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Abstract In situ guided tissue regeneration, also addressed
as in situ tissue engineering or endogenous regeneration,
has a great potential for population-wide “minimal inva-
sive” applications. During the last two decades, tissue
engineering has been developed with remarkable in vitro
and preclinical success but still the number of applications
in clinical routine is extremely small. Moreover, the vision
of population-wide applications of ex vivo tissue engi-
neered constructs based on cells, growth and differentiation
factors and scaffolds, must probably be deemed unrealistic
for economic and regulation-related issues. Hence, the
progress made in this respect will be mostly applicable to
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a fraction of post-traumatic or post-surgery situations such
as big tissue defects due to tumor manifestation. Minimally
invasive procedures would probably qualify for a broader
application and ideally would only require off the shelf
standardized products without cells. Such products should
mimic the microenvironment of regenerating tissues and
make use of the endogenous tissue regeneration capacities.
Functionally, the chemotaxis of regenerative cells, their
amplification as a transient amplifying pool and their
concerted differentiation and remodeling should be
addressed. This is especially important because the main
target populations for such applications are the elderly and
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diseased. The quality of regenerative cells is impaired in
such organisms and high levels of inhibitors also interfere
with regeneration and healing. In metabolic bone diseases
like osteoporosis, it is already known that antagonists for
inhibitors such as activin and sclerostin enhance bone
formation. Implementing such strategies into applications
for in situ guided tissue regeneration should greatly
enhance the efficacy of tailored procedures in the future.

Keywords In situ guided tissue regeneration - Stem cells -
Scaffolds - Regenerative medicine - Mesenchymal tissues

Introduction

Regenerative medicine is a rapidly developing field that
represents a shift of paradigms with respect to the principal
goals of medical treatment. The main goal of former
therapeutic strategies, the functional enhancement of tissues
as they are, is gradually being replaced by new strategies to
regenerate tissues and organs (Bernardo et al. 2011;
Malchesky 2011). Two main strategies have been followed
during the last two decades with respect to tissue
regeneration.

One is the ex vivo construction and transplantation of
new tissue, based on the triad of autologous cells, factors
and scaffolds. Remarkable progress has been made with
respect to in vitro fabrication of substitutes for tissues and
organs grown in bioreactors, which can be transplanted into
tissue defects (Rouwkema et al. 2011). For example,
children with congenital bladder abnormalities have been
successfully treated with cytoplasty using engineered
bladders, created with autologous cells seeded on
collagen-polyglycolic acid scaffolds (Atala et al. 2006).
Also, impressive casuistic examples are the transplantation
of segments of esophagus or bronchus, some reports being
based on the decellularized and reseeded matrix “biovasc”
(Omori et al. 2005; Walles et al. 2005). Other artificial
tissues grown in vitro are liver and heart but none of these
complex constructs—although of great perspective— has
yet achieved the stage of routine clinical applications
(Mertsching et al. 2009; Walles et al. 2005). In the field
of musculoskeletal diseases, material and scaffold develop-
ment has strongly focused on the generation of mechani-
cally stable three dimensional structures with controlled
micro- and macroporosity (Hutmacher 2000) and recent
developments aim at the construction of hierarchical
constructs through the application of multiple printing of
hybrid systems (Schuurman et al. 2011). Overall, progress
has mainly been made in the fabrication of bone inductive
scaffolds, cell-based cartilage replacement and ligament/
tendon replacement using artificial scaffolds or natural
autografts (Bernardo et al. 2011; Kirker-Head et al. 2007,
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Levi and Longaker 2011). Controlled clinical trials are,
however, lacking and it is only now that the first clinical
trials on cell-based bone and cartilage regeneration are
under way (http://www.vascubone.fraunhofer.eu/index.
html).

The second strategy is in situ guided tissue regeneration
or in situ tissue engineering—occasionally also termed
“endogenous regeneration”—which aims to stimulate the
intrinsic potential of a tissue to heal or regenerate (Uebersax
et al. 2009). Endogenous stem cell homing and retrans-
plantation of ex vivo amplified precursors have been
addressed as a means of in situ tissue engineering as well
as the engineering of new, partially functionalized scaffolds
especially for bone tissue engineering, among them also
injectable scaffolds for regeneration induction (Chen et al.
2011; Grafahrend et al. 2010, 2011; Pennesi et al. 2011;
Shekaran and Garcia 2011; Uskokovic and Uskokovic
2011).

