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Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new
discoveries and continuous improvements underpinning the rapid growth of this industry.
N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences
the efficacy, half-life and immunogenicity of these drugs. This review will focus on the
advances and future directions of remodelling N-glycosylation in Chinese hamster ovary
(CHO) cells, which are the workhorse of recombinant biotherapeutic production, with par-
ticular emphasis on antibody products, using strategies such as cell line and protein
backbone engineering.

Introduction
Advances in glycoengineering are increasingly providing opportunities for modulating the properties
and functions of recombinant biotherapeutics [1,2]. In vivo, glycans are primarily remodelled by tar-
geting glycosylation pathways and the structural environment of a protein surrounding a glycan,
whereas in vitro, remodelling is achieved by chemoenzymatic methods. In vivo strategies will form the
focus of this review. Through such studies and using the abundance of data generated in drug devel-
opment campaigns, we have come to know that the structure and composition of protein-linked oligo-
saccharides regulates the therapeutic efficacy, immunogenicity and half-life of recombinant
biotherapeutics [1]. This is because oligosaccharides can affect glycoprotein conformation in addition
to acting as a binding motif and influencing downstream functions such as immune receptor activa-
tion. The Quality by Design (QbD) paradigm for the development of recombinant biotherapeutics
therefore identifies glycosylation as a critical quality attribute (CQA) [3,4]. Most glycosylated recom-
binant biotherapeutics are produced in mammalian cell lines because they reproduce human-like gly-
cosylation more closely than bacteria, yeast, plant and insect cell systems. This is key to avoiding
undesirable immunogenicity from foreign epitopes. In fact, between 2014 and 2018 the vast majority
(84%) of newly approved antibody therapeutics were produced in CHO cells [5]. The ability to design
and produce safer, longer lasting and more effective biotherapeutics is extremely valuable to industry
and patients alike. However, the non-templated biosynthesis of glycans is a major hurdle that pro-
duces heterogeneous glycomic profiles as a result of enzymatic competition for a common substrate,
substrate availability and enzyme-substrate specificity [6,7]. This review highlights the importance of
N-glycan structure and analytics in biotherapeutic development and aims to illustrate how CHO cell
glycoengineering has evolved with increasing speed and precision since the turn of the century.

Structure-activity relationship of biotherapeutic
glycosylation
The role of glycan composition and structure in modulating the effector function of glycoproteins
needs to be elucidated in order to determine a priori which glycoform is desirable for a specific
biotherapeutic. The intimate structure-activity relationship (SAR) of N-glycans in a therapeutic
context is perhaps best studied in monoclonal antibodies (mAbs) [8]. mAbs and their biosimilars
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Box 1. Eukaryotic N-glycosylation
Mature N-glycans are derived from a complex network of constitutively expressed glycan-
remodelling enzymes, which interact with protein-linked oligosaccharides in a sequence of spa-
tially and temporally separated events [12]. Protein N-glycosylation in eukaryotes is initiated in
the endoplasmic reticulum (ER) with the formation of a lipid-linked precursor oligosaccharide
composed of glucose, N-acetylglucosamine and mannose (abbreviated as Glc3Man9GlcNAc2)
which is then translocated to the ER lumen by a flippase [13]. A membrane-bound oligosaccharyl
transferase (OST) catalyses the en bloc transfer of Glc3Man9GlcNAc2 to the side-chain amino
group of an asparagine residue within the conserved protein sequon Asn-X-Ser/Thr (where X is
not Pro) [13]. In the ER, glucose residues are trimmed from correctly folded glycoproteins as a
signal for further processing in the Golgi apparatus [11]. Glycan remodelling enzymes and
nucleotide sugar donor (NSD) transporters are spatially and temporally segregated within the
Golgi apparatus [13]. The glycomic profile of a protein is determined by the frequency of stochas-
tic interactions of the glycan and NSD substrates with various glycosyltransferases and glycosi-
dases which form or hydrolyse specific glycosidic linkages between sugar residues. The Golgi
network sequentially processes high mannose N-glycans into diverse hybrid and complex struc-
tures, with up to four antennae and with or without bisecting β1,4-GlcNAc and other terminal
elaborations including sialylation, poly-N-acetyllactosamine (poly-LacNAc) extensions and
fucosylation [12]. From the perspective of biotherapeutic production, this complex interplay of
reactions achieves poor control of glycan structure. For a more detailed overview of N-glycan
biosynthesis please refer to chapter 9 in the Essential of Glycobiology textbook [12].

