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Simple Summary: We evaluated codon usage bias in the FoxP2 gene in fishes, birds, reptiles, and
mammals. Fishes use C or G—ending codons, while birds, reptiles, and mammals employ T or
A—ending codons. Apart from the nucleotide composition, natural selection and mutation pressure
might influence the CUB. The ENC observed/ENC expected ratio demonstrated that mutation
pressure influences FoxP2 codon usage patterns. Natural selection may have had a key influence
in shaping the CUB, although mutation pressure may have played a minor role. FoxP2 gene codon
usage is affected by the base composition under mutation bias.

Abstract: The protein-coding gene FoxP2 (fork head box protein P2) plays a major role in communi-
cation and evolutionary changes. The present study carried out a comprehensive codon usage bias
analysis in the FoxP2 gene among a diverse group of animals including fishes, birds, reptiles, and
mammals. We observed that in the genome of fishes for the FoxP2 gene, codons ending with C or G
were most frequently used, while in birds, reptiles, and mammals, codons ending with T or A were
most frequently used. A higher ENC value was observed for the FoxP2 gene indicating a lower CUB.
Parity role two-bias plots suggested that apart from mutation pressure, other factors such as natural
selection might have influenced the CUB. The frequency distribution of the ENC observed and ENC
expected ratio revealed that mutation pressure plays a key role in the patterns of codon usage of
FoxP2. Besides, correspondence analysis exposed the composition of the nucleobase under mutation
bias affects the codon usage of the FoxP2 gene. However, neutrality plots revealed the major role of
natural selection over mutation pressure in the CUB of FoxP2. In addition, the codon usage patterns
for FoxP2 among the selected genomes suggested that nature has favored nearly all the synonymous
codons for encoding the corresponding amino acid. The uniform usage of 12 synonymous codons
for FoxP2 was observed among the species of birds. The amino acid usage frequency for FoxP2
revealed that the amino acids Leucine, Glutamine, and Serine were predominant over other amino
acids among all the species of fishes, birds, reptiles, and mammals.

Keywords: FoxP2 gene; effective number of codons; relative synonymous codon usage; natural
selection

1. Introduction

The standard genetic code makes use of 64 codons to characterize the 20 standard
amino acids, including 3 stop codons, during the translation of a protein. The redundancy
of the genetic code implies that one amino acid may be encoded by more than one codon
(except methionine and tryptophan) leading to the occurrence of synonymous codon
usage bias (CUB) in the genome of an organism, which varies among diverse groups [1].
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Codon usage analyses have displayed that codon utilization bias is very complex and
is accompanied by numerous organic influences, which include gene expression [2–4],
gene length, the gene translation initiation sign [5], nucleotide composition [6], protein
amino acid composition [7,8], protein structure [9,10], tRNA abundance [11–14], mutation
frequency and patterns [15,16], environmental temperature [17], GC composition [18–21],
and the balance between natural selection and gene mutation [22]. Hence, analyses of
CUB are important in understanding the molecular evolution of a gene or genome of an
organism, adaptation to different environmental conditions, genomic architecture, and the
prediction of related functional gene expression.

FoxP2 was reported in 1990 as a putative “speech gene” that binds to the fork head
box protein P2 and the autosomal dominant trait, causing a severe and specific speech dis-
order [23]. These findings attracted the scientific community to study the FoxP2 phenotype
in diverse taxa including mammals, birds, and insects [24]. Earlier studies identified that
the expression of the FoxP2 gene was linked to several brain regions for vocal development
in primates [25], rodents [26], and songbirds [27]. Moreover, the protein-coding sequence
of FoxP2 is amongst the most extremely conserved 5% of proteins in vertebrates and plays
a key role in modulating vocal learning and communication, which might be shared by a
range of animal species [28–30]. Recently, it was reported that the protein sequence of zebra
finch FoxP2 is 98% identical to that of mouse and human FOXP2 [31]. Songbirds are an
appropriate model for researching the mechanisms of imitative vocal learning, as well as
speech and its pathologies. The expression patterns of FoxP2 in songbird and human brains
are identical, with strong expression in the basal ganglia, thalamus, and cerebellum [31,32].
However, studies of FoxP2 are limited to nonvocal/nonsonic species of teleost fish such as
medaka (Orizya latipes), zebrafish (Danio rerio), and others [33,34].

