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Abstract: Cardiovascular diseases (CVDs) remain the leading cause of death in women worldwide.
Although traditional risk factors increase later-life CVD, pregnancy-associated complications addi-
tionally influence future CVD risk in women. Adverse pregnancy outcomes, including preeclampsia
and fetal growth restriction (FGR), are interrelated disorders caused by placental dysfunction, ma-
ternal cardiovascular maladaptation to pregnancy, and maternal abnormalities such as endothelial
dysfunction, inflammation, hypercoagulability, and vasospasm. The pathophysiologic pathways
of some pregnancy complications and CVDs might be linked. This review aimed to highlight the
associations between specific adverse pregnancy outcomes and future CVD and emphasize the im-
portance of considering pregnancy history in assessing a woman’s CVD risk. Moreover, we wanted to
underline the role of maternal cardiovascular maladaptation in the development of specific pregnancy
complications such as FGR.

Keywords: cardiovascular disease; pregnancy complications; fetal growth restriction; preeclampsia;
maternal morbidity

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of women’s mortality globally,
accounting for approximately one of every three female deaths [1]. The population-adjusted
risk of CVDs-related death is significantly higher for women compared to men, 21% versus
15%, respectively [2]. Despite the significant decline in CVDs-related death in the last
few decades, the mortality for women has decreased much slower than for men [3]. The
underlying risk factors are frequently present many years before the clinical presentation
of CVDs. Moreover, there has been growing evidence that women with a history of certain
pregnancy complications are at increased risk of developing CVDs in the future [4,5].
These adverse pregnancy outcomes (APOs) include fetal growth disorders, gestational
hypertension, or preeclampsia (See Table 1) [6].

Pregnancy acts as a maternal stress test, and the development of obstetric compli-
cations plays a potential role in a woman’s susceptibility to future CVDs. The etiologic
pathways of pregnancy complications and CVDs might also be linked (e.g., metabolic
syndrome, vascular dysfunction, or inflammation) [7]. The importance of these associations
has been raised by the current guidelines, which now recommend a pregnancy history as a
part of the routine evaluation of cardiovascular risk in women [8,9].

It is increasingly apparent that the effects of the maternal cardiovascular system
maladaptation changes the predisposition to CVDs development after pregnancy. We
aimed to systematically evaluate and quantify the evidence on the relationship between
specific APOs’ and maternal risk of future cardiovascular disease. However, other factors,
such as diabetes, renal impairment, or other dysmetabolic conditions will not be included
in the analysis.

J. Clin. Med. 2022, 11, 6048. https://doi.org/10.3390/jcm11206048 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11206048
https://doi.org/10.3390/jcm11206048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0003-1143-2485
https://orcid.org/0000-0001-7455-0839
https://orcid.org/0000-0003-2630-5016
https://doi.org/10.3390/jcm11206048
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11206048?type=check_update&version=2


J. Clin. Med. 2022, 11, 6048 2 of 16

Table 1. Definitions of adverse pregnancy outcomes (APOs).

Type of APO Definition

Gestational hypertension

De novo hypertension that develops after 20 weeks of pregnancy:
- systolic blood pressure equal to or higher than 140 mmHg
AND/OR
- diastolic pressure equal to or higher than 90 mmHg on two separate occasions in
a patient who was previously normotensive without proteinuria or other
end-organ involvement [6].

Preeclampsia

De novo hypertension that develops after 20 weeks of pregnancy AND:
1. Proteinuria (≥300 mg/24-h of 0.3 g/g by urine protein: creatinine ratio or +1 by
urine dipstick), OR
2. In the absence of proteinuria:
- serum creatinine ≥ 90µmol/L
- alkaline or aspartate transaminase > 40 IU/L
- platelet count < 150 000/µL
- neurological complications (including altered mental status, blindness, stroke,
severe headaches, clonus, and persistent visual scotomata)
- uteroplacental dysfunction (including fetal growth disorder, abnormal umbilical
artery Doppler waveform analysis or stillbirth) [10,11].

Fetal growth restriction

(a) Early-onset

(diagnosed before 32 weeks of gestation):

1. Fetal abdominal circumference below the 3rd percentile for gestational age OR
2. Estimated fetal weight below the 3rd percentile for gestational age, OR
3. The absence of end-diastolic flow of the umbilical artery on Doppler, AND
- estimated fetal weight, or waist circumference below the 10th percentile for
gestational age, AND
- the pulsatility index of the uterine, and/or umbilical arteries above the 95th
percentile for gestational age [12].

(b) Late-onset

(diagnosed at or after 32 weeks of gestation):

1. Fetal abdominal circumference below the 3rd percentile for gestational age, OR
2. Estimated fetal weight below the 3rd percentile for gestational age,
AND the combination of at least two of the following parameters:
- estimated fetal weight or fetal abdominal circumference below the 10th percentile
for gestational age,
- the reduction in more than two quartiles in the growth curve
- the cerebroplacental association below the 5th for gestational age
- the pulsatility index of the umbilical artery above the 95th percentile for
gestational age [12].

Gestational diabetes mellitus

One or more of the following criteria met at any time of pregnancy:
- fasting plasma glucose 5.1–6.9 mmol/L (92–125 mg/dL)
- 1-h plasma glucose ≥ 10.0 mmol/L (180 mg/dL) following a 75 g oral glucose
load [13].

