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Abstract

Although a combination of genomic and epigenetic alterations are implicated in the multistep transformation of normal
squamous esophageal epithelium to Barrett esophagus, dysplasia, and adenocarcinoma, the combinatorial effect of these changes
is unknown. By integrating genome-wide DNA methylation, copy number, and transcriptomic datasets obtained from endoscopic
biopsies of neoplastic progression within the same individual, we are uniquely able to define the molecular events associated
progression of Barrett esophagus. We find that the previously reported global hypomethylation phenomenon in cancer has its
origins at the earliest stages of epithelial carcinogenesis. Promoter hypomethylation synergizes with gene amplification and leads
to significant upregulation of a chr4q21 chemokine cluster and other transcripts during Barrett neoplasia. In contrast, gene-specific
hypermethylation is observed at a restricted number of loci and, in combination with hemi-allelic deletions, leads to
downregulatation of selected transcripts during multistep progression. We also observe that epigenetic regulation during
epithelial carcinogenesis is not restricted to traditionally defined ‘‘CpG islands,’’ but may also occur through a mechanism of
differential methylation outside of these regions. Finally, validation of novel upregulated targets (CXCL1 and 3, GATA6, and
DMBT1) in a larger independent panel of samples confirms the utility of integrative analysis in cancer biomarker discovery.
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Introduction

The incidence of esophageal adenocarcinoma (EAC) is increasing

at an alarming pace in the United States (.600% increase since

1975) [1]. Since most patients with EAC present at diagnosis with

an advanced disease stage, the 5-year survival rate is a dismal 13%

[2], underscoring the pressing need for early diagnostic biomarkers,

as well as for improved therapeutic strategies, in this malignancy.

Distinct pathological stages of specialized columnar epithelium

(Barrett metaplasia) and low- followed by high-grade dysplasia

precede adenocarcinoma [3,4]. Barrett esophagus (BE) is defined as

a change in the esophageal epithelium that can be recognized

grossly by a distinct salmon pink color at endoscopy, and confirmed

by the presence of specialized columnar epithelium on biopsy. The

prevalence of BE is not precisely known, but it has been estimated to

range between 1–10% of the general population [5]. The incidence

of EAC in patients with BE is increased 100-fold above that of the

general population [6]. Thus, BE, with or without associated

epithelial dysplasia, provides a unique opportunity for risk

stratification and secondary prevention of EAC.

Expression profiling of BE and EAC using genome-wide

approaches has identified many of the transcriptomic alterations
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occurring during esophageal neoplastic progression [7-10]. In

several instances, it has also been possible to identify the proximate

genomic or epigenetic mechanism (for example, intragenic

deletion, truncating mutation, copy number aberration, or

promoter methylation, respectively) contributing to the altered

expression [11-16]. This strategy has unequivocally yielded a rich

seedbed of candidate biomarkers for diagnosis, as well as for

prognostication, of BE neoplasia [17-20]. Nonetheless, there

remains a notable lacuna in globally integrating transcriptomic

abnormalities during Barrett progression with the corresponding

changes occurring at the level of the genome and epigenome. We

reasoned that a multi-platform integrated approach would not

only enable the elucidation of novel biomarkers, but also clarify

the genomic and/or epigenetic mechanisms driving transcript

abnormalities during carcinogenesis. Such integration of global

datasets has begun to emerge in solid tumors [21,22], but to the

best of our knowledge this has not been performed in precursor

lesions, especially in the context of multistep progression occurring

in a single individual. Herein, we provide an unbiased and

comprehensive approach for integrating large-scale genomic,

epigenetic, and transcriptomic datasets, obtained using tissue from

patients undergoing endoscopic mucosal biopsy for BE. In contrast

to numerous prior studies using two platforms (for example,

combined copy number and expression analysis) where a ‘‘hit’’ on

the second allele is typically inferred, the multi-platform analysis

performed here can directly confirm or refute the Knudsonian

paradigm for a given altered transcript. Our studies have identified

striking epigenomic alterations, and in specific, widespread

hypomethylation, which occurs at the earliest stages of epithelial

carcinogenesis. This approach is in direct contrast to most single-

or limited-locus studies that have focused on epigenetic silencing of

candidate tumor suppressor genes by hypermethylation of the

promoter. In addition, we have identified clustered transcripts,

such as the chemokine ligands CXCL1 and 3, that are markedly

upregulated via simultaneous biallelic alteration by hypomethyla-

tion and gene amplification, respectively, and whose protein

products have the potential to serve as serum biomarkers of

neoplastic progression in BE.

Results

Widespread hypomethylation is an early event in the
progression of Barrett esophagus

Eight histologically validated endoscopic mucosal biopsies

representing normal squamous mucosa and the various histopath-

ological stages of Barrett esophagus progression were obtained

from three patients undergoing repeat endoscopy for dysplasia

(Figure 1A, Figure S1); two additional unmatched gastric cardia

biopsies were obtained as controls for the intended profiling

studies. Prospective as well as retrospective surveillance studies

have convincingly established that nondysplastic BE and low-

grade dysplasia (LGD) both have a significantly lower risk of

progression to EAC, when compared to high-grade dysplasia

(HGD); in fact, for the purposes of therapeutic decision-making

between continued surveillance versus local ablation, stratification

typically occurs based on the diagnosis of HGD in BE mucosa.

Therefore, with the objective of pair-wise comparison, samples of

non-dysplastic BE and LGD were categorized as ‘‘low’’, while the

two HGD samples and one EAC were categorized as ‘‘high’’.

Nucleic acids extracted from cryostat-embedded sections of the ten

samples were utilized for three concurrent microarray-based

assays: 1) gene expression profiling, 2) array comparative genomic

hybridization (aCGH), and 3) genome-wide cytosine methylation,

thus simultaneously querying the transcriptome, genome, and

epigenome, respectively. Methylation profiling was performed

using the HpaII tiny fragment Enrichment by Ligation-mediated

PCR (HELP) assay, which compares HpaII (methylation-sensitive)

and MspI (methylation insensitive) genomic representations to

identify hypo- and hypermethylated loci in the genome.[23-25].

The HELP HpaII / MspI ratios were validated at over 60

independent loci by mass spectrometry-based high-throughput

quantitative methylation PCR analysis (Sequenom EpiTYPER);

based on this quantitative approach, a HpaII/MspI ratio of 0.3

corresponded to 50% cytosine methylation (Figure S2) and was

used as a threshold for defining hypo- or hypermethylation.

