cortex and
5–25 mmHg in the renal medulla (Evans et al., 2008; Carreau
et al., 2011). Due to the unique anatomy of the kidney, the
renal medulla is believed to receive the minimum level of oxygen
needed to support normal cell function, and hence might be very
susceptible to reductions of the partial pressure of oxygen.

The heterogeneous oxygenation within the renal parenchyma
is a result of the different tasks performed along the nephron and
is mainly associated with: (1) the high energy demand necessary
to reabsorb Na+, (2) the arteriovenous oxygen shunt, and (3)
the requirements to perform the countercurrent mechanism that
permits urine concentration. Almost all of the renal oxygen
consumption is coupled with active Na+ transport through
Na-K-ATPase (Mandel and Balaban, 1981). To put this in
perspective, the energy required to reabsorb 1mol Na+ is ∼7 kj,
which corresponds to lifting 1mol Na+ (∼20 g) to a height of 70
km (Hansell et al., 2013). In addition, the development of a Na+

gradient allows the transport of other molecules such as glucose,
amino-acids, other solutes, and water. Since the reabsorption of
Na+ depends on the glomerular filtration rate, increasing the
blood flow to the kidney will increase the filtered Na+ load and
further deplete renal oxygen due to a higher oxygen consumption
(Hansell et al., 2013). Another factor contributing to the oxygen
content in the renal tissue is the arteriovenous oxygen shunt.
The renal arteries and veins run in close proximity, oxygen
can diffuse in such a way that the oxygen content in the veins
is higher than that in the glomerular capillaries and efferent
arterioles (Schurek et al., 1990; Welch et al., 2001; Evans et al.,
2008). This is especially important when considering that the
renal medullary peritubular capillaries arise from the efferent
arterioles of the juxtamedullary glomeruli. This vessel network
also has a low blood flow to maintain the gradients necessary for
the countercurrent mechanism that allows urine concentration
(Brezis and Rosen, 1995; Fry et al., 2014). Furthermore, the close
proximity of the ascending and descending medullary vasa recta
may theoretically promote more arteriovenous oxygen diffusion
(Zhang and Edwards, 2002). Hence, the renal medulla has a
relative low partial pressure of oxygen and is highly susceptible
to ischemic/hypoxic injury.

As already indicated above the kidney contributes to long-
term (days) hypoxic adaptation. It has a primordial role in
maintaining systemic oxygen content through hypoxia-induced
erythropoietin production from the renal interstitial fibroblast-
like cells. Under hypoxia, HIF-α is no longer hydroxylated, and
HIF-α subunits can accumulate to activate HIF-1-dependent
genes like erythropoietin and many others (Haase, 2006).
Erythropoietin acts on bone marrow to increase red blood cell
production (Dunn et al., 2007; Jelkmann, 2011) which will
increase the oxygen carrying capacity. Therefore, the kidney
serves as one of the most important physiological oxygen sensors
and detectors of systemic hypoxia.

Renal Hypoxia, Afferent Nerve
Activation/Sensitization, and Hypertension
Chronic hypoxia has been confirmed in different kidney disease
models such as diabetic nephropathy (Palm et al., 2003) and

hypertension (Welch et al., 2001). Long term renal hypoxia is an
increasingly recognized common pathway for the development
of chronic kidney disease (Hansell et al., 2013; Kawakami et al.,
2014), but it can also generate renal injury. Friederich-Persson
et al showed that increasing kidney oxygen metabolism, using
a mitochondrial uncoupler, reduces the cortical partial pressure
of oxygen and causes proteinuria in otherwise healthy rats
(Friederich-Persson et al., 2013).

Acute renal hypoxia may also be involved in the activation
of renal afferent pathways that leads to the establishment and
maintenance of elevated blood pressure. The cell bodies of the
renal afferent nerve fibers are located in the dorsal root ganglia
and project to the ipsilateral dorsal horn where they synapse
with neurons projecting to sites associated with cardiovascular
regulation such as the nucleus tractus solitarii and the rostral
ventral medulla (Solano-Flores et al., 1997; Ciriello and de
Oliveira, 2002; Kopp, 2015) where integration with other inputs
will occur and reflex sympathetic responses can be generated.
Indeed, perfusion of the kidney with hypoxic blood (PaO2: 36
mmHg) is enough to increase femoral perfusion pressure by >30
mmHg. This response is mediated by renal afferent nerves as it
was abolished after denervating the kidney (Ashton et al., 1994).
However, whether there is a threshold, or graded thresholds
of renal tissue partial oxygen pressure for renal afferent nerve
activation is unknown. Furthermore, performing the same
experiment using normoxic blood and ischemic metabolites such
as bradykinin, prostaglandin E2, and adenosine elicits similar
rises in blood pressure (Ashton et al., 1994). This demonstrates
that both low partial pressure of oxygen and ischemic metabolites
can directly and/or indirectly stimulate renal sensory nerve fibers,
promoting reflex increase of the sympathetic nerve activity, and
blood pressure (Katholi et al., 1985).