This review will demonstrate the present achievements
and future perspectives of in situ guided tissue regener-
ation strategies in the field of musculoskeletal diseases.
We will focus on classical mesenchymal tissues and
on future tailored approaches in diseased and elderly
organisms.

In situ guided tissue regeneration applications — past
and present

Bone healing and regeneration has been addressed in
numerous casuistic applications but so far only a few
non-randomized trials in humans using scaffolds, soluble
factors and autologous skeletal precursor cells, either in
combination or as single tools, have been performed.
Effects on the healing of critical size bone defects have
been seemingly demonstrated but there is no random-
ized controlled clinical trial that compares the gold
standard of autograft bone transplantation versus in situ
guidance of tissue healing. Although there are numerous
preclinical studies, a convincing standard method is still
missing (Cooper et al. 2010; Gomes and Fernandes 2011;
Horner et al. 2010). The transplantation of stem cells in
osteonecrosis after intensive chemotherapy, osteonecrosis
of the jaw associated with bisphosphonates and in
avascular necrosis of the femoral head has been successful
in casuistic applications by our group and others (Cui and
Botchwey 2010; Hauzeur and Gangji 2010; Hernigou et
al. 2005; Kikuiri et al. 2010; Lee and Goodman 2009;
Muller et al. 2008; Noth et al. 2007). While the rare
entities are hard to evaluate in randomized trials, there is
the chance in avascular necrosis of the femoral head and
such clinical trials are under way. New regulations by the
authorities like the EMA, however, challenge these
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applications as routine population-wide strategies of
treatment (Mertsching and Walles 2009).

Tissue specific applications of cells with and without scaffolds
and factors

Over recent years, many studies about local or systemic
applications of skeletal precursors as well as crude bone
marrow-derived cell populations have been reported in
various preclinical and clinical set-ups. Mesenchymal stem
cell (MSC) populations have been applied in indications like
myocardial and cerebral infarction, avascular necrosis of the
femoral head, critical perfusion in diabetic angiopathy, non-
union/compromised bone healing, post-transplantation graft
versus host disease and inflammatory autoimmune situations
like rheumatoid arthritis and lupus erythematodes (Jones and
Yang 2011; Menasche 2011; Singer and Caplan 2011;
Tyndall and Houssiau 2010; Wu et al. 2011a). In none of
these situations has there been convincing proof whether or
not MSC by amplification and differentiation to a relevant
extent participate in healing and regeneration, or if the effect
was solely due to transient stimulation of resident regener-
ative cells by the secretome of the precursors applied (e.g. of
proangiogenic and other growth factors). Functional
enhancement of target tissues seemed to have been plausible
but controlled randomized studies are rare. In bone lesions, the
stimulatory effect on the healing of pure MSC application into
critically injured regions has been demonstrated no matter
what the cellular mechanisms are (Fan et al. 2010; Flynn and
O'Brien 2011; Li et al. 2011; Muller et al. 2008; Noth et al.
2007; Zhao et al. 2010).

Cartilage has a very low regeneration capacity in adults
and the cell-based applications for cartilage replacement
cannot be addressed as classical in situ guided regeneration.
If at all, the criteria of in situ tissue engineering apply for
autologous chondrocyte transplantation. The result of this
procedure is not hyaline but fibrous or at best hyaline-like
cartilage, which functionally does not replace hyaline
cartilage (Bedi et al. 2010; Benthien et al. 2011; Hildner
et al. 2011). This topic is also being addressed in a separate
issue of this journal.