Unsupervised hierarchical clustering analyses demonstrated

that, at the level of the transcriptome, squamous mucosa clustered

discretely from ‘‘glandular’’ epithelium (including gastric cardiac

as well as all stages of BE progression: Figure 1B); in contrast, at

the level of the epigenome, ‘‘normal’’ mucosa (including both

squamous and cardiac subtypes) clustered discretely from all

‘‘abnormal’’ (i.e., BE) epithelia (Figure 1C). These results suggest

some degree of commonality of epigenetic profiles between

otherwise normal gastrointestinal tissues, despite obvious morpho-

logical differences. A pair-wise comparison of transcriptomic

profiles between normal esophageal squamous and gastric cardiac

mucosal samples revealed large numbers of significantly differen-

tially expressed transcripts, consistent with the distinct histogenesis

and biologies of these normal mucosal subtypes (Figure 1D, left); in

contrast, global cytosine methylation profiles between the two

mucosal locations were considerably more overlapping, with

significant differences in either hypo- or hypermethylation

restricted to fewer loci (Figure 1E, left).

In pair-wise comparisons of gene expression during BE

progression, we found large numbers of significantly differentially

expressed transcripts between the early lesions of Barrett

metaplasia and LGD (both classified as ‘‘Low’’) versus normal

squamous mucosa, confirming the previous observation [7] that

even non-dysplastic Barrett epithelium may harbor profound

transcriptomic aberrations, some comparable to EAC (Figure 1D,

middle). Significant gene expression differences between ‘‘high and

‘‘low’’ BE lesions were more attenuated and restricted to only

a handful of loci (Figure 1D, right). While these gene expression

Author Summary

The incidence of esophageal adenocarcinoma (EA) is
increasing at an alarming pace in the United States. Distinct
pathological stages of Barrett’s metaplasia and low- and
high-grade dysplasia can be seen preceding malignant
transformation. These precursor lesions provide a unique in
vivo model for deepening our understanding the early steps
in human neoplasia. By integrating genome-wide DNA
methylation, copy number, and transcriptomic datasets
obtained from endoscopic biopsies of neoplastic progres-
sion within the same individual, we are uniquely able to
define the molecular events associated progression of
Barrett esophagus. We show that the predominant change
during this process is loss of DNA methylation. We show
that this global hypomethylation occurs very early during
the process and is seen even in preinvasive lesions. This loss
of DNA methylation drives carcinogenesis by cooperating
with gene amplifications in upregulating proteins during
this process. Finally we uncovered proteins that upregu-
lated by loss of methylation or gene amplification (CXCL1
and 3, GATA6, and DMBT1) and show their relevance by
validating their levels in larger independent panel of
samples, thus confirming the utility of integrative analysis
in cancer biomarker discovery.

Hypomethylation during Esophageal Carcinogenesis
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data were confirmatory of published results, methylation profiling

revealed an unexpected dimension to epigenetic dysregulation

during BE progression. Contrary to the hypermethylation

reported in previous single-locus studies, we identified significant

hypomethylation occurring at a large number of loci genome-wide

during the transition of squamous mucosa to Barrett epithelium

(1160 hypomethylated versus 114 hypermethylated loci., Figure 1E,

middle,); since this epigenetic ‘‘shift’’ is not observed in the

comparison of normal esophageal squamous versus cardiac mucosal

samples, we believe these methylation alterations may be reflective

Figure 1. Global hypomethylation is seen early during esophageal carcinogenesis. Multiple endoscopic biopsies collected at the same
time from patients with clinical history of Barrett’s esophagus, were classified as normal squamous epithelium, Barrett’s metaplasia, low grade
dysplasia (LGD), high grade dysplasia (HGD) and adenocracinoma based on histology. (Panel A). Frozen tissue samples were homogenized, used for
DNA and RNA isolation and were subjected to global expression profiling, DNA methylation profiling and DNA copy number analysis. Unsupervised
hierarchical clustering based on gene expression profiling shows clustering of distinct histologic tissues with glandular tissue from stomach cardia
being more similar to metaplastic and dysplastic tissues (Panel B). Clustering based on methylation shows dissimilarity between normal (esophageal
and stomach) and abnormal tissues (Panel C). Volcano plots demonstrating significance and magnitude of change in mean gene expression (Panel D)
and DNA methylation (Panel E) are shown. Each plot represents either 36,847 genes from the microarray experiment (D) or 25,626 HpaII-amplifiable
fragments (HAF) from the HELP assay (E). The log2 ratio of difference of means is shown on the x-axis and the negative log of the p-value (based on
paired T-Test) is shown on the y-axis. Genes that are significantly downregulated (panel D) or hypermethylated (panel E) are shown in green and red
dots indicate genes that are either upregulated (panel D) or hypomethylated (panel E). Global methylation is shown by density plots of log2 of HpaII/
MspI ratios and shows bimodal distribution in normal epithelial tissues with both hypo and hypermethylated loci. The red line denotes the median
HpaII/MspI ratio for random probes. A shift towards hypomethylation is observed during transformation of normal to low grade dysplasia in
a representative series of samples (Panel F). Quantitative methylation for matched pairs of normal and Barrett’s dysplasia as done by the LUMA assay.
X axis shows mean percent hypomethylation of 3 independent paired samples. (Panel G).
doi:10.1371/journal.pgen.1001356.g001
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of the actual BE disease process, rather than simply due to

acquisition of columnar histology. A second, smaller wave of

hypomethylation was observed when comparing ‘‘high’’ versus

‘‘low’’ BE categories (Figure 1E, right). This progressive hypo-

methylation was seen in methylation profiles of samples from the

same patients (Figure 1F). Validation at the whole-genome level by

the Luminometric methylation assay (LUMA) revealed a signifi-

cantly large increase in unmethylated CpGs in ‘‘low’’ BE samples

versus matched normal squamous mucosa (Figure 1G). These

results demonstrate that the previously reported global hypo-

methylation observed in human cancers [26] can initiate at a very

early stage of neoplastic transformation, such as in the non-

invasive precursors of EAC.