In the two-kidney one clip model of hypertension,
denervation of the hypoperfused (clipped) kidney reduced
arterial blood pressure, noradrenaline plasma concentration
and peripheral sympathetic nerve activity (Katholi et al., 1982).
Similarly, in the one-kidney, one-clip model of renovascular
hypertension, dorsal root rhizotomy ipsilateral to the clipped
kidney attenuated the evoked hypertension (Wyss et al., 1986).
Importantly, even a small lesion in the kidney that results in
an area(s) of ischemia (hypoperfusion) not necessarily affecting
renal function, e.g., by intrarenal injection of phenol, can cause
neurogenic hypertension via activation of hypoxia-sensitive
renal afferent mechanisms (Ye et al., 2002; Koeners et al.,
2014). In this phenol model of renal neurogenic hypertension
there is a rapid (within 5 min) and sustained increase in blood
pressure that is abolished by nephrectomy or denervation of
the injured kidney (Ye et al., 2002; Koeners et al., 2014). These
studies support the concept that hypoxia-induced renal afferent
activation contributes to hypertension by increasing sympathetic
nerve activity through reflex pathways. Similarly, in patients
with renovascular hypertension, restoration of renal perfusion
reduces muscle sympathetic nerve activity and blood pressure
(Miyajima et al., 1991) and renal nerve ablation can reduce
blood pressure and muscle sympathetic nerve activity in some
patients with resistant hypertension (Hering et al., 2014). Finally,
given the change in set-point of sympathetic activity and blood
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pressure it is perhaps not surprising that the baroreceptor reflex
is reset and gain improved following renal denervation in a rat
model of chronic kidney disease (Chen et al., 2016).

We suggest that the aforementioned renal afferent reflex
pathway impinging on the nucleus tractus solitarii is a likely
nodal point for modulation of the baroreflex. Taken together,
both acute or chronic renal hypoxia and hypoperfusion
(associated with macro- or microvascular disease) may
cause/sustain hypertension through activation of renal afferent
chemosensory fibers (Campese et al., 2006; Johns et al., 2011;
Foss et al., 2015; Banek et al., 2016). This has parallels with
sustained activation of the peripheral chemoreceptors, which are
considered next.

Carotid Body Oxygenation
Carotid bodies are distinct organs located bilaterally at the
bifurcation of the common carotid arteries. They have the
highest blood flow per tissue weight when compared to any
other organ in the body and play an important role in
the monitoring and maintenance of physiological levels of
blood gases through reflex activation of respiration (Lahiri
et al., 1980). The carotid body consists of glomus or type
I cells, which are the primary oxygen sensing cells, and
supporting or type II cells. Blood supply to the carotid body
originates mostly from the carotid artery. The carotid body
vasculature is innervated by postganglionic sympathetic fibers
from the superior cervical ganglion and by parasympathetic
fibers originating from intraglomic ganglion cells. With larger
blood vessels having predominantly parasympathetic innervation
and smaller blood vessels having predominantly sympathetic
innervation, as reviewed by Kumar and Prabhakar (2012). Hence,
the arterioles that are in close contact with the type I and type II
cells are predominantly innervated with sympathetic fibers, thus
more prone to vasoconstriction/hypoperfusion that promotes
chemoreceptor activation.

The blood supply to the carotid body is very high given
the total metabolic demand, with <3% of oxygen consumed
(De Burgh Daly et al., 1954). Of interest, tissue partial
pressure of oxygen is lower than that measured in the venous
blood, suggesting the existence of an arteriovenous shunt, with
potentially a large amount of blood bypassing the chemosensory
cells (Acker et al., 1971; Acker and O’Regan, 1981; O’Regan et al.,
1990). Despite the very low total organ oxygen consumption,
type I cells have a very high metabolic rate with an oxygen
consumption at rest approaching the maximum (Duchen and
Biscoe, 1992). This very high oxygen consumption makes
type I cells very sensitive to reductions in partial pressure of
oxygen.