Here, in this study, we have tried to elucidate the differences in the nucleotide coding
sequence of the evolutionary conserved FoxP2 gene among various species of teleost
fish, birds, reptiles, and mammals. This is the first comprehensive study of CUB in four
groups of the FoxP2 gene that thoroughly described the role of evolutionary forces and the
evolutionary genetic relationship in these specific genes.

2. Materials and Methods

The complete nucleotide coding sequence (CDS), along with the accession number, of
the FoxP2 gene among different species of fishes, birds, reptiles, and mammals has been
retrieved from GenBank of the NCBI database (Table S1). The CDS, which has a perfect
start codon as well as a stop codon and no unknown nucleobase in the middle of the
sequence, was used in our CUB analysis.

2.1. Codon Usage Bias and Codon Usage Indices

The GC3 value is an important parameter to measure the degree of nucleobase compo-
sition bias since the proportion of the nucleobase GC contents varies at their third position
of a synonymous codon [35].

Moreover, GC contents at the different codon positions of P1, P2, P3, and P12 were
calculated. The P12 value represents the average value of P1 and P2 and is generally used
to perform a neutrality plot analysis.

The Effective Number of Codons (ENC) values are used to measure the CUB of a gene,
and its value ranges from 20 to 61 [36]. A greater ENC value represents weak codon bias,
indicating the synonymous codon is used equally to code for the corresponding amino
acid. The expected ENC value is calculated using the formula.

ENCexpected = 2 + s +
29

s2 + (1− s2)
(1)

where s is the frequency of GC3 [36].
Further, the frequency distribution of observed ENC and expected ENC [(ENC exp-

ENC obs)/ENC exp] is calculated and plotted.
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2.2. Relative Synonymous Codon Usage

The relative synonymous codon usage (RSCU) is computed by dividing the observed
frequency of a codon by the expected frequency when there is uniform usage of the
synonymous codon [4]. An RSCU value greater than 1.0 or less than 1.0 represent the more
frequently (preferred) and less frequently (rare) used codons than expected, respectively,
while an RSCU value greater than 1.6 indicates an over-represented codon for encoding
the particular amino acid [4,37].

2.3. PR2 Plot

The parity rule plots i constructed by utilizing the values of both GC bias [G3/(G3 + C3)]
and AT bias [A3/(A3 + T3)] and is used to determine the effect of mutation and selection
pressure [38]. The center of the plot is 0.5 and represents no bias for selection and mutation
in the two complementary strands of DNA.

2.4. Correspondence Analysis

Correspondence analysis is a multivariate statistical tool that is generally used to
determine the most important trends in the codon usage variation among the genes and
distribute the codons in axis1 and axis2 [39,40]. Hence, to explore the variation in the codon
usage of the FoxP2 gene within the species of different groups, a correspondence analysis
was performed based on RSCU values.

2.5. Neutrality Plot

A neutrality plot is generally used to determine the factor affecting the patterns of
codon usage and codon bias along with the characterization of the relationship between
GC3 and GC12. In this graphical plot, the regression with a slope close to 0 represents no
effect of directional mutation pressure (a dominant role of natural selection) while a slope
close to 1 represents complete neutrality (a dominant role of mutation pressure) [41].

2.6. Software Used

The ENC values of each CDS for the FoxP2 gene of the selected species among fish,
birds, reptiles, and mammals were calculated using published online software from the
Computational Biology and Bioinformatics Lab, Tezpur University, Assam, India [42].
The nucleotide composition, codon usage, amino acid usage, and phylogenetic analyses
were performed using Mega 6.0 [43]. A heat map of correlation analyses between codon
usage and GC3 values was produced in the online Heatmapper software [44]. Correspon-
dence analysis was conducted using past software [45]. GRAVY and AROMATICITY was
calculated using Galaxy [46].