Differential methylation within gene promoters is not
restricted to CpG islands but also involves CG
dinucleotides outside of these islands

In addition to this panoramic view of epigenetic shifts, we also

assessed the nature of the HpaII sites showing altered methylation

during BE progression. As our microarray design includes both

canonical CpG islands and additional CG dinucleotide loci within

gene promoters, we sought to test whether CpG islands, long

considered the principal target of epigenetic dysregulation in

cancer [27], were disproportionately affected. We compared the

proportions of loci at which differential methylation was occurring

within CpG islands versus other CG dinucleotide loci represented

on the microarray. We determined that the majority of HpaII loci

exhibiting differential methylation during BE progression lay,

paradoxically, outside of canonical CpG islands (Figure 2A). To

further validate this observation at a representative locus, we chose

the example of Deleted in Malignant Brain Tumor 1 (DMBT1), whose

gene promoter lacks a defined CpG island, yet demonstrates

progressive hypomethylation accompanied by significant tran-

script upregulation during BE progression (Figure 2B). Histological

examination of DMBT1 protein expression in a large archival

cohort of 120 BE samples and 54 normal controls revealed

significant (P,0.05) upregulation of this protein early during BE

neoplasia (Figure 2C, 2D), thus validating the results obtained

from our array-based analysis. These results suggest an epigenetic

regulatory function for CG dinucleotide elements in the genome

that do not meet the threshold for canonical CpG islands, which

are strictly defined on base compositional criteria [28].

Integrated multi-platform analysis provides experimental
evidence of silencing of tumor suppressor genes by both
genetic and epigenetic mechanisms in concordance with
Knudson’s two hit hypothesis

Subsequently, in order to generate a multi-component genetic

model of BE progression, we developed an in silico algorithm for

integrating data from these three high-resolution platforms (i.e.,

gene expression, HELP, and aCGH), using genomic coordinates

for the respective probes from each of the platform arrays

(Figure 3A). This algorithm, which we call Multi-dimensional

Integration of Genomic data from Human Tissues (MIGHT),

provides a composite three-dimensional graphical output of gene

sets demonstrating significant alterations in pair-wise unbiased

comparisons across the different array platforms (Figure 3B, 3C).

By integrating differences in transcript expression with both

methylation status and copy number at a given locus, the MIGHT

algorithm not only identifies significant transcriptomic alterations

during neoplastic progression, but also elucidates the relative

contributions of genomic and epigenetic factors toward such

deregulation. The advantage of an integrative approach in

developing an accurate ‘‘patient-specific’’ multi-component genet-

ic progression model is illustrated in Figure 4. A chromosome

9p21 hemizygous deletion was identified by aCGH analysis of

LGD and HGD biopsies obtained from this individual, which was

absent in the matched normal esophageal squamous epithelium,

consistent with a somatic monoallelic loss, as confirmed by FISH

analysis (Figure 4B). This region harbors two closely approximated

tumor suppressor genes: CDKN2A/p16 and CDKN2B/p15. Prior

copy number and other studies have implicated CDKN2A as the

target of inactivation at this locus in BE [15,17,29] Nevertheless, in

this particular example, microarray data demonstrated that the

relative fold reduction in gene expression was considerably greater

for CDKN2B (,100-fold downregulation) than for CDKN2A (,4-

fold); moreover, this finding was independently validated by qRT-

PCR, which confirmed the complete absence of CDKN2B

transcripts in the dysplastic biopsy samples, while the expression

of CDKN2A, albeit significantly reduced, was still detectable.

Analysis of the third component (HELP analysis) clarified that the

CDKN2B promoter in the retained allele underwent progressive

hypermethylation during BE progression, while the CDKN2A

promoter maintained its methylation status quo (Figure 4A, bottom).

This finding suggests the importance of methylation of the

remaining allele in regulating expression, and provides direct

experimental evidence for genetic and epigenetic hits acting

concurrently and synergistically to downregulate tumor suppressor

genes during oncogenesis through bi-allelic inactivation (Figure

S3).

Integrated multi-platform analysis as a tool for biomarker
discovery in multistep carcinogenesis

Finally, in addition to the value of integrated datasets in

understanding mechanisms of transcript disruption (as illustrated

above), we explored the utility of the MIGHT algorithm as a tool

for biomarker discovery in Barrett progression. In particular, we

focused on genes that were significantly overexpressed in pair-wise

comparisons, by hypomethylation and / or genomic amplification,

and validated selected examples of patient-specific aberrations in

larger sample sets.

Using the MIGHT platform, we determined that many genes

not previously implicated in esophageal carcinogenesis were

significantly upregulated during stepwise progression to cancer

(Figure 2 and Tables S1, S2, S3, S4). These were upregulated by

either loss of methylation, or gene amplification, or both occurring

together. Genes previously known to be important during

metaplastic transformation of squamous to columnar epithelium

were also included in the list of most significantly upregulated

transcripts (for example, villin and mucin genes), confirming the

biological validity of our assays. Transcripts corresponding to

a family of chemokine ligands were among the most significantly

upregulated, and the corresponding gene cluster is present on the

4q21 chromosomal segment that was amplified in all patient

samples during the process of Barrett neoplasia (Figure 5A, 5B)

Integrative analysis revealed that in addition to amplification, the

CXCL1 and CXCL3 gene promoters were also hypomethylated

during transformation, and their relative increase in transcript

expression was many fold greater (4–6 fold by array, 10–20 fold by

qRT-PCR) than that of IL-8, a chemokine gene which was part of

the 4q21 amplicon but whose promoter was not affected by loss of

methylation (Figure 5A, Bottom). These observations were

validated by qRT-PCR in larger independent set of primary

samples (Figure 5C), and confirmed a greater than 30-fold mean

increase in CXCL1 and CXCL3 levels when compared to IL-8

transcripts at each histological grade of BE progression, thus

demonstrating the combinatorial affect of both genetic and

Hypomethylation during Esophageal Carcinogenesis
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epigenetic alterations on dysregulation of gene expression during

carcinogenesis.

In light of the significant upregulation of chromosome 4q21

chemokine cluster transcripts in BE and EAC, and the likely

secretion of their protein products into the circulation, we

evaluated the potential of using this chemokine familyas serum

biomarkers of EAC. Serum samples were collected from an

independent cohort of patients with EAC and were compared to

samples from patients with gastroesophageal reflux disease

(GERD) symptoms without demonstrable BE on histology. Levels

of chemokine ligands, IL-8 (IL8), IP-10 (CXCL10), Eotaxin

(CCL11), MCP-1 (CCL2) and MCP-4 (CCL13) were determined

in serum samples by a multiplexed assay on an ultra-sensitive

chemiluminiscence detection platform. We observed that both

chemokines that were a part of the amplified 4q21 segment (IL-8

and CXCL10) were significantly elevated in the EAC serum

samples compared to the controls(P,0.05), while none of

chemokines outside of this amplicon demonstrated a significant

difference between cancer and control specimens (Figure 5D).