On the right-hand side is a schematic structure of a mature mammalian complex N-glycan
linked to the conserved N-X-S/T sequon. High mannose glycans from the ER are trimmed
sequentially and various terminal elaborations produced in the Golgi are highlighted in this struc-
ture. Glycosidic linkages are annotated (in black) together with the Golgi-resident glycosyltrans-
ferase genes (in red) responsible for each linkage. Examples of oligomannose, hybrid and
complex N-glycans are also shown on the left-hand side.

represent the majority of biopharmaceutical approvals since 2015 and will be the focus of this review [5]. Most
therapeutic mAbs are Immunoglobulin G (IgG) which is also the dominant Ig type in human serum. They
modulate cellular immune responses through Fcγ receptor (FcγR)-binding as well as through direct receptor-
or ligand-binding [9,10]. The conserved Fc site Asn297 in IgG1 is N-glycosylated, which is essential to the anti-
or proinflammatory role of IgGs (Figure 1) [2]. Disruption of the protein backbone-carbohydrate interface in
IgG has been shown to influence the Fc conformations relevant for Fcγ receptor binding [9]. Indeed, without
N-glycosylation the Fc portion cannot adopt the functional conformation required to bind Fc-dependent recep-
tors (type 1), glycan dependent receptors (type 2) or initiate the complement cascade [8].

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).916

Biochemical Society Transactions (2021) 49 915–931
https://doi.org/10.1042/BST20200840

https://creativecommons.org/licenses/by/4.0/


The structure of mAb N-glycans can also influence the pharmacokinetic and pharmacodynamic properties
of a biotherapeutic. α1,6 core-linked L-fucose (Fuc) is a primary determinant of IgG inflammatory activity and
is added onto N-glycans by an α1,6-fucosyltransferase (FUT8). Core-fucose weakens carbohydrate-carbohydrate
interactions necessary for high-affinity binding between antibodies and glycosylated FcγRIIIa, which is why
core-fucosylation is undesirable in mAbs that mediate antibody-dependent cell cytotoxicity (ADCC), a mechan-
ism exploited for the selective clearing of tumour cells by immune cells after antibody engagement [14]. The
addition of bisecting β1,4-linked N-acetylglucosamine (GlcNAc) by endogenous or recombinant
N-acetylglucosaminyltransferase III (GnT-III in YB2/0 and CHO cells respectively) or via in vitro glycan
remodelling has also been linked to increased ADCC in IgGs, albeit to a lesser extent than afucosylation [15–17].
Antibody fucosylation is reduced by GnT-III overexpression because oligosaccharides with bisecting GlcNAc no
longer act as FUT8 substrates [15]. This principle is exploited in the GlycoMab® technology of GlycArt (acquired
by Roche) that produces low-fucose biotherapeutics such as the anti-CD20 obinutuzumab, approved in 2013 for
treatment of follicular lymphoma and chronic lymphocytic leukaemia, with 10–100-fold improved ADCC [8].
In 2012, mogamulizumab was the first-ever glycoengineered mAb to gain approval and is produced in
FUT8 knockout CHO cells (Potelligent® technology) for the treatment of CCR4-positive T cell leukaemia or
lymphoma [8]. Enriching the abundance of mAb N-glycoforms with β1,4-linked galactose (Gal) can also be
desirable as it has been shown to enhance complement-dependent cytotoxicity (CDC), another mechanism for
the selective depletion of tumour cells by Fc activation of the complement pathway [16–21]. In contrast with
early studies, enzymatic hypergalactosylation of mAbs was shown to enhance ADCC activity, albeit afucosylation
remained the primary influence [22]. One issue with terminally galactosylated mAbs is clearance from circulation
by the asialoglycoprotein receptor [8]. On the other hand, galactose is required for sialylation with
N-acetylneuraminic acid (NeuAc), which in turn can improve the solubility, anti-inflammatory activity, thermal
stability and serum half-life of mAbs [8,23–26]. The type of sialic acid linkage also influences biotherapeutic
properties, in fact when NeuAc is α2,3-linked (main sialylated species in CHO-derived glycoproteins) the

Figure 1. Antibody Fc Glycosylation. IgG requires N-glycosylation at Asn297 in the CH2 domain of the Fc to adopt a

functional conformation.