The microvascular partial pressure of oxygen in the carotid
body is around 50–70 mmHg in the anesthetized cat (Whalen
et al., 1973; Rumsey et al., 1991). It has been shown that
changes in oxygenation below this level results in a powerful
increase in carotid body afferent activity (Vidruk et al., 2001).
Neurosecretion from the glomus cells within the carotid body in
response to acute hypoxia is fundamental to chemosensation and
involves release of a variety of molecules including acetylcholine,
dopamine, ATP, and neuropeptides such as substance P or

enkephalins have been investigated. Recently, evidence for gas
signaling molecules such as nitric oxide and carbon monoxide
have been highlighted in the carotid body for oxygen sensing
(Prabhakar, 2000; Nurse and Piskuric, 2013). These transmitters
all activate the terminals of afferent fibers at the glomus cell-
afferent junction. Anatomical studies on the cat carotid region
revealed that glomus cells are innervated both by sensory and
autonomic fibers mostly from the carotid sinus nerve but also
by superior cervical ganglion and occasionally the ganglio-
glomerular nerves (Eyzaguirre and Uchizono, 1961; Knoche and
Kienecker, 1977).

Carotid Body Hypoxia, Afferent Nerve
Activation/Sensitization, and Hypertension
Chemoreceptor activation typically occurs after a change in
arterial partial oxygen pressure from ∼95 to ∼50 mmHg for
a single unit chemoreceptor in vitro (Vidruk and Dempsey,
1980), and to ∼35 mmHg for a whole nerve in vivo (Vidruk
et al., 2001). However, chemoreceptor afferent fibers show huge
variability in their threshold of activation to hypoxia permitting
graded responses (Vidruk et al., 2001) and therefore is likely to
overlap with renal afferent threshold(s). It has also been proposed
that carotid body glomus cells and associated sensory fibers
have reflex specific circuits that account for different patterns
of response evoked by different stimulants or different levels of
hypoxia (acute or chronic) (Paton et al., 2013). Importantly, the
afferent nerves of the different sub-populations of glomus cells
may project into compartmentalized sites of the nucleus tractus
solitarii that regulate cardiac, respiratory, sympathetic as well
has higher brain functions (Paton et al., 2013). Carotid body
chemoreceptor activation leads to an increased sympathetic tone
through glutamatergic excitatory signaling in the nucleus tractus
solitarii, rostral ventrolateral medulla, and the paraventricular
nucleus resulting in increased blood pressure (Marshall, 1994;
Blessing et al., 1999).

The carotid chemoreflex plays a powerful role in the blood
pressure regulation including modulation of renal function.
For example, carotid chemoreflex activation using autologous
venous blood, while maintaining carotid sinus pressure constant,
reduced renal blood flow, and glomerular filtration rate through
increased renal nerve activation in dogs (Karim et al., 1987). For a
long time it has been considered that carotid bodies only change
blood pressure over seconds. However, recently an increasing
amount of evidence suggests that persistent stimulation of the
carotid body might play a role in long-term blood pressure
control. In hypertensive animals and humans, chemo-sensory
fibers are continuously activated causing increased vasomotor
sympathetic activity and hypertension in animals and humans
(Sinski et al., 2014; Pijacka et al., 2016b). To demonstrate carotid
body tonicity, the carotid sinus nerves were resected and this
was found to attenuate the developmental increase in the blood
pressure in young spontaneously hypertensive animals (Abdala
et al., 2012). In addition, carotid sinus denervation performed
in adult spontaneously hypertensive rats reduced blood pressure
and sympathetic activity chronically; it also led to increased aortic
baroreflex sensitivity (Abdala et al., 2012; McBryde et al., 2013).
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These animal studies were translated into a first human study
with similar results in some hypertensive patients (Narkiewicz
et al., 2016).

This evidence suggests that excessive afferent signaling from
carotid bodies may lead to the development of pathological
conditions such as hypertension in animals and human.
However, what triggers carotid body tonicity is still poorly
understood but it is unlikely to be systemic hypoxia. The
possibility that the carotid body is chronically hypoxic, perhaps
due to hypoperfusion secondary to either increased sympathetic
vasomotor tone or circulating angiotensin II is plausible, at least
in hypertension.