These results validate the feasibility of identifying candidate

biomarkers by integrative analysis in a limited number of patient

samples, and extrapolating their utilization to larger, independent

patient cohorts.

To further functionally validate the utility of our integrative

discovery platform, we focused on a transcription factor, GATA6,

which was significantly overexpressed early in Barrett metaplasia,

and was predicted by MIGHT to be amplified without

concomitant alterations in methylation (Figure 3). Assessment of

the aCGH data and FISH on primary tissues readily validated the

copy number alterations at the GATA6 locus during esophageal

carcinogenesis (Figure 6A, 6B). Thereafter, using independent

cohorts of snap-frozen and archival BE samples, respectively, we

observed significant upregulation of GATA6 transcript expression

(.500 fold mean increase in LGD, HGD and EAC samples,

Figure 6C, 6D) and of the Gata6 protein levels (No Gata6 staining

observed in 54 normal controls when compared to mean 60%

positivity in a total of 201 LGD, HGD and EAC samples;

Figure 6F–6I), confirming the results from the genomic analysis.

To validate an oncogenic role in esophageal carcinogenesis, we

used an esophageal adenocarcinoma-derived cell line, OE33 [30]

and observed significant overexpression of Gata6 protein in these

cells (Figure 6J). GATA6 was successfully knocked down using

lentiviral short hairpin RNAs in OE33 cells (Figure 6K). Loss of

Gata6 function did not affect proliferation, (Figure 6L) but resulted

in significantly decreased anchorage independent growth of OE33

cells and also led to decrease in invasion and migration

(Figure 6M–6P), thus providing a putative functional association

between GATA6 amplification and disease progression in BE.

Discussion

Esophageal cancer is the cancer with the fastest-growing

prevalence in the United States [1] and arises from the metaplastic

transformation of normal squamous mucosa, through the

intermediate stages of dysplasia, culminating in cancer. Newer

insights into the pathogenesis of this process are critically needed

for prevention and early diagnosis of these lesions. Although

alterations in DNA methylation have been described during

esophageal carcinogenesis, studies performed thus far have focused

on the aberrant hypermethylation of CpG islands located within

promoters of selected tumor suppressors such as CDKN2A/p16,

HPP, RUNX3, REPRIMO, amongst others. In contrast, we have

Figure 3. Global integrative analysis of transcriptomic, epigenomic, and DNA copy number data. Probes from all three arrays were
linked to genes on the basis of genomic coordinates isolated from NCBI build35. Pairwise analysis was performed between main histologic groups of
normal squamous vs LOW (B) and LOW vs HIGH (C). The x axis represents fold-change differences (log2) in gene expression, the y axis represents fold-
change differences (log2) in methylation and the z axis represents the significance of these changes (–log10 p-value) for both platforms. Upregulated
genes (.2.5 fold change in GE with a p-value,0.05) are shown in green and downregulated genes are shown in red. Darker shading of these colors is
used to represent genes that are significantly differentially methylated. Hypermethylated genes are at the top of the graph and hypomethylated
genes on the bottom. Finally, copy number changes are defined by ‘‘volume’’. Genes with copy number changes (amplified or deleted) are depicted
by larger sized circles. This plot allows us to visualize differentially regulated genes and the mechanisms of their dysregulation.
doi:10.1371/journal.pgen.1001356.g003

Figure 2. DMBT1 upregulation by non-CpG island methylation changes. Differentially methylated loci between normal esophageal
epithelium and Barretts/LGD were mapped to genomic locations of CpG islands. A large percentage of these loci were not within CpG islands. Paired
T Test was used to compare to distribution of loci present on the HELP array (A). The DMBT1 gene is not amplified (panel B) and lacks a CpG island in
its promoter. DMBT1 was seen to be significantly upregulated and hypomethylated during integrative analysis and marked upregulation was
validated by qRT-PCR (red bar). Significant hypomethylation was seen by the HELP assay (green bar) and validated by quantitative MassArray (B).
Immunohistochemical evaluation of the protein levels of the DMBT1 gene on primary tissues shows a frequent and significant protein upregulation
during early stage dysplasia (panel C,D).
doi:10.1371/journal.pgen.1001356.g002

Hypomethylation during Esophageal Carcinogenesis
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Figure 4. Differential inactivation of the CDKN2A/CDKN2B locus by combination of genomic and epigenetic mechanisms. In an index
patient with serial progression biopsies, there is a hemizygous deletion of the CDKN2A/CDKN2B gene locus at 9p21, beginning at the stage of LGD,
and persisting into the corresponding HGD sample (Panel A), which is accompanied by expected downregulation of both transcripts in expression
microarray data. Although independent qRT-PCR for CDKN2A and CDKN2B transcripts (red bars) validates the expression array data (blue bars), the
magnitude of downregulation of CDKN2B is more pronounced than CDKN2A (,100-fold versus ,5-fold on microarray, and complete absence of
CDKNA2B transcripts on qRT-PCR versus downregulated but detectable CDKN2A transcripts). MIGHT analysis confirms that this discrepancy between
closely spaced hemizygously deleted loci correlates with increased promoter methylation of the residual CDKNA2B allele, as demonstrated by the
HELP assay (green bars); such progressive hypomethylation is not observed on the residual CDKN2A allele and likely is responsible for the reduced but
demonstrable transcripts. Uniallelic deletion of the CDKN2A/CDKN2B locus is validated by FISH (Panel B) on primary tissue as shown by loss on the LSI
p16 SpectrumOrange probe (red arrows).
doi:10.1371/journal.pgen.1001356.g004

Hypomethylation during Esophageal Carcinogenesis
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determined that hypomethylation, rather than hypermethylation,

is the more pervasive epigenetic alteration that occurs during

Barrett progression. Additionally, we determined that global

cytosine hypomethylation occurs very early during multistep

carcinogenesis, observed within the first discernible metaplastic

lesions within the native squamous esophagus. Even though global

hypomethylation was reported in the pioneering epigenetic studies

in cancer [31], most investigators have subsequently focused on

hypermethylation in CpG islands within selected gene promoters.