The structure-activity relationship of specific Fc-glycosylation characteristics on the pharmacokinetics and pharmacodynamics

of mAbs is illustrated. An ensemble of pertinent references is also provided. The hypervariable complementarity determining

region in the Fab domain can sometimes contain N-X-S/T sequons with N-glycans whose structure and role is less well

understood than in the Fc domain. Different biopharmaceuticals such as hormones, blood-proteins, vaccines, growth factors,

interferons and fusion proteins may each require distinct glycomic profiles for optimised function.
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conformational stability of the CH2 domain of IgG can be reduced, most likely a result of a steric effect between
the protein backbone and the α2,3-sialylated 6-arm [27,28]. In contrast, it is the α2,6-linked NeuAc (main
sialic acid linkage in human IgG) that is solely required for the anti-inflammatory activity of IgG mediated by
non-canonical IgG-Fc receptors [24].
Pharmacokinetic studies in both humans and mice revealed that high-mannose structures were cleared more

rapidly from circulation, which is likely to be a result of uptake by endogenous receptors such as the mannose
receptor [29,30]. While oligomannose glycans (Man5–9GlcNAc2) have been shown to increase the FcγRIIIa
binding and ADCC of mAbs compared with fucosylated complex glycans, the CDC activity was decreased
together with the binding affinity to FcγRIIa/b [30]. The lack of core-fucosylation in oligomannose glycoforms
will be in part responsible for these properties, highlighting the difficulties in assigning functional properties to
a single specific glycan motif. On the other hand, hyper-mannosylation in non-mammalian cell lines such as
insect, yeast and plant cells, can be highly immunogenic in humans [8]. N-glycolylneuraminic (sialic) acid
(NeuGc), can also be immunogenic in humans, who express a non-functional CMP-N-acetylneuraminic acid
hydroxylase and as a result have high-levels of circulating anti-NeuGc antibodies [31,32]. Humans also lack the
ability to produce the Galα1–3Galβ1–4GlcNAc–R epitope, which is common in murine cells, and this has been
shown to induce anaphylaxis [8,33]. The risks of immunogenic N-glycoforms require a production system that
closely mimics human glycosylation, which is one of the reasons why CHO cells are most often used for indus-
trial biotherapeutic production.

Engineering control of glycan biosynthesis
In glycoengineering, strategies such as cell-line and protein backbone engineering are used effectively to
develop production platforms with specific glycosylation abilities and less heterogenous glycomic profiles. CHO
cells have become dominant in biotherapeutic production because they produce non-immunogenic and near
human-like glycosylation [5]. For instance, CHO cells do not express alpha-1,3-galactosyltransferases, which
produce the immunogenic alpha-galactosyl epitope (although they have the gene), and the expression of
CMP-N-acetylneuraminic acid hydroxylase, which produces CMP-NeuGc, is virtually absent [27,71,72]. In
contrast, while murine cell lines such as NS0 and Sp2/0 also produce glycan structures similar to humans, they
also produce immunogenic epitopes such as the Galα(1–3)Gal epitope and they have a high content of NeuGc
sialic acid, which is why they are less commonly used for biotherapeutic production [1,73]. For these reasons,
CHO cells are the focus of this review and of further discussion of the various strategies aimed at improving
biotherapeutics through glycoengineering.