Tendon regeneration and healing would be an important
issue for partially ruptured tendons and in tendon degenerative
disease. Hence, tendon degenerative disease has come into
focus and research activities have recently begun to increase in
this field, while new paradigms of thinking caused a switch
from inflammation to degeneration as the underlying pathol-
ogy. However, the process of tenogenic differentiation is not
yet completely understood and the reversibility of such
degenerative disease by using cell-based treatment strategies
is a matter of research (Hogan et al. 2011; James et al. 2011;
Liu et al. 2011; Warden 2009). For example, it has been
shown that tendon and ligament tissue harbors its own stem/

progenitor cell population, which has some overlapping
characteristics with the better known MSC (Bi et al. 2007;
Docheva et al. 2010). GFP chimeric mouse models have also
demonstrated that activated tendon-derived cells participate
in the healing process, thus suggesting that the identification
of algorithms to enhance the endogenous regeneration can be
very suitable and fruitful for this type of tissue (Kajikawa et
al. 2007). While it remains questionable whether degenera-
tive disease can be reversed and regeneration and healing can
be induced in such conditions, there is a remarkable clinical
need for strategies to enhance and ameliorate the endogenous
healing process in the situation of post-traumatic lesions like
tendon tears or after pathological stretching.

Material and scaffold developments

Traditional implants and implant materials for load-bearing
systems have been primarily developed with a focus to
satisfy requirements of biocompatibility and replacing lost
function and structure and perhaps more recently the focus
was expanded to ease of handling. Clearly, pure titanium or
stainless steel, titanium alloys with Molybdenum or
Niobium, ceramics and non-degradable polymers are still
the dominating materials in the sectors, particularly for
fracture fixation and joint replacement where immediate
stabilization/replacement of lost tissue function is required.
Current optimization strategies addressing bone porosity
within the host bone aim at integrating the aspect of
vascular damage to the host tissue in response to the
implantation, as was suggested decades ago (Perren et al.
1988). Implant coatings can be used to render the implant
surface more biocompatible and to increase osseous integra-
tion, deliver antibiotics locally (e.g. to minimize pin-track
infection; Fixateur externe) or to promote angiogenesis or
tissue healing (e.g. growth factors or antibodies). Recent
strategies aim at coatings that combine the promotion of cell
adhesion and osseous integration with concurrent minimiza-
tion of bacterial adhesion and biofilm formation (Bruellhoff et
al. 2010; Groll et al. 2009).

One example for an interesting coating material that can
be tuned for in situ regenerative properties is silk fibroin.
It has been demonstrated that it can be blended with
proteins known to increase biocompatibility such as
hyaluronic acid (Garcia-Fuentes et al. 2009) and is
efficiently protecting growth factors upon implantation
while providing a continuous release into the implant zone
(Wenk et al. 2011). Furthermore, the surface of silk fibroin
scaffolds can be easily modified to satisfy local needs. For
example, it has recently been demonstrated that surface
charge is an effective approach to control growth factor
localization, release and potency of growth factors from
modified silk fibroin surfaces (Wenk et al. 2010).
Similarly, the conformation of adsorbed fibronectin (Fn)
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to silk fibroin implants—Fn is an important component of
the extracellular matrix—was recently characterized in
more detail (Meinel et al. 2009).

Osteoinductive and osteoconductive materials have been
used for in situ guided regeneration in various preclinical
models and in part have found their way into clinical
applications (Giardino et al. 2002, 2006; Kim et al. 2009;
Krebs et al. 2009; Taguchi et al. 2005). Numerous
developments have been performed towards injectable
materials for bone regeneration (Kretlow et al. 2007). Such
systems may be based on inorganic, organic or inorganic/
organic hybrid materials. Hydrogels have been one major
area of research for the last decades (Lee and Mooney
2001) and induced by the pioneering work of Lutolf and
Hubbell, a lot of attention has been laid on injectable
hydrogel systems (Lutolf and Hubbell 2005). While such
systems that may be tailored for enzyme specific degrada-
tion mechanisms, may be loaded with growth factors and in
some cases do show extremely promising results regarding
bone regeneration in animal experiments (Lutolf et al.
2003), their application for load bearing or critical size
defects is at the moment not conceivable as these materials
share insufficient initial mechanical stability.