Hypomethylation has been hypothesized to lead to carcinogenesis

by encouraging genomic instability [32] as well as by aberrant

activation of oncogenes [33]. Additionally, as illustrated in the

Figure 5. Aberrant expression of a 4q21 chemokine cluster by gene amplification and promoter hypomethylation during
esophageal carcinogenesis. In an index patient with serial progression biopsies, amplification of chromosome 4q21, containing a cluster of genes
transcribing chemokine ligands, is seen beginning at LGD, and persisting into HGD (Panel A). Expression and promoter methylation data for three
representative genes in this amplicon (CXCL1, CXCL3, and IL8) are shown below the copy number window. All three transcripts are upregulated in the
LGD and HGD samples by microarray data (blue bars), which is validated using independent qRT-PCR assays (red bars). Nonetheless, there is strikingly
higher upregulation of CXCL1 (.200-fold on qRT-PCR compared to matched normal) and CXCL3 (500–700 fold on qRT-PCR compared to normal),
versus the 10–30 fold upregulation in IL8 mRNA. Integrative analysis on the MIGHT platform confirms that this is likely arises due to progressive
hypomethylation of the CXCL1 and CXCL3 promoters (as gauged by HELP assay, green bars), which is not seen at the IL8 promoter. The
hypomethylation of CXCL1 observed in the dysplastic samples by the HELP assay is validated by Mass Array at the bottom. The 4q21 chemokine
cluster amplification is also confirmed by FISH (Panel B) on the corresponding archival HGD sample from the same individual used in the integrative
analysis. The RP11-94K4 SpectrumOrange probe representing the 4q21.1 - 4q21.2 amplicon (red arrows) was used. Moreover, the upregulation of IL8,
CXCL1, and CXCL3 transcripts is also confirmed in an independent panel of endoscopic mucosal biopsy samples, including LGD (N = 5), HGD (N = 5),
and adenocarcinoma (N = 3) (Panel C). Notably, the significantly greater upregulation of CXCL1 and CXCL3 transcripts observed in the index patient
persists in this independent cohort of cases. Finally, chemokine detection using a multiplex chemiluminiscent assay was performed on five serum
samples from patients with esophageal adenocarcinoma (designated ‘‘Cancer’’) and compared to samples from controls with GERD symptoms and
normal esophageal histology (designated ‘‘Normal’’) (Panel D). Serum levels of only two chemokines, IL-8 and CXCL-10, both encoded by the 4q21
cluster, are significantly higher in cancer patients when compared to normals, supporting the evidence that members encoded by this amplicon are
expressed at higher levels when compared to chemokines that are not part of the amplicon, such as CCL2, CCL11 and CCL13. Unfortunately, CXCL1
and CXCL3 were not included in this pre-formed multiplex assay.
doi:10.1371/journal.pgen.1001356.g005
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example of DMBT1, hypomethylation alone can lead to

transcriptional upregulation during multistep progression to

high-grade dysplasia and cancer. Furthermore, our data identify

CG dinucelotide loci that can be targeted by differential

methylation during neoplastic progression and are located outside

of canonical CpG islands. Importantly, these CG alterations are

not merely stochastic in nature, but appear to have bona fide

regulatory influence on transcript expression. Recent work has

similarly shown that cytosines present outside of CpG islands can

be aberrantly methylated/ hypomethylated in cancer, and assays

that cover these loci are critical to discovering the full landscape of

altered methylome of malignancies [34,35].

Since carcinogenesis is multifactorial and gene inactivation and

activation can be influenced by either genetic or epigenetic

mechanisms, we performed an integrative analysis to dissect the

relative contributions of these alterations during this process. Our

study provides direct experimental evidence of deletions and

promoter methylation acting in concert to silence tumor

suppressors in a bi-allelic manner, as first postulated by

Knudson’s two-hit paradigm. We expand on this paradigm by

demonstrating that gene amplifications and hypomethylation can

function in concert to upregulate gene expression of various

genes. Of note, the use of an integrated approach facilitated by

the MIGHT algorithm provides accurate in silico insights into

mechanisms of deregulation, particularly when closely spaced

gene clusters harbor discrepant alterations in transcript level, as

exemplified by CDKN2A and CDKN2B, or the chemokine family

in the 4q21 amplicon. In each of these instances, a subsequent

validation step (such as FISH analysis for deletion, or MassArray

for promoter methylation, respectively) confirmed the suggested

mechanism of transcript deregulation implicated by MIGHT,

underscoring the robustness of the analysis platform. Finally, we

demonstrate that multiplatform high resolution integrative

analysis of limited number of well annotated samples (N =

three patients) can lead to findings that can be extrapolated to

larger independent sample cohorts. We have illustrated this

paradigm using multiple examples throughout the text, such as

with the 4q21 chemokine cluster, DMBT1, and GATA6. In each

of these examples, we validated the findings elucidated in the

‘‘index’’ patients in cohorts of either snap frozen or paraffin

embedded BE and EAC tissues, In the case of the 4q21

chemokine cluster, we extended the validation one-step further,

using serum samples to confirm significantly elevated circulating

levels of two of the cytokines in EAC patients compared to

controls. Notably, other chemokine ligands not included within

the 4q21 amplicon failed to demonstrate any significant

differences between cancer and control specimens, reiterating

the biological relevance of the in silico MIGHT data. Chemokine

ligands have recently been shown to be secreted by malignant

cells and have been shown to participate in neoplastic progression

of melanoma, breast, cervical and colorectal cancers [36-38].

CXCL1, CXCL3 and IL-8 bind to the CXCR2 receptor that has

important roles in oncogene-induced senescence. It has been

suggested that these chemokines potentiate tumor progression

especially with cells with p53 inactivation, an event seen

commonly in esophageal neoplasms [39]. These chemokines

have also been implicated in tumor associated angiogenesis [37]

and are a part of growing evidence of inflammatory mediators

implicated in tumor growth and progression [40]. Our data

reveals mechanisms associated with their upregulation in EAC

and also demonstrates that this upregulation may occur early

during neoplastic transformation, potentially allowing the devel-

opment of a serum-based assay to screen subjects with BE for

neoplastic progression.

Overall, our studies suggest that widespread changes in DNA

methylation, especially hypomethylation, as well as genomic copy

number alterations, can occur early during the multistep process of

esophageal carcinogenesis, and may act in concert to deregulate

the expression of important potential cancer-related pathogenic

genes.

Methods

Patient samples
Specimens were obtained from patients who underwent

endoscopic surveillance. All patients were diagnosed with Barrett’s

esophagus. After signed informed consent approved by the Johns

Hopkins University IRB, endoscopic biopsies were collected and

snap frozen in liquid Nitrogen, de-linked from direct patient

identifiers and stored at 280 uC. DNA and RNA was extracted

from the same biopsy samples.

Tissue microarray
All specimens were obtained from the surgical pathology files of

the Johns Hopkins Hospital, Memorial Sloan-Kettering Cancer

Center and Karmanos Cancer Center. Tissue microarrays (TMA)

were generated from formalin-fixed paraffin-embedded archival

tissues from 92 patients with Barrett’s Esophagus and included

esophageal squamous epithelium (60 cases), low-grade and high-

grade dysplasia (19 and 38 cases), and adenocarcinoma (80 cases).