Cell line engineering
In CHO cells, the knock down (KD), knock out (KO) and overexpression (OE) of glycosylation enzymes and
NSD transporters have been used in biotherapeutic functional studies and for the development of biobetters, as
summarised in Figure 2 [73,74]. The availability of genomic sequences has enabled CHO cell engineering with
unprecedented precision using engineered nucleases, including zinc finger nucleases (ZFNs) and transcription
activator like nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)
system [71–73,75,76]. These impart the advantage of targeted glycoengineering as opposed to OE using antibiotic
selection and, for this reason, are now used as the methods of choice in academic and industrial settings. While
mAbs will again be the main focus, relevant glycoengineering strategies in CHO cells applied to other molecules
that can inform future work on mAbs will also be discussed. Several studies aiming to enhance sialylation in
CHO cells have stably or transiently overexpressed α2,3- and α2,6-sialyltransferases (ST3- and ST6GALTs), which
can increase serum half-life and the anti-inflammatory properties of certain mAbs [77–83]. Improved sialyltrans-
ferase activity can actually be supplemented with overexpression of branching N-acetylglucosaminyltransferases
GnT-IV (MGAT4) and GnT-V (MGAT5), which add β1,4- and β1,6-linked GlcNAc to the 3- and 6-arms respect-
ively, to increase glycan antennarity and the number of sites available for sialylation [82]. Sialylation can also be
indirectly enhanced through increased synthesis of CMP-NeuAc and its transport into the Golgi [84–86]. Since
galactose is required for sialylation, overexpression of both β1,4-galactosyltransferase 1 (β4GALT1) and ST3GALT
yields even higher sialic acid content compared with ST3GALT overexpression alone [80]. Metabolic engineering
has similarly been used in CHO cells to complement the inhibition of poly-LacNAc biosynthesis by removing
CMP-Neu5Ac feedback inhibition and to increase sialic acid content in recombinant erythropoietin (EPO)
[86,87]. As previously mentioned, afucosylation can be a desirable glycan feature in mAbs designed to generate
immune responses, and CHO cells in which GnTIII and FUT8 are overexpressed and knocked out, respectively,
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have been generated in order to improve ADCC [15,64]. mAb fucosylation has been the primary focus in bio-
pharmaceutical glycoengineering, and just two fucose-engineered products derived from the GlycoMab® and
Potelligent® platforms have been approved thus far, although more are undergoing clinical trials. Other strategies
aimed at altering the expression levels of glycan remodelling enzymes without affecting the genome often rely on
transfection with non-coding RNA such as microRNA (miRNA), short hairpin RNA (shRNA) or small interfer-
ing RNA (siRNA) [88,89]. For instance, siRNAs and shRNAs have previously been used to KD neuraminidases
in CHO cells to increase sialic acid content of a recombinant human interferon gamma (hIFNγ) [90].
Alternatively, the siRNA-mediated KD of FUT8 in CHO cells has been demonstrated to result in 100-fold
improved ADCC for highly afucosylated antibodies [62]. In evaluating the role of glycosylation enzymes, loss of
function by complete bi-allelic KO has generally been preferred to partial suppression strategies such as RNA
silencing, however the latter is useful in short-term studies [73,91].
The molecular toolbox for CHO cells has recently expanded to take advantage of the CRISPR system

[73,75]. A CRISPR-associated (Cas) endonuclease can induce DNA double-strand breaks targeted to a genomic
sequence of interest by a programmable guide RNA (gRNA) that forms RNA-DNA base-pairing upstream of
an essential trinucleotide protospacer adjacent motif (PAM) [92,93]. This engineering strategy has the advan-
tage that only the gRNA sequence needs to be modified in order to target new genes and the platform is more
easily used, and amenable to alternative applications, compared with ZFNs and TALENs [75,76]. Multiple
genes can even be targeted with CRISPR in a single ‘multiplexing’ step. For instance, FUT8, BAX and BAK
(BAX/BAK are pro-apoptotic proteins) were disrupted in CHO cells with the transfection of a single vector
containing three single guide RNA (sgRNA - fuses two elements within gRNA) sequences together with Cas9
(from Streptococcus pyogenes) to reduce fucosylation and improve resistance to apoptosis [94].
CRISPR-induced KO of target genes can be highly effective since pairs of sgRNAs can be used to excise genes
in their entirety, which in turn facilitates the study of gene function without interference from truncated ver-
sions of the protein [95–98]. Bydlinski et al. and Amann et al. implemented this in CHO-K1 and CHO-S cells,
respectively, to study the influence of individual and stacked galactosyltransferase KOs on N-glycan processing,
confirming β4GALT1 as the major contributor to galactosylation in both CHO-K1 and CHO-S and elucidating
the minor roles played by β4GALT-2, 3 and 4 [96,99]. A KO of FUT8 has also been generated using CRISPR
in CHO cells with the aid of a computational tool ‘CRISPy’, for the identification of sgRNA genomic targets as
well as potential off-target sequences [100]. In contrast, CRISPR has also been used for the overexpression of
transgenes in CHO cells for precise site-specific and efficient genomic integration [101]. CRISPR/Cas9 is now
the dominant strategy employed for gene KO and OE in CHO cells because the simple base pairing between
sgRNAs and a target genomic site enables more rapid design, ease of use and lower cost compared with the
customisable DNA-binding specificities of ZFNs and TALENs.
Glycomic studies of lectin resistant CHO cell mutants and a knock-in/knock-out screening of 19 CHO glycan