KIDNEY AND CAROTID BODY:
COOPERATIVE OXYGEN SENSORS

As outlined above acute and chronic hypoxia is sensed by both
the kidney and the carotid body that activates afferent nerve
signaling promoting reflex increases in sympathetic nerve activity
triggering hypertension (Katholi et al., 1982; Tafil-Klawe et al.,
1985; Somers et al., 1988; Ashton et al., 1994; Ye et al., 2002;
Campese et al., 2006; Tan et al., 2010; Johns et al., 2011; Abdala
et al., 2012; Sinski et al., 2012; McBryde et al., 2013; Paton
et al., 2013; Koeners et al., 2014; Foss et al., 2015; Banek et al.,
2016; Pijacka et al., 2016a,b). We hypothesize that the response
to systemic hypoxia is based on both local renal and carotid
body specific chronic hypoxia sensing which act cooperatively
(see Box 1). Given the greater sensitivity of the kidney to
hypoxia (see above) we propose that this organ responds first to
falls in arterial oxygen tension. As oxygen tension falls further
signals cascading from the kidney activate the carotid body that
once recruited acts cooperatively to ensure sustained long term
sympathoexcitation. Evidence for this cooperative mechanism
comes from the additive blood pressure lowering effect after renal
denervation is performed in combination with carotid body de-
afferentation/resection (McBryde et al., 2013, 2017; Pijacka et al.,
2016a). The carotid sinus and the renal afferent nerves converge
in multiple central cardiovascular regulation areas, providing
an anatomical basis for interaction such as the nucleus tractus
solitarii and the rostral ventrolateral medulla (Johns et al., 2011).

Box 1 | Novel insights of the cooperative oxygen sensing by the kidney

and carotid body in blood pressure control.

• Integration of renal and carotid body afferent activity act together to

regulate blood pressure during both acute and chronic hypoxia.

• The interaction between the kidney and the carotid body is cooperative—

not facilitatory or occlusive.

• The afferent systems of the kidney and the carotid body may have

overlapping thresholds for detecting reduced tissue oxygen partial

pressure.

• Given the postulated overlap in thresholds, there may be a temporal

sequence to the reflex responses elicited between the two organs.

• The cooperative oxygen sensing by the kidney and carotid body could be

of great relevance in the pursuit of novel ways to treat diseases in which

there is sympathetic overdrive.

Lines of Communication: Kidney to Carotid
Body
Given their relative sensitivities to acute and chronic hypoxia
it would seem logical to postulate a communication cascade
from the kidney to the carotid body (Figure 1). This might
include the RAAS. The RAAS plays a key role in cardiovascular
and renal physiology and is primarily activated as a functional
response to maintain organ perfusion. Most of the RAAS
effects arise from angiotensin II AT1 receptor activation and
include direct vasoconstriction, increased tubular sodium
reabsorption, activation of sympathetic nervous system
and increased aldosterone release, fibrosis, reactive oxygen
species production and cell proliferation (Balakumar and
Jagadeesh, 2014). Accordingly, the RAAS is currently the main
pharmacological target of anti-hypertensive therapy (Romero
et al., 2015). The mechanism of action of RAAS blockade
seems to be straightforward: reduce or block angiotensin II and
aldosterone, thereby preventing the deleterious cardiovascular
effects. Strikingly, RAAS inhibition is also effective in patients
with medium-to low plasma RAAS activity (Te Riet et al.,
2015). Moreover, in some cases, after inhibiting angiotensin
II/aldosterone receptors, plasma levels of these two hormones
returns to normal or even rise above pre-treatment levels: the so-
called angiotensin II escape/ refractory hyperaldosteronism (Te
Riet et al., 2015). Nonetheless, RAAS inhibition remains partially
anti-hypertensive (Te Riet et al., 2015), which may be related to
locally generated and regulated RAAS. Experimental evidence
shows that intra-renal RAAS is compartmentalized from
systemic RAAS; for example, intrarenal RAAS is not adequately
inhibited by plasma concentrations of RAAS inhibition in
currently used dosages (Nishiyama et al., 2002). Whether this
RAAS compartmentalization occurs in other organs, like the
carotid body, and is immune to systemic RAAS antagonists is
unknown.