Principal obstacles of in situ guidance in the elderly
and diseased

Intrinsic stem cell deficits: availability and quality
of regenerative cells in aging and disease

Tissue healing and regeneration involves debris removal by
the cells of the innate immune system, mainly by the
monocyte/macrophage lineage and the simultaneous stimula-
tion of resident regenerative stem cells, which in part seems to
be exerted by the former. The rapidly developing knowledge
about the role of monocyte/macrophage subspecies in
stimulation of regeneration adds fascinating information about
the regenerative process as such. In the case of mesenchymal
tissues, the source of tissue-specific regeneration is skeletal
precursors with a multipotent adult stem cell phenotype,
resident in their respective and protected niches all over the
organism. There has been a lot of discussion about the quality
and availability of such cells throughout life, which is
excellent in childhood but altered in the aged or diseased
organism. Overall, a certain consensus has been achieved in
that the number of available colony-forming cells is reduced
with age but a considerable body of literature also describes
age-related deficits in quality and function due to both
extrinsic and intrinsic factors, the latter comprising certainly
genetic background and epigenetic changes (Burtner and
Kennedy 2010; Efimenko et al. 2011; Pollina and Brunet
2011; Sahin and Depinho 2010). Recent literature also
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indicates an important role of miRNAs on stem cell aging
(Grillari and Grillari-Voglauer 2010). Hematopoetic stem
cells are gradually reduced in number by age while the
remaining ones are of acceptable although somewhat
reduced quality (Brusnahan et al. 2010). Mesenchymal
precursors in higher age and in osteoporosis appear to be
impaired with respect to osteogenic differentiation and they
prefer the adipogenic pathway of differentiation (Laschober
et al. 2011). Recently, the expression of Maf, a basic leucine
zipper transcription factor, has been described to be a critical
switch in this age-related event (Nishikawa et al. 2010). We
and others have shown that adipogenic transdifferentiation
can be antagonized by FGF signaling in vitro (Schilling et al.
2008; Xiao et al. 2010) and this information could be
introduced into future strategies of tissue regeneration. MSC
from aged donors display a proinflammatory phenotype and
are prone to replicative senescence and this can be partially
rescued by p21 knockdown or exposure to a young
extracellular matrix (Laschober et al. 2011; Sun et al. 2011;
Yew et al. 2011).

In summary, there are solid data to demonstrate that
at least for some tissues aging impairs the capacity of
skeletal precursors to amplify, to migrate and to
differentiate for intrinsic reasons as initiated by genetic
background and epigenetic events. At least epigenetics,
however, is of course also being triggered by extrinsic
systemic and environmental events that characterize
organismal aging. These data should have impact on
tailored applications for tissue engineering and in situ
guided tissue regeneration.

Extrinsic inhibitory modulators of tissue regeneration

Organismal aging is accompanied by changes in the
systemic environment. Many of these changes are
associated with organ dysfunction and underlying dis-
eases. Most prominent examples are the changes in the
hormonal milieu, which are accompanied by the
insufficiency of gonads, e.g. the rapid onset of ovarian
failure in menopause and the slow and gradual insuffi-
ciency of male sex hormone production. Loss of
steroidal sex hormones, especially estrogens, has been
known to be associated with bone loss and osteoporosis
for several decades. Moreover, estrogen deficiency in
close interaction with the wnt/frz signalling pathway
causes loss of mechanosensitivity at least in osteogenic
precursors. The molecular mechanisms of mechanotrans-
duction are being gradually unravelled and there is also
evidence for critical changes with age (Liedert et al.
2006, 2010; Ozcivici et al. 2010; Saxon et al. 2007;
Temiyasathit and Jacobs 2010; Wu et al. 2011b). Individ-
ual susceptibility to such impairment is also determined by
the ability of peripheral tissues to convert hormonal
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precursors by expressing key activating and inactivating
p450 enzymes and dehydrogenases and this fact is
probably severely underestimated.