Four 1.8 mm tissue cores represented each case and included two

cores from the neoplastic compartment in order to account for

potential tumor heterogeneity, and two cores from adjacent

normal esophageal parenchyma as an internal control.

Additionally for GATA6 IHC, 120 endoscopic mucosal

resection (EMR) specimens from 67 patients with BE were

analyzed, including 31 cases of low grade dysplasia, 40 cases of

high grade dysplasia and 10 cases of adenocarcinoma. All

specimens were obtained from the surgical pathology files of the

Johns Hopkins Hospital.

Figure 6. GATA6 is amplified and functions as an oncogene in esophageal adenocarcinoma. In an index patient with serial progression
biopsies, aCGH shows a progressive copy number gain on the region 18q11.1-q11.2 from normal to dysplasia to cancer. (Panel A). Integrative
approach demonstrates GATA6 and LAMA3 as two genes contained on this cluster (from 17–23,000,000 bp windows) with the marked upregulation
during transformation of normal to dysplasia as well as from dysplasia to cancer. qRT-PCR (red bar) validates the findings on the GE array (blue bar)
and also correlates with the increasing copy number doses seen in the aCGH. No relevant change is detected by the HELP assay (green bar), showing
persistence of unmethylated HpaII sites on the promoter region. GATA6 amplification was corroborated by FISH in the primary adenocarcinoma tissue
from this patient (panel B), RP11-18K7 spectrumOrange represent the 18q11.1-q11.2 region containing the GATA6 gene (red arrows). qRT-PCR on
independent frozen primary tissues demonstrates high detectable mRNA levels in dysplasia and cancer (Mean +/2 SEM). Immunohistochemical
analysis on large number of primary tissues demonstrates elevated protein levels arising as early as in the LGD group. Percentage frequency of
combined results from TMA and EMR are shown (Panel D) and examples of high IHC scores are shown (Panel F-I). To test the functional role of GATA6
upregulation, its expression was characterized in Barrett’s associated adenocarcinoma cell lines (Panel J). Stable knock down of GATA6 from five
shRNAs were screened by qRT-PCR in OE33 cell line (Panel K). shRNA-3 was selected for further experiments. Although there is no effect on cell
viability (panel L), GATA6 loss significantly decreases cell migration (Panel M), Invasion (Panel N) and anchorage independent growth (panel O-P).
doi:10.1371/journal.pgen.1001356.g006
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Immunohistochemistry
Rabbit polyclonal GATA6 (H-92) antibody (Santa Cruz Inc, sc-

9055) was used at 1:500 dilution and visualized using the

PowerVision+ Poly-HRP IHC kit (Immunovision Technologies)

following the standard protocol for immunohistochemistry (IHC)

described previously [41]. Immunohistochemical labeling was

assessed in an outcome-blinded fashion by two of the authors

(J.C.R and A.M) on a compound microscope. Intensity of labeling

was evaluated as previously published [42,43].

FISH analysis
The UCSC genome browser was used to select for the BAC

clones spanning the 18q11.2 region: RP11-18K7 (GATA6,

SpectrumOrange); and RP11-49H23 (18q22.2, Control Spec-

trumGreen). For the CXCL1-3 gene cluster, BAC clones covering

the 4q21.1 - 4q21.2 region were RP11-94K4 (SpectrumOrange)

and RP11-259E13 (4q11-q12, Control SpectrumGreen). The

BAC clones were obtained from the Children’s Hospital Oakland

Research Institute in Oakland, USA. We also used commercial

LSI p16/CEP probes (Vysis) for spanning the genetic loci for p16

and p15 (SpectrumOrange) and the alpha satellite sequences

specific to chromosome 9 (SpectrumGreen).

Cell lines and culture conditions
Barrett’s associated adenocarcinoma cell lines OE33 (European

Collection of Cell Cultures, Wiltshire, UK) and JH-EsoAd1,

recently described by our group [44], were maintained in RPMI-

1640 and supplemented with 10% or 20% FBS respectively and

100 U/mL penicillin, 100 mg/mL streptomycin.

Lentiviral shRNA knockdown of GATA6 in OE33 cells
GATA6-expressing OE33 cells were seeded into 24-well plates

at 96104 cells per well concentration, and infected with either

scrambled pLKO.1 (18 bp stuffer) lentiviral vector or with

lentivirus expressing GATA6 shRNA (Open Biosystems, Hunts-

ville, AL). Stable clones were selected by adding 5 mg/ml of

puromycin to the cell culture media. Quantitative reverse

transcription PCR (qRT-PCR) analysis was used to select the

best short hairpin constructs for GATA6 mRNA knockdown.

Downstream experiments were performed with GATA6_sh3 and

compared with scrambled control.

Quantitative reverse transcription PCR (qRT–PCR)
One microgram of total RNA, isolated with the RNAgents kit

(Promega, Madison, WI), were reversed transcribed by using the

Superscript II First Strand kit (Invitrogen) as per manufacturer’s

protocol. 1 mL of cDNA was amplified in a 25 ml volume

containing 12.5 mL of 26SYBRGreen PCR Master Mix (Applied

Biosystems) and 0.5 mM of each primer. Reactions were

performed in triplicate using a 7300 Real Time PCR machine

(Applied Biosystems, CA, USA) using PCR conditions and data

analysis as described earlier[41]. The melting curve was

constructed for each primer to ensure reaction specificity.

Following PCR, the threshold cycle (CT) was obtained and

relative quantities were determined by normalization with the

housekeeping gene SDHA.

Statistical analysis
Data are presented as mean and S.E.M. and were compared

using a Student’s t-test (or Mann-Whitney U-test, as appropriate).

A five-parameter logistic equation was used to calculate the curve

fit in the non-linear asymmetric regression. Calculations were

done with Graphpad Prims 4.0.

In vitro cell viability assays
Cell viability assays using the The CellTiter 96AQueousOne

Solution Cell Proliferation Assay (Promega, Madison, WI) were

performed on control-transfected and shRNA-expressing OE33

cells, as described previously [42]. At each time point evaluation,

20 ml/well of the Cell Titer 96 solution was added and incubated

for 1 hour. Plates were read on a Wallac-1420 Plate reader at OD

of 490 nm (PerkinElmer, Boston, MA). All experiments were set

up in triplicate to determine means and standard deviations.