If the carotid body is an additional source of afferent drive
contributing to sympathetic excess in conditions of hypertension,
then what drives it? Certainly, all the components of the RAAS
have been identified in the carotid body, except renin (Allen,
1998; Lam and Leung, 2002, 2003). Interestingly a high density
of angiotensin II AT1 receptors are located on the primary
chemoreceptor element, the glomus cell (Allen, 1998) and their
expression and function is upregulated when exposed to chronic
hypoxia (Leung et al., 2000). We hypothesize that this forms a
line of communication to amplify the generation of sympathetic
activity. We do not rule out that in renovascular hypertension
heightened sympathetic activity to the carotid body itself (causing
vasoconstriction, hypoperfusion) results in enhanced carotid
body discharge and elevated systemic RAAS activity. We will
address the proposed role of RAAS and cooperative oxygen
sensing in the kidney and carotid body.

Hypoxia and Renal Renin-Angiotensin Aldosterone

System in Hypertension
Renal sympathetic activation constricts the renal vasculature thus
reducing renal blood flow and glomerular filtration rate, increases
sodium retention, and activates the RAAS through increased
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FIGURE 1 | Schematic representation of the hypothesis that chronic hypoxia sensed by carotid body and kidney is essential for physiological adaptation and when

over-activated can contribute to cardiovascular disease due to positive cross-organ interactive feedback mechanisms. We propose a temporal sequence to the reflex

responses elicited between the two organs. One potential way of how the transition from one state to the other would occur includes the inability of the kidney to

overcome tissue hypoxia during pathological conditions related to hypoperfusion and/or increased metabolic rate (e.g., vasoconstriction, mitochondrial dysfunction,

hyperfiltration). Signals cascading from the hypoxic kidney activate the carotid body that acts cooperatively to ensure sustained (and in the end aberrant) long term

sympathoexcitation. Furthermore, the renin angiotensin system is activated in both organs in response to low blood flow/hypoxia. This chronic low blood flow/hypoxia

together with the activation of the renin angiotensin system forms a non-functional positive feedback loop that leads to tissue damage. Increasing the renin

angiotensin system will lead to activation of different pathways to ensure proper oxygen delivery, including hypoxia inducible factor and erythropoiesis, that may also

contribute to the dysfunctional sympathetic activation in hypertension.

renin release from the juxtaglomerular cells (DiBona, 2000;
Johns et al., 2011). Angiotensin II AT1 receptor activation affects
oxygen availability in the kidney by acting on both its delivery
(vasoconstriction) and consumption (increased metabolic rate,
decreased efficiency, or both). Angiotensin II-induced reduction
in renal blood flow is associated with the reduction of partial
pressure of oxygen in the renal cortex (Welch et al., 2005;
Emans et al., 2016). Interestingly, in the two kidney one clip
model of renovascular hypertension, renal angiotensin II is
increased in both kidneys from the first week post clipping
(Sadjadi et al., 2002). This suggests that the induced hypoxic-
hypoperfusion in the ipsi-lateral kidney also activates the
RAAS in the contra-lateral kidney (perhaps via a renorenal

reflex) in the development of renovascular hypertension in this
model.

By increasing angiotensin II within the kidney, HIF, and
erythropoiesis pathways may be triggered to increase oxygen
delivery systemically. This in line with the fact that angiotensin
II infusion reduces cortical partial pressure of oxygen (Welch
et al., 2005; Emans et al., 2016) and increases erythropoietin
production in the kidney (Gossmann et al., 2001; Jelkmann,
2011; Calo et al., 2015). Once active, the HIF and erythropoiesis
pathways act as feedforward mechanisms. For instance, the
increased renal angiotensin II further exaggerates the efferent
sympathetic input and sodium retention by abolishing the
renorenal reflex, as reviewed by Johns et al. (2011). We
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cannot exclude that aldosterone also plays a role in our
hypothesized cooperative oxygen sensing and blood pressure
control. Increased aldosterone secretion is associated with
hypertension (Laragh et al., 1960; Mackenzie and Connell,
2006). Clinical studies have shown that aldosterone blockade
is the most effective add-on drug (step 4 treatment in the
NICE guidelines; www.nice.org.uk/Guidance/CG127) for the
treatment of resistant hypertension (Epstein and Duprez, 2016).
However, the role of the mineralcorticoid receptor in relation
with cooperative sensing of hypoxia by the kidney and carotid
body is completely unknown.