Gonadal insufficiency, however, does not only result in
loss of sex steroids but in a corresponding increase/decrease
in peptides that are involved in the regulation of the gonads,
the pituitary gland and the central nervous system.
Prominent examples with relevance to tissue regeneration
are ligands of the TGF{ superfamily of proteins like
activins and inhibins. It has been known for a long time that
activin A has important effects on stem cells in development
and adult life tissue regeneration. Activin A inhibits osteo-
genic differentiation, although the exact molecular mechanism
remains elusive, since constitutively activating mutations of
its receptor ALKII/ACV1 causes the inherited rare disease of
“fibrodysplasia osteoplastica progressive” FOP (Shore and
Kaplan 2010; van Dinther et al. 2010). Preclinical studies in
primates using an activin antagonistic recombinant fusion
polypeptide (Koncarevic et al. 2010; Trivedi et al. 2010)
demonstrated remarkable osteoanabolic effects. Similar data
are being reported for the muscle regulator myostatin
(GDF8). Myostatin levels rise in aging and osteoporosis
(our unpublished results) and myostatin knockout causes an
increase of muscle mass but also of bone mass and size at
many sites (Hamrick et al. 2002, 2006; Morissette et al.
2009). These data also initiate compelling hypotheses as to
the relevance of inhibitory peptides for tissue engineering
and in situ guided tissue regeneration in both young but even
more aged organisms.

Proinflammatory signaling and underlying diseases

Ageing is associated with a proinflammatory phenotype.
Researchers in the field even coined the term “inflammag-
ing”. Proinflammatory signaling is mediated by the innate
immune system and its receptors like the Toll-like receptor
family but also by cells of the adaptive immune system
such as certain T cell subpopulations that secrete proin-
flammatory cytokines (Laschober et al. 2011). Moreover,
the spillover of reactive oxygen species caused by
environmental circumstances and also by proinflammatory
receptor signaling maintains this situation and directs it into
a chronic inflammatory reaction. Talking about in situ
guided tissue regeneration means to envision that chronic
inflammatory environment impairs healing processes and
may also exert commitment and conditioning of regenera-
tive cells. Hence, expansion under conditions of low
oxygen may represent one means of avoiding ROS
spillover, although it remains to be proven if proinflamma-
tory signatures are at least in part reversible (Fehrer et al.
2007). In this context, it is worthwhile mentioning that
recent reports have shown that control of nanoparticle
surface chemistry may be used to direct macrophage gene

expression and surface antigen markers towards either pro-
or anti-inflammatory phenotype (Bartneck et al. 2010). This
indicates that nanotechnology may in future offer tools for
immunmodulation that may become important in tissue
engineering for aged patients.

In bone healing, inflammatory reactions of the innate
immune system are part of the healing process and anti-
inflammatory drugs like NSAIDs may impair bone regen-
eration. Chronic inflammatory signalling as well as acute
activation of the adaptive immune system by infections,
however, may either cause impaired healing and non-union
or even extraosseous un-organised calcifications. Bone
healing is enhanced in the absence of the adaptive immune
system, thus indicating that the activated system impairs
regeneration and healing (Toben et al. 2011). The respective
situations have to be discussed in the context of in situ
guided tissue regeneration in the diseased organism and
applications will have to be tailored to the diseased and the
elderly (Fig. 1).

Components of in situ guidance: the future
Anatomical structure and artificial mimics in materials

Regeneration of complete limbs is a well-known phenom-
enon in lower organisms but not in humans (Jhamb et al.
2011; McCusker and Gardiner 2011). In the setting of in
situ guided tissue regeneration, one would not need
macroscopic but microscopic anatomical guidance in the
nano- to micromolar range. Intelligent and functional
materials may in future serve these goals of mimicking
the microenvironment of regeneration from stem cell niches
to tissue repair and remodeling according to developmental
processes (Blau and Pomerantz 2011; Gavenis et al. 2010;
Gilbert and Blau 2011; Gilbert et al. 2010; Grafahrend et al.
2011; Lutolf et al. 2009).