2.7. Statistical Analysis

All statistical calculations including correlation analysis between codon usage and
indices were performed in IBM SPSS version 21.0. The figures were evaluated using
Microsoft Excel 16.0.

3. Results
3.1. Indices of Codon Usage

The mean length of the CDs, the composition of the GC contents along with its
different codon positions (Lengthcds, GCcds, P1, P2, P3, P12), and the codon usage indices
such as ENC, Aromaticity, and GRAVY among fishes, birds, reptiles, and mammals are
listed in Table 1.
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Table 1. Characteristics of FoxP2 gene among different groups of animals.

Fish Birds Reptiles Mammals

Lengthcds 2228 ± 101.57 2118 ± 28.14 2153 ± 42.20 2134 ± 36.45
GCcds 55.8 ± 4.05 47.7 ± 0.48 46.8 ± 0.70 49.2 ± 1.98

P1 61.2 ± 1.64 59.2 ± 0.14 58.7 ± 0.67 60.2 ± 0.45
P2 43.0 ± 2.33 38.4 ± 0.68 38.2 ± 0.20 38.3 ± 0.72
P3 63.2 ± 8.99 45.3 ± 0.86 43.4 ± 2.05 49.0 ± 4.86
P12 52.1 ± 1.92 31.6 ± 0.07 48.4 ± 0.28 49.3 ± 0.57

ENC 52.22 ± 3.47 53.05 ± 1.95 54.65 ± 1.23 54.63 ± 1.24
GRAVY −0.62 ± 0.04 −0.74 ± 0.01 −0.72 ± 0.04 −0.74 ± 0.04

AROMATICITY 0.04 ± 0.001 0.01 ± 0.001 0.04 ± 0.001 0.04 ± 0.002

Lengthcds: Length of the coding sequences; GCcds: GC contents of the coding sequences; P1: GC content at the
1st codon position; P2: GC content at the 2nd codon position; P3: GC content at the third codon position; P12: The
average of P1 and P2; ENC: Effective number of codons; GRAVY: Hydrophobicity of amino acid; AROMATICITY:
Aromatic properties of amino acid.

The ENC value reflects the extent of codon bias in a gene. In our study, we observed a
mean value of ENC for the FoxP2 gene among fishes, reptiles, birds, and mammals greater
than 50 (Table 1), suggesting low codon bias exists among these organisms.

The composition of the nucleotides is another essential factor that affects the CUB. The
nucleotide composition and ENC value along with the mean and standard deviation in the
CDS of the FoxP2 gene among different species of fish, birds, reptiles, and mammals were
calculated (Table S2). The overall nucleotide composition analysis in fishes showed that the
percentage of nucleobase C was the highest, followed by A, G, and T, while for the FoxP2
gene in birds, reptiles, and mammals, nucleobase A was the highest followed by C, G, and
T. Similarly, the nucleobase at the third codon position in fishes and mammals showed
that G3% was the highest followed by C3%, A3%, and T3%, whereas in birds and reptiles,
A3% was the highest followed by G3%, T3%, and C3% (Table 2). The overall percentage
of AT composition in comparison to GC composition was higher in birds, reptiles, and
mammals while in fishes, the overall percentage of GC composition was higher than
the AT composition. In addition, P3 content was also highest in fishes in comparison
to reptiles, birds, and mammals for the FoxP2 gene (Table S2). The mean percentage of
GC composition for the FoxP2 gene among the selected organisms ranged from 46.8% to
55.8%. However, the GC composition mean percentage at positions P1, P2, P3, and P12 (the
average of P1 and P2) was significantly different among different organisms. The analysis
of the correlation coefficients (Figure 1) showed that the mean value of GC content was
significantly correlated at positions P3 and P12 for the FoxP2 gene among all the organisms
except reptiles, which indicates that codon usage in the CDS of the FoxP2 were affected by
the general GC contents of the organisms [47]. In fishes, P12 and both P1 and P2 showed
a strong positive correlation (p < 0.01), indicating the influence of mutation pressure, but
no significant correlation was detected in birds, reptiles, and mammals (Figure 1), which
indicates the influence of natural selection over mutation pressure in the CUB of FoxP2
among these organisms [41]. However, the correlation between ENC and P3 showed a
significant negative correlation (r = −0.938, p < 0.01) in fishes and a significant positive
correlation (r = 1.000, p < 0.01) in mammals, as well as no significant correlation in birds
and reptiles (Table 3). The above results indicated that the relationship of GC3 values
with ENC values in fishes and mammals representing the mutation pressure accounted
for the patterns of the nucleobase composition bias [48]. Earlier it was reported that the
extent of P3 distribution may be linked to the divergence of directional selection and that
of mutation pressure [49]. In our analysis, the P3 values for the FoxP2 gene among different
groups were distributed between 0.4 and 0.7, suggesting that the FoxP2 gene in diverse
groups mainly evolved via mutation pressure [50].
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Table 2. Correlation analysis between overall nucleotide and the corresponding nucleotide at the
third codon position.