remodelling enzymes, using EPO and IgG as glycosylation reporters, have provided some of the most comprehen-
sive bases for targeting specific genes to obtain desirable and more homogeneous glycosylation [27,102]. The
Yang et al. screen used engineered ZFNs to systematically deconstruct the role of individual glycosylation
enzymes, including isoenzymes with overlapping functions [102]. However, a more recent publication by many
of the same authors highlighted a shift towards CRISPR-based strategies in CHO cell glycoengineering because it
is the most efficient and cost-effective method available, and they have developed a gRNA library to guide future
gene targeting efforts [91]. This was put into practice in 2019 when the group performed over 30 KO/KI screens
of glycosylation enzymes to produce custom-designed N-glycans for recombinant lysosomal enzymes [103].
Recombinant lysosomal enzymes produced in CHO cells are used to treat lysosomal storage diseases and
α-galactosidase A, which is used to treat Fabry disease, was shown to benefit from increased α2,3-sialylation to
improve half-life and biodistribution in a mouse model (and lower immunogenicity when pegylated) [103,104].
CRISPR has also been adapted to alternative applications such as CRISPR activation (CRISPRa), where a catalyt-
ically inactivated Cas9 was fused to transcription activators to increase the expression of MGAT3 and ST6GAL1
and thus enhance N-glycan bisection and sialylation [105,106]. The CRISPR system has also recently been
exploited to generate CHO cells with simultaneously and independently regulated glycosyltransferases under
small-molecule inducible promoters [107]. In the future, this particular method could even be adjusted to use
temperature or photo-inducible promoters to further expand the repertoire of strategies for glycosylation control.
While it is evident from these examples that engineering N-glycosylation in CHO cells is complex and specific to
the target biotherapeutic, advances in genetic manipulation strategies are enabling increasingly homogeneous and
bespoke glycosylation with unprecedented precision and efficiency.
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Although not yet applied in CHO cells, GlycoDelete is an elegant glycoengineering strategy worth mention-
ing, which reduces glycan heterogeneity by expressing a Golgi-targeted endo-β-N-acetylglucosaminidase in
HEK 293SGnTI(−) cells to produce GlcNAc N-glycan ‘stumps’ modified by galactosyltransferases and sialyl-
transferases to yield small sialylated trisaccharides [108]. The GlycoDelete method has been shown not to affect

Figure 2. A timeline of genetic engineering in CHO cells for improved control of glycosylation pathways.
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protein folding or cell physiology and can produce more homogeneous glycoforms ideal for antigen neutralis-
ing mAbs with reduced clearance. The last decade has seen the glycoengineering field bloom with new possibil-
ities offered by advances in genetic engineering strategies and increasingly well-characterised production
platforms. Combining these strategies with protein backbone engineering promises to further extend our
control over biotherapeutic glycosylation.

Protein backbone engineering
Another major influence on glycosylation is the nature of the recombinant glycoprotein itself. Glycosylation
sites can vary both in accessibility and the surrounding amino acid environment on the surface of a protein
[109]. These features affect the frequency of interactions with glycan remodelling enzymes and thus generate
some control, or limitations on the glycomic profile. Here we provide a brief overview of how glycoengineering
can be achieved by targeted modifications to the protein backbone, with a focus on mAb-based products. This
is not meant as a comprehensive discussion of all biotherapeutics and cell types, but rather aims to illustrate
how cell line engineering can be supplemented in the pursuit of increasingly controlled and homogeneous gly-
cosylation as well as novel glycan functionalities.
IgGs, being some of the most well characterised glycoproteins, have been the subject of structural and muta-