Oxygen tension

Oxygen tension within tissues is a very variable condition
with respect to tissue-specific degree of vascularisation and
also the degree of effective neoangiogenesis during regen-
eration and healing. It may be anticipated that low oxygen
tension with a tendency to hypoxic conditions is common
during regeneration after tissue injury. It may, however, also
be assumed that low oxygen is prevailing in and around
protected niches of regeneration. There is a considerable
basis of literature on the effects of oxygen on the
proliferation and differentiation capacity of various precur-
sor cells including cancer (Keith and Simon 2007;
Mohyeldin et al. 2010; Volkmer et al. 2008, 2010).
Hypoxic conditions always induce factors like HIF-1alpha
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Fig. 1 Schematic and simplified depiction of a regenerative stimulus
and some important changes in the microenvironment during the
course of regeneration. Substantial differences between conditions in
the healthy and young versus the aged and diseased organism are
highlighted, like the constant expression of inhibitors of differentiation

that induce angiogenesis programs. The effect of low
oxygen (around 3%) conditions on musculoskeletal pre-
cursors has been reported to be in favour of proliferation of
the transient amplifying pool but inhibits especially
osteogenic differentiation and also to some degree inhibits
the adipogenic pathway. Chondrogenic differentiation may
even be enhanced under low oxygen conditions, hence the
process of fracture healing might be directed towards the
more complex way of callus formation and healing via
chondrogenic pathways in conditions of low oxygen supply
(Foldager et al. 2011; Henderson et al. 2010; Meyer et al.
2010). Only limited data are available according to
ligamentogenic/tenogenic differentiation, although one
should anticipate that low oxygen tension is also favourable
(Liu et al. 2011; Zhang et al. 2010). As a consequence, the
ex vivo amplification of skeletal precursors—if part of the
strategy—should be considered to take place in 3% oxygen
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such as activin, myostatin and sclerostin (see text) and altered
migratory capacity, which impair effective regeneration. Future
strategies in regenerative medicine should develop tailored applica-
tions accordingly

to allow for effective amplification and reduced ROS levels
and cellular stress (Fehrer et al. 2007), while maintaining
the broader spectrum of differentiation capacity.

Matrix and scaffold geometry and composition

It is essential for the amplification and differentiation
efficacy to provide a suitable ECM until the respective
cells have created their own. Natural matrices are very often
provided but are also not really tailored to the purpose for
which they are applied. This is of particular importance
since cell differentiation is induced by certain ECM types
and ECM-attached matricellular growth and differentiation
factors (Pennesi et al. 2011). For example, the use of
collagen type I for amplification and differentiation of
cartilage precursors might not be ideal but has been used as
a helpful matrix component while collagen II was not
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available. Also, the matricellular growth factors of the CCN
family of proteins may exert differential effects during
tissue differentiation and maintenance. Matrix from young
and healthy cells added to cultures of skeletal precursors
from aged donors can at least partially reconstitute their
deficits in proliferation and osteogenic differentiation,
indicating that their own matrix is not properly supporting
their expansion and function (Sun et al. 2011). Finding
important components that are lacking in the matrix of aged
cells may allow for targeted substitution in future thera-
peutic strategies for the elderly. If artificial scaffolds are
being used, there is a big chance of tailoring their specific
composition and tethering with growth and differentiation
factors for the requested clinical application (Gilbert and
Blau 2011; Lutolf et al. 2009; Votteler et al. 2010).

Micro-/nano-mechanobiology

Not only matrix composition but also rigidity plays an
important role, since it is known that stemness can more
easily be maintained in soft matrices while stiff matrices
tend to support differentiation (Gilbert et al. 2010).
Adhesion to ECM components initiates mechanotransduc-
tion from the cell membrane to the nucleus. This is mainly
mediated by mechanoresponsive elements such as AP-1 or
SP-1 elements (Seefried et al. 2010). The sensitivity of a
single cell to mechanical loading in the microenvironment
depends very much on the amplification of the signal
through actin skeleton-transmitted forces. It has been
shown that older animal cells display altered actin turnover
that may contribute to both impaired migratory capacity
and mechano-amplification of signals (Kasper et al. 2009).
With respect to tissue engineering, the primary stability of
scaffolds and matrices is important but this may be less
relevant for in situ guided regeneration. Here, the stiffness
and rigidity may be more important for either the
maintenance of cellular stemness or the induction of
differentiation and morphogenesis (Gilbert et al. 2010).
Aging modifies ECM and aged ECM impairs the regener-
ative potential of precursors while young ECM can rescue
aging phenomena in precursor cells (Sun et al. 2011).
Therefore, accumulated knowledge about the aging process
should be incorporated into future strategies for in situ guided
tissue regeneration. Future research will have to demonstrate,
whether or not age-related changes in mechanosensitivity and
migratory capacity are reversible at least to some extent and if
such changes can be targeted within therapeutic strategies in
the elderly.