FISH A3% T3% G3% C3% GC3%

A% r = 0.966 ** r = 0.912 ** r = −0.931 ** r = −0.946 ** r = −0.945 **
T% r = 0.979 ** r = 0.989 ** r = −0.971 ** r = −0.993 ** r = −0.990 **
G% r = −0.952 ** r = −0.892 ** r = 0.915 ** r = 0.929 ** r = 0.928 **
C% r = −0.984 ** r = −0.988 ** r = 0.974 ** r = 0.993 ** r = 0.992 **

GC% r = −0.986 ** r = −0.958 ** r = 0.962 ** r = 0.980 ** r = 0.978 **
BIRDS A3% T3% G3% C3% GC3%

A% r = 0.980 * r = 0.898 r = −0.893 r = −0.983 * r = −0.983 *
T% r = 0.649 r = 0.967 * r = −0.816 r = −0.887 r = −0.887
G% r = −0.835 r = −0.865 r = 0.700 * r = 0.941 r = 0.929
C% r = −0.881 r = −0.981 r = 0.908 r = 0.994 ** r = 0.994 **

GC% r = −0.915 r = −0.963 * r = 0.902 r = 1.000 ** r = 0.999 **
REPTILES A3% T3% G3% C3% GC3%

A% r = 0.967 ** r = 0.299 r = −0.879 r = −0.452 r = −0.957 **
T% r = −0.389 ** r = 0.553 r = 0.290 r = −0.285 r = 0.056
G% r = −0.944 ** r = 0.222 r = 0.958 ** r = −0.111 ** r = 0.684
C% r = 0.081 r = −0.931 ** r = −0.166 r = 0.865 * r = 0.384

GC% r = −0.827 * r = −0.549 r = 0.767 r = 0.605 r = 0.961 **
MAMMALS A3% T3% G3% C3% GC3%

A% r = 0.987 ** r = 0.956 ** r = −0.812 ** r = −0.968 ** r = −0.983 **
T% r = 0.954 ** r = 0.998 ** r = −0.913 ** r = −0.893 ** r = −0.983 **
G% r = −0.968 ** r = −0.984 ** r = 0.950 ** r = 0.870 ** r = 0.985
C% r = −0.972 ** r = −0.931 ** r = 0.739 ** r = 0.990 ** r = 0.964 **

GC% r = −0.989 ** r = −0.980 ** r = 0.858 ** r = 0.953 ** r = 0.995 **

** p < 0.01, * p < 0.05, Bold: negative correlation.

Moreover, the difference in ENC values between the observed and expected values
was calculated using the formula [(ENCexp-ENCobs)/ENCexp] for all CDS of the FoxP2
gene among diverse groups and plotted to detect the frequency of variation (Figure 2).
Nearly all the CDS of FoxP2 genes emerged in the range of −0.9 to −0.03 and −0.03 to
0.02, which indicate that most of the ENC observed values are smaller than that of the
ENC expected values. Thus, the result revealed that the codon usage of the FoxP2 gene can
be ascertained based on GC3 values and mutation pressure, which play a key role in the
patterns of codon usage [50].