Boyden chamber migration- and invasion assay
The Boyden chamber migration- and invasion assays were

carried out on OE33 cells. For the invasion assay, 56104 cells

were suspended in medium containing 0.2% FBS and plated in the

inner chamber of a matrigel-coated 8-mm polypropylene filter

inserts (BD Matrigel Matrix, BD Falcon). The bottom chamber

contained normal growth media. After 24 h, the cells remaining in

the insert were removed with a cotton swab, and the cells on the

bottom of the filter were fixed and migrated cells were counted

under the microscope. All experiments were set up in triplicate.

Boyden chamber migration assay was carried out following the

procedure described for the invasion assay except that the cells

were plated on uncoated 8-mm pore polypropylene filter inserts in

the Boyden chambers.

Anchorage-independent growth in soft agar
Anchorage-independent growth was assessed by colony

formation assays in soft-agar, as previously described [41].

Briefly, the soft agar assays were set up in 6-well plates, each

well containing a bottom layer of 1% agarose (Invitrogen),

a middle layer of 0.7% agarose including 56103 cells and a top

layer comprising of medium only. Subsequently, the plates were

kept in a tissue culture incubator maintained at 37uC and 5% CO

for 14 days to allow for colony growth, with top medium being

changed on a weekly basis. The assay was terminated at day 14,

when plates were stained with 0.005% crystal violet (Sigma-

Aldrich) solution. Colony counting was performed for each

triplicate condition using an automated ChemiDoc XRS instru-

ment (Bio-Rad, Hercules, CA).

Global Gene expression profiling (GE)
Total RNA, was isolated using the RNAgents kit (Promega,

Madison, WI) as per the manufacturer’s instructions and RNA

integrity was corroborated with the Bioanalizer 2100. One

microgram of RNA was reverse transcribed as published

previously [9] and cDNA was submitted to Roche NimbleGen

Systems, Inc. (Madison, WI) for labeling and hybridization onto

the NimbleGen array (2006-10-26_Human_60mer_1in2) con-

taining at least 10 (60mer) probes designed for 37,364 genes

from GenBank build 35. Arrays were scanned using a GenePix

4000B scanner (Axon Instruments) and microarray quality

controls were done as previously described [9]. Gene expression

microarray data will be submitted to the GEO database for

public access. Raw data reports (.pair files) were combined and

analyzed with the RMA 7 (Robust Multi-array Analysis)

package from NimbleScan 2.3 software, including the algo-

rithm for background correction (data based background

correction) and normalization (quantile normalization). After

analysis, results of 36,846 unique nimblegene probes are

reported as log2 values. Accession numbers from which

NimbleGen probes were designed were linked to GenBank

accessions from where Entrez IDs and additional annotations

were isolated.
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Global DNA methylation profiling: the HELP assay
The HELP assay was performed as published previously[23,24],

in summary, genomic DNA was isolated from cell lysates (0.1 M

Tris-HCL pH 8.0; 10 mM EDTA pH 8.0 and 1% SDS), digested

overnight at 50C on Proteinase K, follow by several organic

extractions (TE-saturated phenol and Phenol-Chloroform-Isoamyl

alcohol), DNA was purified and concentrated by ethanol

precipitation and resuspended in LOTE pH 7.5 (3 mM Tris-Hcl

and 0.2 mM EDTA). Intact DNA of high molecular weight was

corroborated, by electrophoresis on 1% agarose gel, in all cases.

DNA was digested with the restriction enzyme HpaII (methyla-

tion-sensitive) and MspI (methylation insensitive). Adapters are

ligated to the fragments created by digestion that are subsequently

used for ligation-mediated PCR amplification. The two digestion

products are differentially labeled with two fluorophores and

submitted to Roche NimbleGen Systems, Inc. (Madison, WI) for

hybridization onto a human HG17 custom-designed oligonucle-

otide array (2006-10-26_HG17_HELP_Promoter). The focused

array design stand for 25,626 HpaII-amplifiable fragments (HAF)

defined by those fragments where two HpaII sites are located 200–

2000 bp apart with at least some unique sequence between them

and selected those located at gene promoters and imprinted

regions. Each HAF was represented on the microarray by at least

14 oligonucleotides, each 50 nucleotides in length and randomly

distributed across the microarray slide. HELP microarray data will

be submitted to the GEO database for public access. Raw data

reports (.pair files) went through an analytical pipeline of array

performance and quality assessment previously described [45]. 10

and included removal of failed probes, summarization of the

remaining probes belonging to the 20%-trimmed mean for each

HAF. The functions in this pipeline also allows for quantile

normalization that solves the fragment size-dependency of the

MspI, HpaII and HpaII/MspI ratio distributions seen in this

assay. The R statistical package (http: //www.r-project.org/) was

used to calculate the normalized log2 HpaII/MspI ratios allowing

us to semi-quantitatively categorize each loci as methylated or

hypomethylated based quantitative methylation detected using

MassArray Epityping as a validation approach described below. In

all instances, HpaII-amplifiable fragments (HAF) sequence were

linked to gene promoters (defined as 2000 bp upstream from

transcription start site) by using genomic coordinates from

National Center for Biotechnology Information Build 35.

Array Comparative genomic hybridization (aCGH)
DNA was hybridized to a oligonucleotide array CGH

(NimbleGen Systems), consisting of 388,560 isothermal probes

(length 45–75 bp) covering unique genomic regions (median probe

spacing of 6 kb). Hybridizations were performed at NimbleGen

Facility and a reference sample of Human Male Genomic DNA

was used as a normal control. Intensity data underwent through

a qspline fit normalization algorithm 11 that was used to

compensate for inherent differences in signal between the two

dyes. To avoid false positive calls due to local variation in signal

intensity, a second pass filter was employed. This filter discards

change points if their means are not at least 1.5 SD from each

other. Log2-ratio values of the probe signal intensities (Cy3/Cy5)

were calculated and 120,000 bp windows-average were generated

to visualize copy number changes using the circular binary

segmentation algorithm 12 contained on the Roche NimbleScan

software. Oligonucleotide array data will be submitted to the GEO

database for public access. In all instances, DNA sequence

coordinates are from National Center for Biotechnology Informa-

tion Build 35.

Data integration and 3D visualization
An analytical pipeline was developed to integrate all

platforms. In summary, Gene expression (GE), HELP and

aCGH probes were linked to genes base on the basis of genomic

coordinates isolated from NCBI build35. Probe to gene links

containing data from all three platforms, after proper normal-

ization described above, were considered for 3D integration.