genesis studies to identify key residues for receptor-binding [110,111]. Exploiting the structural understanding
of glycosylated IgG, further investigation identified residues which profoundly influence glycan processing as a
result of protein–carbohydrate interactions. For instance, CHO-expressed IgG1-Fc with four mutations (F241A/
F243A/V262E/V264E) has a more open conformation, which increased accessibility and processing by
galactosyl- and sialyltransferases [11]. Similarly, mutations altering the protein–carbohydrate interface can also
stabilise the CH2 domain of IgG and modulate receptor-binding [112]. While these point mutation strategies
are highly specific to individual molecules and to distinctive protein–carbohydrate environments, modifications
to the protein–carbohydrate interface were also found to be relevant to glycan processing in protein disulfide
isomerase, confirming the efficacy and wider applicability of modifying the primary sequence for glycoengi-
neering [113]. Recently, the same group used molecular dynamics simulations to predict glycan accessibility for
processing enzymes and confirmed in vitro how N-glycan accessibility and tertiary structure modifications
affect processing enzyme kinetics at different glycosylation sites in protein disulfide isomerase [114]. The reader
is encouraged to read these last two studies to gain a deeper understanding of how protein backbone engineer-
ing may be used to direct glycosylation pathways in a broader context.
Efforts aimed at improving control of glycosylation in CHO cells have now allowed an approach which com-

bines genetic engineering of both glycosylation enzymes and the protein backbone. In one study led by the
Betenbaugh group, IgG was engineered with the aforementioned mutations to increase glycan processing in CHO
cells designed to swap α2,3- for α2,6-sialylation by CRISPR-mediated disruption of two α2,3-sialyltransferases
and overexpressing ST6GALT1 [115]. In a second, disruption of ST3GALT4/6 and FUT8 was combined with the
same mutations to produce hypergalactosylated IgG for the first time in vivo [116].
Alternative applications for backbone modifications are the insertion or removal of novel glycosylation sites

into biotherapeutics and the formation of fusion constructs or scaffolds for multimerisation. An early example
worth mentioning is the development of darbepoetin alfa, an EPO molecule approved in 2001 with two add-
itional N-oligosaccharides that increased in vivo potency and half-life [117]. Coming back to Ig-based biothera-
peutics, atezolizumab, an oncolytic anti-PD-L1 mAb, is another clinically approved (2016-US, 2017-EU)
glycoengineered product, except the Fc has been engineered to lack glycosylation [5]. With regards to multi-
merisation scaffolds, polymeric recombinant IgGs have been generated by the insertion of a C-terminal
IgM-tailpiece and modifications to Cys residues involved in multimerisation, to generate multimeric forms with
increased valency for therapeutic and vaccine applications [118]. The hexameric IgG-Fc fusion, with its add-
itional N-glycosylation site in the IgM-tailpiece, was shown to have increased FcγR binding affinity, which sug-
gested the potential for developing this strategy to replace intravenous immunoglobulin G (IVIG) therapy with
a well-defined and more homogeneous biotherapeutic product. This protein-scaffold was later shown to also
bind low-affinity receptors (FcRL5, FcγRIIb, and DC-SIGN) with high specificity and avidity [119]. The inser-
tion of a third N-glycosylation site at the N-terminus generated highly branched and hypersialylated glycans,
which are mostly absent at the Asn297 site and when combined with further mutation of Cys residues, was able
to generate a range of monomers and multimers that have tailored interactions with sialic acid-dependent
receptors [120]. Some of these hypersialylated mutants were also found to bind influenza viruses with high-
affinity and inhibit influenza-mediated hemagglutination [121,122]. While there are several fusion protein
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approved biotherapeutics, which mostly combine the Fc portion of IgG1 with other proteins, this section aims
to highlight how backbone modifications can remove, add or multiply the functional role of glycans through
the engineering of glycosylation sites and multimerisation scaffolds [5]. Deconstructing the role of glycans and
analysing changes in the glycomic profile of a biotherapeutic is necessary at the developmental stage and essen-
tial for quality control purposes and that is why the analytical methods used in support of glycoengineering
will be discussed below.