Taken together, activation of renal afferents (discussed
previously) and the RAAS act as two distinct feedback systems
during acute and chronic hypoxia sensing by the kidney.
As hypoxia is relative to physiological tissue oxygen pressure
these feedback systems are likely to have overlapping hypoxia
thresholds for their activation and play intricate roles in both
acute and/or chronic changes in tissue oxygenation.

Carotid Body and Renin-Angiotensin Aldosterone

System in Hypertension
Locally generated angiotensin II increases carotid body afferent
discharge (Lam and Leung, 2002) and increases the intracellular
calcium levels via activation of AT1 receptors in carotid body type
I (Fung et al., 2001) and type II (Murali et al., 2014) cells. Murali
and coworkers hypothesized that angiotensin II AT1 receptor-
mediated pannexin-1 channel dependent ATP release in type II
cells serves as a boost for carotid body excitation (Murali et al.,
2014), which may be specially relevant in conditions where local
angiotensin II is elevated such as chronic heart failure (Li et al.,
2006), sleep apnea (Lam et al., 2014), and in the hypertensive
state. Chronic hypoxia induces angiotensin II AT1 receptor
expression in the carotid body (Lam et al., 2014). Blockade
of angiotensin II AT1 receptors prevents chronic intermittent
hypoxia-mediated reactive oxygen species production in the
carotid body (Lam et al., 2014) and the development of
hypertension (Fletcher et al., 1999). In fact, angiotensin II AT1

receptor activation has been shown to induce sensory long term
facilitation of the carotid body via NADPHoxidase (Peng et al.,
2011b). Importantly, in chronic intermittent hypoxia, carotid
body afferent nerve activation is also mediated by angiotensin
II AT1 receptors (Marcus et al., 2010). Moreover, reducing the
blood flow (hypoxic-hypoperfusion) to carotid body by carotid
artery occlusion elevated angiotensin II AT1 receptor expression
in carotid body and increased chemoreceptor activity in the
rabbit (Ding et al., 2011). Activation of angiotensin II AT1

receptor in vitro (hence independently of vasoconstriction) by
AngII activated afferent chemoreceptor activity (Allen, 1998).
Importantly, blocking angiotensin II AT1 receptor receptors
in isolated carotid body blunts angiotensin II AT1 receptor -
dependent carotid body sensitivity (Li et al., 2007).

Many mechanisms govern carotid body signaling, including
ATP-gated ion channels (called purinergic P2X receptors),
specifically the C-fiber-localized, P2X3-receptor subtypes, which
are commonly associated with afferent sensitization and might
contribute to hyper-reflexic disease states in a variety of organs.
We found that in spontaneously hypertensive rats P2X3 receptors

are upregulated and that blockade of P2X3 receptors was
effective at reducing blood pressure and sympathetic activity
in the spontaneously hypertensive rats but had no effect in
normotensive control rats (Pijacka et al., 2016b). Interestingly
chronic angiotensin II infused hypertensive rats have upregulated
intrarenal P2X1 receptors (Franco et al., 2011).

Taken together this underlines the important role RAAS in
carotid body can play in hypoxia sensing, possibly via purineric
signaling. Potentially the kidney could trigger the carotid body
via RAAS activation, compounding renal sympathetic activity
(driving renal afferents) which will exaggerate RAAS activity. If
this is true a continued carotid body drive could be deleterious
to the kidney causing over excitation of renal afferents, genomic
changes, resulting in a double wind up of the systems and
ultimately cause persistent hypertension.

COMMONALITY IN THE HIF PATHWAY
AND ITS ROLE IN COOPERATIVE OXYGEN
SENSING BY THE KIDNEY AND CAROTID
BODY

When tissue oxygen levels drop chronically, expression of the
HIF-1α and−1β subunits increase. The HIF-1 α/β heterodimer
binds and activates expression of various genes including
those encoding glycolytic enzymes (for anaerobic metabolism),
vascular endothelial growth factor (for angiogenesis), inducible
nitric oxide synthase and heme oxygenase-1 (for production of
vasodilators), erythropoietin (for erythropoiesis), and possibly
tyrosine hydroxylase (for dopamine production to increase
breathing) (Guillemin and Krasnow, 1997). These genes help
the cell survive at low oxygen and act to restore normal oxygen
levels.