In addition, we performed correlation analysis between the overall composition of the
nucleotide (A%, T%, G%, C%, GC%) and its codon in the third position (A3%, T3%, G3%,
C3%, GC3%) (Table 2) to detect the effects of translational selection or mutational pressure
on the codon bias of the FoxP2 gene among diverse groups. We observed a significant corre-
lation with a positive value among homogeneous nucleotides and a significant correlation
with a negative value among most of the heterogeneous nucleotides, which suggested that
mutational pressure affects the base composition bias of the FoxP2 gene [37].
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Table 3. Correlation analysis (Spearman rank) between overall ENC and P1, P2, P3, and P12 values
of FoxP2 gene among fish, birds, reptiles, and mammals.

ENC P1 P2 P3 P12

BIRDS −0.200 0.800 1.000 ** 0.949
FISH −0.742 ** −0.505 −0.938 ** −0.754 **

REPTILES 0.290 −0.493 0.543 0.638
MAMMALS 0.251 −0.257 0.305 −0.046

Here, ** p < 0.01.

3.2. Codon Usage Pattern

The correlation between synonymous codon usage and GC3 values in the CDS of
the FoxP2 gene among the studied organisms (Figure 3) showed that nearly all AT-ending
codons were negatively correlated with GC3s while GC-ending codons were positively
correlated with GC3s, which indicates that the frequency of synonymous codon usage
depends on the increased bias of GC contents [51]. We observed that nearly all the synony-
mous codons were randomly used for encoding the corresponding amino acids among
all the species of the selected genome for the FoxP2 gene. In the case of the bird genome,
we observed 12 synonymous codons that were uniformly used among different species of
birds for the FoxP2 gene (Figure 3), suggesting nature maintains its functional property
throughout the period of evolution [52].
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heatmap. The black fields represent stop codons (TAA, TAG, and TGA) and non-degenerate codons
(ATG, TGG). Uniform usage codons (ATA, ATT, ATC, ACC, TTC, TGT, TGC, CTC, GAC, GTT, GGA,
and GGG) were observed only among bird species and are represented as black color.
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Analysis of overall non-uniform usage of synonymous codons i.e., the RSCU val-
ues for the FoxP2 gene of different species in each of the studied organisms were calcu-
lated (Table S3). In our analysis, the more frequently used codons (RSCU > 1.0) in fishes
amounted to 23, including C-12, G-5, A-4, and T-2 as well as the over-represented codons
(RSCU > 1.6, marked as yellow in Table S2) of which there were 6, namely AGA (R), CAG
(Q), CGC (G), ATC (Ile), CTG (L), AGC (S), and GTG (G). Similarly, in birds, the most
frequently used codons amounted to 25, including T-11, A-9, G-3, and C-2 as well as
6 over-represented codons, namely GCA (A), AGA (R), GGA (G), TTT (F), CCA (P), and
GTG (V). However, in reptiles, the most frequently used codons amounted to 26 includ-
ing T-11, A-10, G-3, and A-2 in which four A-ending codons were over-represented, viz.
GCA (A), AGA (R), GGA (G), and CCA (P). Lastly, in mammals, the most frequently used
codons totaled 29, including the codons ending with A-10, T-9, C-6, and G-4, whereas the
over-represented codons include only CGA, GGA, and GTG encoding the amino acids
arginine (R), glycine (G), and valine (V), respectively.