Glycosylation analysis
Glycomics, the characterisation of released pools of glycans, and glycoproteomics, the characterisation of glyco-
peptides to give information of the glycans at an individual glycosylation site, are essential in both the glycoen-
gineering field and the biopharmaceutical industry [141]. Firstly, glycosylation analysis is necessary for
elucidating the impact of cell line engineering strategies at both the cellular and recombinant product level, and
secondly, highly sensitive and reliable analytics are required for strict quality control in the later manufacturing
and clinical phases. Combining these methodologies with genomic, transcriptomic, proteomic and metabolomic
data has proven to be an effective systems biology strategy for the optimisation of glycosylated biotherapeutics
[74]. Secondly, glycosylation is a critical quality attribute of glycoprotein therapeutics. Its role on intended func-
tion and molecule stability therefore needs to be evaluated during development and closely monitored during
manufacturing as part of process monitoring and quality control protocols.
Mass spectrometry (MS)-based techniques, the experimental workflow for which is outlined in Figure 3,

have dominated the glycomics and glycoproteomics fields for decades because of its high sensitivity and ability
to characterise complex heterogeneous mixtures, especially when combined with upstream separation techni-
ques such as liquid chromatography [142]. Chromatographic techniques such as hydrophilic interaction chro-
matography (HILIC) and capillary electrophoresis continue to improve and have also been used together with
fluorescence detection of glycans to obtain quantitative glycomic profiles, however these methods are hindered
in their ability to assign glycan structures to specific signals [143,144]. In comparison with fluorescence detec-
tion data, the m/z (mass/charge) molecular ion signals obtained via MS are more easily assigned to glycan
structures using prior knowledge of N-glycan biosynthesis during mass-fingerprinting, because a given mass
will usually have a unique monosaccharide composition. While the 1-dimensional MS mode can typically

Figure 3. A simplified experimental workflow for N-glycomic or glycoproteomic analyses.

Glycoproteins from cells (or purified from supernatant) are reduced/carboxymethylated and proteolytically cleaved.

Glycopeptides can then be separated for glycoproteomic analysis or N-glycans can be released by peptide N-glycosidase F

(PNGase F). After purification, N-glycans can either be labelled for fluorescence detection or derivatised (e.g. permethylated) to

improve ionisation efficiency and sensitivity for MS glycomic analysis. Additionally, MS/MS sequencing or chemical/enzymatic

digests can aid more in-depth structural analyses of linkages, antennarity and terminal epitopes.
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Table 1 Chromatographic and MS techniques for glycomic analyses

Separation Description Advantages Disadvantages

CE Capillary electrophoresis High separation efficiency and miniaturisation
capacity. Used for separation of native or labelled
glycans

Low flow rate not suited to MS. Typically associated
with laser-induced fluorescence detection, which
complicates peak annotation. More suited to less
heterogeneous samples (mAb Fc N-glycans)

PGC Porous graphitised carbon chromatography A widely used method for purifying and separating
underivatised glycans. Resolves structural isomers
efficiently

Limited robustness and reproducibility.

RPLC Reverse phase liquid chromatography C18 is commonly used to elute and purify released
N-glycans while peptides are retained.
Permethylated glycans are retained and separated
well. Highly reproducible

Does not retain hydrophilic glycans or more hydrophilic
glycopeptides. Not efficient for isomer separation

HILIC Hydrophilic interaction liquid chromatography Efficient separation of underivatised glycans Less effective than RPLC for hydrophobic molecules
and PGC for isomer separation

GC Gas chromatography Suited to electron impact ionisation and linkage
analysis

Requires volatile sample. Limited to lower Mw
molecules

Ion mobility Molecules are separated by size and shape (in addition
to mass/charge) after ionisation by drifting through an
inert gas

Can resolve compositional, conformational and
linkage isomers

Larger and highly similar glycans separate less
efficiently. Sample must be in gas phase

Immunoaffinity Immunoprecipitation using antibodies Highly specific separation of glycan epitopes For each antibody only a single glycan epitope can be
purified

Lectin affinity Lectin affinity chromatography Highly specific separation of glycan epitopes For each lectin only a single glycan epitope can be
purified

Ionisation

EI Electron impact ionisation. Gas phase molecules are
bombarded by a beam of electrons

Non-selective, efficient ionisation can result in high
sensitivity. Can be used in GC workflow for linkage
analysis.