TTEST pairwise comparisons of GE and HELP were

performed between main histological groups (squamous vs

dysplasia and dysplasia vs adenocarcinoma) and fold change

differences with their p-values were calculated. The last two

variables for each pairwise were plotted simultaneously for each

gene on a k-space where the x axis represents fold-change

differences (log2) in GE and the y axis represents fold-change

differences (log2) in methylation. The ‘‘z’’ axis is used to

represent the significance level in –log10 p-value for both

platforms. Color-coding for significant cut-offs was defined for

those genes over 2.5 fold change in GE with a p-value , 0.05,

with green representing downregulated and red upregulated

genes. The same criterion was used to detect significant changes

in methylation. A darker shade of color was added to the red

and green labels to define the hypermethylated genes (on top of

the graph) and lighter shade of red and green was used to define

significantly hypomethylated genes.

Copy number alterations were defined by two fold criteria: the

gene center approach and the genomic segmentation approach. In

the gene center approach, the aCGH probes contained in the

intragenic region or promoter region (when intergenic area was

not available), were averaged. Computational based approach to

find accumulative changes on 50% of DNA content in all three

histological stages for each patient was considered gain or loss

depending if the progressive trend was positive or negative

respectively. A similar approach was also taken for the Circular

binary segmentation (CBS) analysis, this time visual inspection at

genomic windows of 120,000 bp was applied and genomic

segments isolated and classified as gain or losses. Genomic

windows were linked to genes and gene copy number changes

for each patient was defined as those that agreed on last two

criteria. Finally, on the integrative figure, copy number changes

were depicted by larger circles. Genes classified as amplified and

deleted had a 3 fold more larger size compared to their normal

counterparts.

Quantitative DNA methylation analysis by MassArray
Epityping

Quantitative high-throughput DNA methylation analysis to

validate HELP results was carried out by MALDI-TOF mass

spectrometry using Sequenom’s EpiTYPER platform (Sequenom.

San Diego, CA). The same DNA aliquots used for HELP were

bisulfite-converted; PCR amplified and follow by an in vitro RNA

transcription and a base specific cleavage. MALDI TOF MS

analysis of the cleavage product was performed as described

originally [24,25]. MassArray primers were designed and are

available upon request.

Chemokine and cytokine detection
Five serum samples from patients with gastroesophageal reflux

disease (GERD) symptoms and normal esophageal histology, and

five serum samples from esophageal adenocarcinoma patients

were collected for analysis. Frozen endoscopic tissues from the

same patients were also collected and used for tissue lysates. To

determine cytokine levels in the serum, Meso Scale Discovery

System multiplex assay were used for human Eotaxin (CCL11),
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IL-8 (IL8), IP-10 (CXCL10), MCP-1 (CCL2) and MCP-4

(CCL13) according to the manufacturer’s instructions.

Luminometric methylation assay (LUMA)
Genomic DNA (200–500 ng) was cleaved with HpaII + EcoRI

or MspI + EcoRI in two separate 20 ml reactions containing

33 mM Tris-acetate, 10 mM Mg-acetate, 66 mM K-acetate pH

7.9, 0.1 mg/ml BSA and 5 units of each restriction enzymes. The

reactions were set up in a 96-well format and incubated at 37uC
for 4 h. Then 20 ml annealing buffer (20 mM Tris-acetate, 2 mM

Mg-acetate pH 7.6) was added to the cleavage reactions, and

samples were placed in a PSQ96TMMA system (Biotage AB,

Uppsala, Sweden). The instrument was programmed to add

dNTPs in four consecutive steps including Step 1: dATP (the

derivative dATPaS is used since it will not react directly with

Luciferase and prevents non-specific signals); Step 2: mixture of

dGTP + dCTP; Step 3: dTTP; and Step 4: mixture of dGTP +
dCTP. Peak heights were calculated using the PSQ96TMMA

software. The HpaII/EcoRI and MspI/EcoRI ratios were

calculated as (dGTP + dCTP)/dATP for the respective reactions.

The HpaII/MspI ratio was defined as (HpaII/EcoRI)/(MspI/

EcoRI) [46].

Supporting Information

Figure S1 Location of Esophageal Samples: Endoscopic biopsies

from 3 patients (depicted with different colors) were taken. Green

circles represent a 87 yr old male, Blue circles represent a 77 yr old

male and Orange circle represent a 56 yr old female. N = Normal

esophagus; B = Barrett’s esophagus; L = LGD, H = HGD; A = Ad-

enocarcinoma.

Found at: doi:10.1371/journal.pgen.1001356.s001 (0.10 MB

DOC)

Figure S2 Methylation data obtained from the HELP assay

correlates with MassArray Epityper analysis.

Found at: doi:10.1371/journal.pgen.1001356.s002 (0.19 MB

DOC)

Figure S3 Schematic representation of combined effects of

genetic and epigenetic events in esophageal: The first panel shows

that uniallelic genetic deletion of the chr9p21 locus in dysplasia

results in downregulation of both CDKN2A/p16 and CDKN2B/

p15 genes. The reduction in expression though is much greater for

p15 as the promoter gets hypermethylated. The second panel

shows that in addition to amplification, the CXCL1 and CXCL3

gene promoters were also hypomethylated during transformation,

and their relative increase in transcript expression was many fold

greater (4–6 fold by array, 10–20 fold by qRT-PCR) than that of

IL-8, a chemokine gene which was part of the 4q21 amplicon but

whose promoter was not affected by loss of methylation.

Found at: doi:10.1371/journal.pgen.1001356.s003 (0.05 MB

DOC)

Table S1 Genes overexpressed and amplified during transfor-

mation of normal esophageal squamous epithelium to Barrett’s

esophagus and low grade dysplasia.

Found at: doi:10.1371/journal.pgen.1001356.s004 (0.14 MB

DOC)

Table S2 Genes overexpressed and hypomethylated during

transformation of normal esophageal squamous epithelium to

Barett’s esophagus and low grade dysplasia.

Found at: doi:10.1371/journal.pgen.1001356.s005 (0.13 MB

DOC)

Table S3 Genes overexpressed, amplified and hypomethylated

during transformation of normal esophageal squamous epithelium

to Barett’s esophagus and low grade dysplasia.

Found at: doi:10.1371/journal.pgen.1001356.s006 (0.04 MB

DOC)

Table S4 Genes significantly hypomethylated during transfor-

mation with methylation changes occurring outside of CpG

islands.

Found at: doi:10.1371/journal.pgen.1001356.s007 (0.09 MB

DOC)
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