3.3. Analysis of PR2 Plot

Parity rule 2 plot (PR2) analysis for the FoxP2 gene among different species of the
studied organisms showed that the mean value of both GC bias [G3/(G3 + C3)] and AT bias
[A3/(A3 + T3)] was greater than 0.5 (Figure 4), which revealed that at the third position,
purine was preferred over pyrimidine (G over C and A over T). If the codon bias is affected
by the composition of the nucleotide, the third position between G3 and C3 along with
A3 and T3 should have identical distributions, and this strand-specific rule is primarily
irrespective of the G + C contents [21]. Therefore, the asymmetry between purine (GA) and
pyrimidine (CT) indicates that aside from the nucleotide composition, other factors such as
natural selection might influence the codon bias for the FoxP2 gene in fishes, birds, reptiles,
and mammals [47].
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3.4. Analysis of Neutrality Plot

The neutrality plot depicts the influence of natural selection and mutation pressure
on the codon bias of the gene by analyzing the correlation between P12 (the average of
GC contents at positions P1 and P2) and P3 codon positions. The correlation coefficient
(Figure 5) showed that a significant correlation between P12 and P3 for the FoxP2 gene
among fishes (r = 0.830, p < 0.01), birds (r = 1.000, p < 0.01), and mammals (r = 0.919,
p < 0.01), excluding reptiles (r = 0.232), indicated directional mutation pressure acting on
all codon positions. Moreover, slopes of regression lines for fishes, reptiles, birds, and
mammals were 0.2823, 0.1102, 0.0673, and 0.2417, respectively, i.e., close to zero, suggesting
the role of natural selection was higher than mutation pressure in influencing the CUB for
the FoxP2 gene among fishes, reptiles, birds, and mammals.
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3.5. Correspondence Analysis

The correspondence analysis (CoA) depicts the extent of genes and their respec-
tive codons, unveiling major effects on CUB [53]. The CoA analysis on RSCU values of
59 synonymous codons in this study (Figure 6) showed that the plot of each organism
differs for the FoxP2 gene, suggesting variation in the codon usage patterns. The major axis
i.e., the first axis (f1) accounts for wide variations while the second axis (f2) accounts for
narrow variation within the FoxP2 gene of fishes, birds, reptiles, and mammals. However,
a majority of the codons were confined closer to the axis around the center of the plot,
indicating underlying mutation bias on the composition of the nucleobase might affect the
codon usage of the FoxP2 gene [54].
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3.6. Analysis of Amino Acid Composition and Protein Properties

The amino acid compositions in the CDS of the FoxP2 gene among the various species
of fishes, birds, reptiles, and mammals were calculated. The overall frequency of each
of the amino acids in FoxP2 (Figure 7) revealed that Leucine, Glutamine, and Serine
were predominant over other amino acids. The aromatic property of the amino acids
(Phenylalanine, Tyrosine, and Tryptophan) present in the transcribed FoxP2 gene product
(AROMATICITY) was 0.04 ± 0.001 (mean ± SD) while the property of hydrophobicity
(GRAVY) was 0.70 ± 0.001 (mean ± SD). The GRAVY score value was negative, suggesting
soluble properties of the protein product.
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3.7. Phylogenetic Analysis

The neighbor-joining tree shows the same relationships between the FoxP2 genes
obtained from different species (Figure 8). Two major clades were observed. Among the
species Hipposideros armiger, FoxP2 genes have diverged from the rest of the mammalian
FoxP2 gene sequence.
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tiles, and mammals (33 species). The tree was constructed using bootstrap analysis of 1000 replicates.
Evolutionary analyses were conducted in MEGA6.
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4. Discussion

The current study highlights the pattern of codon usage of the FoxP2 gene among
fishes, reptiles, birds, and mammals. The study of the CUB of a gene is an important appli-
cation in evolutionary biology and has been found in diverse groups of organisms, from
unicellular prokaryotes to multicellular eukaryotes. The ’mutation-selection drift’ theory
has been employed to depict the origin of codon usage bias (CUB) of a gene [55,56]. The
theory explains that evolutionary forces such as the selection of compositional constraints,
mutation pressure, along with genetic drift in a population might play an effective role
in the usage of codon bias [57]. Earlier studies have reported that genes within a species
exhibit similar patterns of codon usage [58,59].