In the normal, fully developed kidney, HIF-1α is expressed
in most cell types, whereas HIF-2α is mainly found in renal
interstitial fibroblast-like cells and endothelial cells. The HIF
pathway has been implicated with renal development, normal
kidney function, and disease (Haase, 2006). Recently HIF-
1α mRNA has been suggested to be a potential biomarker
in chronic kidney disease, and comes primarily from cells
of renal origin (Movafagh et al., 2017). Interestingly, the
carotid body glomus cells constitutively overexpress HIFs and
certain HIF transcriptional targets that are normally part of
the counteractive mechanism against the negative impacts of
sustained hypoxia (Zhou et al., 2016). Specifically, the glomus
cells transcriptionally upregulate atypical mitochondrial electron
transfer chain components, suggesting unique mitochondria are
present in the carotid body and may be responsible for oxygen
sensing (Zhou et al., 2016).

A few years ago, Gassmann and Soliz postulated that there
was a crosstalk between the ventilatory and erythropoietin
responses and suggested that the chemoreflex pathway may
be activated by circulating erythropoietin (Brines et al., 2004;
Gassmann and Soliz, 2009). In fact, circulating erythropoietin,
acting on its receptors present in the carotid body improves
the hypoxic ventilatory response (Soliz et al., 2005) suggesting
a key role of erythropoietin for hypoxia adaption beyond
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the classical regulation of erythropoiesis (Pichon et al., 2016).
Interestingly, in models of chronic and intermittent hypoxia,
erythropoietin and its receptor are upregulated in the carotid
body which may promote enhanced excitability and contribute
to the pathophysiology of breathing disorders (Lam et al., 2009).

Balanced expression of the HIF-α isoforms is essential for
the correct functioning of oxygen sensing in the carotid body
(Yuan et al., 2013; Prabhakar and Semenza, 2016). HIF-1α is
expressed in both type I and type II cells of the carotid body,
while HIF-2α is only expressed in type I cells (Roux et al., 2005).
The carotid body chemoreflex response to acute and chronic
hypoxia is blunted when HIF-1α expression is reduced (Kline
et al., 2002; Yuan et al., 2011, 2013). Conversely, acute and
chronic hypoxic sensitivity is enhanced when HIF-2α is reduced
(Nanduri et al., 2009; Peng et al., 2011a; Yuan et al., 2013).
The balance between the two isoforms may be implicated in
the genesis of aberrant signaling during pathology. For instance,
intermittent hypoxia in rodents is associated with increased HIF-
1α and reduced HIF-2α protein in the carotid body (Nanduri
et al., 2009). In these conditions, carotid body chemoreceptor
signaling to the adrenal medulla selectively upregulates HIF-
1α expression, inducing catecholamine secretion and blood
pressure rise (Peng et al., 2014; Kumar et al., 2015), the latter is
eliminated by adrenal demedullation (Bao et al., 1997). Restoring
the levels of HIF-2α also prevents oxidative stress and blood
pressure increase during intermittent hypoxia exposure (Nanduri
et al., 2009). This demonstrates the contribution of HIF-1α
pathway in the carotid body and its influence in increasing blood
pressure.

As angiotensin II stimulates the HIF-1α pathway (see for
example, Imanishi et al., 2014; Luo et al., 2015) RAAS activation
could potentially cause an imbalance between HIF-α isoforms
in the carotid body. This is supported by the fact that carotid
body sensitivity is reduced when angiotensin II AT1 receptors are
blocked (see discussion above) (Li et al., 2007). Whether there is
a direct link between HIF and erythropoiesis pathways with the
cooperative oxygen sensing by the kidney and carotid body, is
unknown and will be off great interest to be studied in further
detail.

CLINICAL PERSPECTIVE

Our hypothesis on the cooperative oxygen sensing by the
kidney and carotid body in blood pressure control could
be of great relevance in the pursuit of novel ways to treat
hypertension and cardiovascular disease (see Box 1). Reducing
or eliminating the activity of the carotid body specifically is
emerging as a viable target in diseases in which there is autonomic
imbalance such as hypertensive conditions. Potentially, in
resistant hypertensive patients that do not respond to renal
denervation, concomitant elimination of carotid body activity
could have a therapeutic benefit, as proposed by McBryde et al.
(2017). Currently, surgical removal of the carotid body is the
only way to reduce carotid body activity chronically in humans.
Targeting aberrant hypoxia-mediated activation of renal and
carotid body afferent activity would be potentially highly effective
clinically.