Stem cell niche functional cues

Stem cell adhesion in the niche is mediated by a variety of
adhesion molecules and structures but the exact molecular

composition of niches is only known from some examples.
Moreover, the molecular composition depends on the type
of tissue, e.g. epithelially organised structures, vessel-
associated niches and stromal niches. Cadherins and
adherence junction molecules may keep the stem cells
attached to the hub, while integrin binding attaches them to
basal membranes and ECM and at the same time this
mediates signalling that influences the stemness status
(Marthiens et al. 2010). In addition, hub cells secrete
proteins that inhibit morphogenesis and maintain the stem-
ness and quiescence status of stem cells (Fuchs et al. 2004).
As we know from Drosophila, BMP-related ligands for the
TGFb-signalling pathway are good candidates to modulate
this stemness maintenance (Sieber et al. 2009; Wagner et al.
2010). Using knockout or inhibitor strategies, one can either
deplenish or accumulate stem cells in and from niches and in
consequence lose regenerative capacity as has been shown
with hematopoetic stem cells and their respective niches.
Here, Myc seems to play an important role in regulating the
exit from the niche vial e.g.l regulation of integrin and N-
cadherin expression (Marthiens et al. 2010). Moreover,
subtypes of macrophages like a CD169+ subpopulation
may modulate the retention of stem cells in their niches
(Chow et al. 2011). Future strategies of in situ guided tissue
regeneration should include the specific requirements that
lack in situations of aging and disease. Hence, materials
should be designed to replace missing adhesion micro-
structures, to timely liberate missing directive growth and
differentiation factors and also to finally deliver antagonists
for proliferation and differentiation inhibitors that are
characteristic for the aging and diseased organism such as
activin, sclerostin and myostatin (see above).

Summary and conclusions

A vision of in situ guided tissue regeneration strategies has
been developed, where smart materials delivering peptide
or small molecules with and without regenerative cells can
be applied with minimally invasive techniques to enhance
endogenous regeneration respecting (stem) cell biology and
developmental processes (Gilbert and Blau 2011; Lutolf et
al. 2009; Uebersax et al. 2009). Exciting developments in
material science are capable of perfectly matching these
scenarios using intelligent and functional materials, which
can also be designed for perfect timely release of factors
involved in regeneration (Astachov et al. 2011; Chen et al.
2010; Di Maggio et al. 2011; Dvir et al. 2011; Gilbert and
Blau 2011; Grafahrend et al. 2010; Klinkhammer et al.
2010; Lutolf et al. 2009; Meinel et al. 2009; Votteler et al.
2010). Cellular and organismal aging phenomena in an
elderly and diseased target population for regenerative
strategies may be serious obstacles for successful treat-
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ment regimens. This has been considerably fostered by
recent knowledge about the regulation of regeneration by
inhibitory molecules, which when overproduced or pre-
maturely secreted become master principles of (degener-
ative) disease. There is also, however, accumulating
evidence that endogenous regeneration capacity even in
old and diseased organisms could be permissively set on
scene by neutralization of inhibitors (Morissette et al.
2009; Trivedi et al. 2010). Promising approaches may also
be developed using micro-RNA-based strategies, since
RNAs have been identified that regulate programs in
regenerative cells and aging phenomena (Hackl et al.
2010; Stadler and Ruohola-Baker 2008; Tsai et al. 2010).
Taking this shift of paradigms into account, new tailored
strategies can be developed for local and systemic
modulation of tissue regeneration and healing with a focus
on elderly and diseased organisms.

Open Access This article is distributed under the terms of the
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