Nucleotide composition plays an important role in influencing codon usage in genes
as well as genomes. In our study of the FoxP2 gene, we found GC and P3 content was
higher than 50% in fishes, while in reptiles, birds, and mammals, GC content was lower
than 50%. Earlier reports suggested that genes with high GC content provide more targets
for methylation [60]. High GC content might assist more complex gene regulation [61].
Since GC and P3 contents were high in the FoxP2 gene in fishes, they are more susceptible to
mutation. This can be further supported by the neutrality plot, where mutational pressure
is the highest in fish.

In the FoxP2 gene, the average ENC values in different species of fishes, reptiles, birds,
and mammals were more than 50, which indicates CUB was low. Similar results were
reported in the mitochondrial ND2 gene among fishes, birds, and mammals where the
average ENC value was greater than 50, thereby supporting our results [62]. Low CUB
might be beneficial for efficient replication in each cell, with potentially different codon
preferences [63].

Two evolutionary forces such as natural selection and mutation pressure influenced
CUB in the FoxP2 gene. We observed that the slope of the regression line was close to zero
in all fishes, reptiles, birds, and mammals, which indicates the dominant role of natural
selection rather than mutation pressure. Based on the regression coefficient, the role of
mutation pressure was highest in fishes compared to reptiles, birds, and mammals. In ATP
genes, the role of natural selection was higher than mutation pressure, and based on the
regression coefficient, the role of mutation pressure was highest in fishes in compared to
birds and mammals, supporting our results [64].

In summary, we found that codon usage bias in the coding sequences of the FoxP2 gene
was relatively weak and influenced by natural selection along with nucleotide composition
under mutation pressure. However, natural selection played a major role in comparison
to mutation pressure in shaping the codon usage pattern, depicting weaker CUB. The
over-represented codons (RSCU > 1.6, Table S3) in the coding sequences of the FoxP2 gene
in fishes were AGA (R), CAG (Q), GGC (G), ATC (Ile), CTG (L), AGC (S), and GTG (V)
while in birds the over-represented codons were GCA (A), AGA (R), GGA (G), TTT (F),
CCA (P), and GTG (V). Similarly, the over-represented codons of FoxP2 genes in reptiles
were GCA (A), AGA (R), GGA (G), and CCA (P), but in mammals, the over-represented
codons of FoxP2 were CGA (R), GGA (G), and GTG (V). Moreover, it was observed that the
most frequently used codons ended with C or G in fishes, whereas the codons ending with
T or A were most frequently used in the genomes of birds, reptiles, and mammals. This
study will help us to understand the CUB of the FoxP2 gene, which could further be used
to explore their biology, particularly with regard to the mechanisms of communication
among animals.

5. Conclusions

The codon usage bias in the FoxP2 gene among different species of fishes, birds,
reptiles and mammals revealed that the most preferred codon used by fishes were either C
or G-ending codons while in birds, reptiles and mammals the mostly used preferred codons
were either ending with A or T. Apart from the nucleotide composition, natural selection
and mutation pressure might influence the CUB. The ENC observed/ENC expected ratio
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demonstrated that mutation pressure influences FoxP2 codon usage patterns. Natural
selection plays a major role over mutation pressure in the codon usage of FoxP2 gene.
Besides, nucleotide composition under the influence of mutation bias also contributes the
codon usage of FoxP2 gene and nature has favored nearly all the synonymous codons for
encoding the corresponding amino acid.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10111078/s1, Table S1: The accession number of the coding sequences of FoxP2
gene among different species of fishes, birds, reptiles, and mammals. Table S2: Composition of
the nucleotide and ENC value along with the mean and standard deviation in the CDS of FoxP2
gene among different species of fish, birds, reptiles, and mammals. Table S3: The overall relative
synonymous codon usage patterns (RSCU) in the coding sequences of FoxP2 gene among fishes,
birds, reptiles, and mammals.
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