Hydrogen sulfide, H2S, a gaseous endogenous signaling
molecule, is increasingly identified to be involved in numerous
cardiovascular (patho)physiology (Snijder et al., 2014, 2015; Xie
et al., 2016; Huang et al., 2017; Merz et al., 2017). In the
kidney, H2S exerts significant diuretic, natriuretic and kaliuretic
effects by raising glomerular filtration rate and inhibiting tubular
sodium re-absorption (Xia et al., 2009). In the renal medulla,
H2S acts as an oxygen sensor where its accumulation in
hypoxic conditions helps to restore oxygen balance by increasing
medullary blood flow, reducing energy requirements for Na+

transport, and directly inhibiting mitochondrial respiration
(Beltowski, 2010). Interestingly both low H2S levels and
mitochondrial dysfunction have been found in humans (Granata
et al., 2009; Perna and Ingrosso, 2012) and in animal models
(Aminzadeh and Vaziri, 2012; Perna and Ingrosso, 2012; Gong
et al., 2016) with cardiovascular disease. However, it remains
to be established if intervention aimed to improve H2S levels,
e.g., AP39, which proved to specifically increase H2S in the
mitochondria (Ahmad et al., 2016; Chatzianastasiou et al., 2016)
can alleviate tissue hypoxia and reduce blood pressure.

Pre-clinical and clinical evidence suggests that Finerenone,
a next-generation non-steroidal dihydropyridine-based
aldosterone antagonist, may achieve equivalent organ-protective
effects with fewer adverse effects and reduced levels of electrolyte
disturbance (Kolkhof et al., 2014; Bramlage et al., 2016). The
latter is important for its potential applicability for patient with
impaired renal function. This in combination with the above
mentioned unknowm relation of the mineralcorticoid receptor
with cooperative sensing of hypoxia by the kidney and carotid
body invites for further pre-clinical research of Finerenone for
the treatment of cardiovascular and renal hypertensive disease.

The argument can be made that pharmacological intervention
that mimics and enhances natural, physiological response to
disease may be preferable to single protein regulation. A
promising approach to protect organisms against hypoxia, is
upregulation of HIFs, which results in a broad and coordinated
downstream reaction, possibly increasing cellular tolerance to
hypoxia and thereby alleviating the double windup of RAAS and
sympathetic hyperactivity that is responsible to the hypertensive
state. Indeed, pre-conditioning by HIFα protein stabilization
conferred protection in several models of acute renal ischemia
(Bernhardt et al., 2009; Jarmi and Agarwal, 2009; Yang et al.,
2009; Wang et al., 2012; Koeners et al., 2014). Furthermore, HIF
stabilizing compounds are currently being investigated in clinical
trials as a treatment for anemia (Besarab et al., 2016; Holdstock
et al., 2016; Pergola et al., 2016). However, a major concern
for clinical use includes the “broad pharmacology” of HIF
stabilization due to the upregulation of many genes, including
proteins that have been targeted for inhibition by marketed drugs
(e.g., vascular endothelial growth factor, cyclooxygenase−2), in
all tissues some of which may not be hypoxic. A potential way
to circumvent unwanted effects of systemic HIF stabilization
is to develop novel hypoxia activated pro-drugs, which are
currently under development for targeting hypoxia in cancer
therapy (Wilson and Hay, 2011). Hypothetically these pro-drugs
will only be activated in specifically targeted hypoxic tissues like
kidney and/or carotid body and thereby being able to alleviate
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hypoxia-mediated renal and carotid body afferent signaling,
unrestrained RAAS activation and hence reduce blood pressure
in hypertension.

Theoretically, all these therapies are effective only in patients
whose have prolonged and/or severe tissue hypoxia. We know
that, for example in the kidney, tissue oxygenation can vary wildly
within and between individuals and follows a diurnal pattern.
The latter, possibly due to variations in oxygen delivery, which
is known to be determined by renal blood flow and peaks in the
active phase (Emans et al., 2017), can act as cue for circadian
clock genes via the HIF pathway (Adamovich et al., 2017). Thus,
it is important to identify patients with tissue hypoxia, i.e.,
more responsive to hypoxia-oriented therapies. We believe that
Magnetic Resonance Imaging (MRI) like blood oxygenation-level
dependent (BOLD)MRI (Pruijm et al., 2016) and hyperpolarized
MRI (Laustsen, 2016; Laustsen et al., 2016) represent very
exciting tools to help us to elucidate the role of tissue oxygen
metabolism in hypertension and other cardiovascular diseases.
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