Requires volatile (gaseous) sample, less suited to
polymers. Only forms positive ions. Hard ionisation can
cause unwanted fragmentation. Not suited to liquid
chromatography

ESI Electrospray ionisation. High voltage applied on a flow of
liquid at atmospheric pressure

Can ionise high Mw samples in both positive and
negative mode. Utilised for top-down analyses.
Perfectly suited to liquid chromatography
integration.

Sample must be in solution. Complicated spectra as
multiply charged ions are produced

MALDI Matrix assisted laser/desorption ionisation. Laser pulse is
applied to a sample embedded in a matrix

Ionises large molecules. Excellent resolving power
and sensitivity for highly heterogeneous mixtures.
Can be coupled to offline chromatography.

Sample must be embedded in a solid matrix. Ionisation
suppression possible

Continued
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Table 1 Chromatographic and MS techniques for glycomic analyses

Separation Description Advantages Disadvantages

Mass analysers

Quadrupole Ions of specific m/z selected with radiofrequency and
direct current voltages

Low cost and fast. Useful for m/z filtering prior to
second analyser

Lower resolution and limited mass range

TOF Time-of-flight. Larger m/z ions travel slower than smaller
m/z ions. Reflectrons increase path length and sensitivity

High resolving power, fast, sensitive, and
theoretically unlimited mass range

Lower resolving power than Orbitrap and FT-ICR

Orbitrap Ions are electrostatically trapped in orbit around a central
spindle. Oscillation frequency depends on m/z

Very high resolving power and mass range High cost

FT-ICR Fourier transform ion cyclotron resonance. The frequency
of cyclotron motion caused by the ions trapped in a
magnetic field is measured. Motion frequency is
dependent on ion m/z

Extremely high resolving power and sensitivity.
Amenable to high m/z ranges

Relatively slow speed. High initial costs and
maintenance of superconducting magnet
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determine monosaccharide composition unambiguously, structural isomers with varied branching patterns or
epitopes cannot be distinguished. For more detailed structural elucidation, two-dimensional tandem-MS/MS
uses collision-induced dissociation to produce sequence informative fragment ions. Additionally, enzymatic
digestions of specific glycan residues can provide another level of structural detail. Matrix-assisted laser desorp-
tion/ionisation (MALDI) and electrospray ionisation (ESI) are ‘soft ionisation’ techniques, which now dominate
in the MS field [142,145]. MALDI in particular has risen to prominence for its exquisite sensitivity, tolerance
to impurities, high-throughput capacity, ease of data analysis (given that most ions are singly charged) and the
simplicity of sample preparation [146]. More comprehensive reviews of these methodologies are provided (an
overview is also provided in Table 1) [142,145–149].

Conclusions
This review has examined the functional role of biotherapeutic glycosylation, strategies for CHO cell line and
protein backbone engineering aimed at glycosylation control and the analytical methods commonly used for
glycomic and glycoproteomic analyses. Advances in various omics technologies have significantly improved our
understanding of CHO cells at different levels and enabled the rational targeting of glycosylation effectors for
improved biopharmaceutical production [27,71,72,150–152]. A remarkable and growing list of studies is revolu-
tionising our understanding of the fundamentals of protein glycosylation and advances in genome editing have
made glycoengineering increasingly accessible and efficient for the development of biobetters with improved
half-life, safety and efficacy. Despite a focus on increasing viable cell density and specific productivity from
industry, we expect that glycoengineering will form an increasingly intrinsic part of biopharmaceutical design
and development.

Perspectives
• Glycosylation is a critical quality attribute that influences the efficacy, half-life and safety of

recombinant biotherapeutics. However, control of this pathway is made difficult due to the
non-template-based synthesis of glycans.

• Over the last two decades, increasingly effective genetic engineering strategies have enabled
cell line development and protein backbone engineering with unprecedented precision and
speed. Modelling work, optimisation of process conditions and in vitro strategies are also
being pursued in parallel.

• The effects of glycoengineering on cell physiology and N-glycosylation in contexts other than
IgG-Fc and EPO will need to be further investigated. Host cell proteins, ‘Glycan scaffolds’, gly-
cosylated Fab domains and other recombinant products are of significant interest.
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