2. Preeclampsia

Preeclampsia is a pregnancy-specific disorder with an estimated incidence of 2–8% of
all gestations associated with high maternal, fetal, and neonatal morbidity and mortality
worldwide [14–16]. A detailed definition of preeclampsia is provided in Table 1. There is
growing evidence of long-term cardiovascular sequelae in women who had preeclampsia
during pregnancy [17,18].

2.1. Preeclampsia and Maternal Cardiovascular Risk

Several studies have shown the relationship between preeclampsia and future ma-
ternal CVDs [19–23]. The CHAMPS (Cardiovascular Health After Maternal Placental
Syndromes) study indicated a more than a 2-fold increased risk of CVD (defined as hospital
admission or revascularization for coronary artery, cerebrovascular, or peripheral artery
disease at least 90 days after the delivery discharge date) in women affected by preeclamp-
sia with absent traditional CVD risk factors (HR: 2.1; 95% CI: 1.8–2.4), and approximately
12-fold increased risk of CVD in women with a history of preeclampsia and metabolic
syndrome (hazard ratio [HR]: 11.7; 95% confidence interval [CI]: 4.9–28.3) as compared to
women with neither [19]. Apart from the pregnancy-specific factors and age, other risk
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factors are shared by preeclampsia and CVDs, but a direct causative relationship has not
yet been determined. Lin et al., in a study performed on a Taiwanese cohort, demonstrated
an increased risk of major adverse cardiovascular events including myocardial infarction,
cardiogenic shock, heart failure, stroke, malignant dysrhythmia, or any other condition re-
quiring percutaneous cardiac intervention, coronary artery bypass, an implantable cardiac
defibrillator, or thrombolysis within three years of a preeclamptic pregnancy (HR: 12.6; 95%
CI: 2.4–66.3) [20]. Kestenbaum et al., showed more than a 3-fold increase in cardiovascular
events (hospitalizations due to MI, stroke, or percutaneous coronary artery interventions)
(HR: 3.3; 95% CI: 1.7–6.5) and a higher number of thromboembolic events (HR: 2.3; 95%
CI: 1.3 to 4.2) among women with previous severe preeclampsia during a mean follow-up
of approximately eight years [22]. Furthermore, a Norwegian population-based cohort
study with a median 13-year follow-up found an increased risk of CVD-related death
defined as coronary artery disease, disease of the pulmonary circulation, or other diseases
affecting the heart in women with a history of preeclampsia during pregnancy (RR: 1.65,
95% CI: 1.01–2.70), but the risk of CVD-related death was markedly higher in women with
preeclampsia and preterm delivery (RR: 8.12, 95% CI: 4.31–15.33) as compared to women
with a history of uncomplicated pregnancy [23]. The results of the British CALIBER (Car-
diovascular Research using Linked Bespoke Studies and Electronic Health Records) study
were similar, along with the reported overall first-time cardiovascular event incidence of
2.77% in the first nine years after a delivery complicated by preeclampsia in contrast to a
1.4% rate in women after an uncomplicated pregnancy [24].

Recent metanalysis reported that even after adjusting for potential confounders in-
cluding age, body mass index, and diabetes mellitus, preeclampsia was related to increased
risk of heart failure (RR: 1.6, 95% CI: 0.73–3.5), stroke (RR: 1.18; 95% CI, 0.95–1.46), coronary
artery disease (RR: 1.46; 95% CI: 0.95–2.25), and death because of coronary artery disease
(RR: 2.10; 95% CI, 1.25–3.51) or cardiovascular disease (RR: 2.21; 95% CI, 1.83–2.66), more
than ten years after a pregnancy affected by preeclampsia. However, the increase in the risk
for heart failure, stroke, and CVD-related death was even higher during the first decade
after a pregnancy complicated with preeclampsia [25].

Notably, another large cohort study indicated an elevated risk of CVD-related death
in women with a history of preeclampsia (HR: 2.14; 95% CI: 1.29–3.57), with a further
significant risk acceleration if preeclampsia occurred before 34 weeks of gestation (HR:
9.54; 95% CI: 4.5–20.26) [26]. Moreover, Riise et al., reported a further increase in the CVD
risk defined by coronary artery disease, after the recurrence of preeclampsia (HR 2.20;
95% CI: 0.91–5.32 in recurrent preeclampsia and HR 1.95; 95% CI: 1.31–2.91 for a single
pre-eclampsia pregnancy), compared with uncomplicated pregnancies. When preeclampsia
was combined with FGR or preterm birth, the risk was markedly higher (HR 4.66; 95%
CI: 2.31–9.37 in recurrent preeclampsia as in comparison to one episode of preeclampsia;
HR 2.81; 95% CI: 1.70–4.61) [27]. Other studies also support these results [RR 2.40; 95% CI:
2.15–2.68] [28–30]. Details are presented in Table 2. A higher frequency of heart failure (HR
4.2; 95% CI: 2.9–6.1) and cerebrovascular disease (HR 3.0; 95% CI: 1.70–4.61) among women
with recurrent preeclampsia compared to women with unaffected pregnancy has also been
reported [31].

Table 2. Selected published studies of preeclampsia and future risk of cardiovascular disease.

Study/First Author
(Reference) Design Population

Size
Follow-Up

(Period, Years)
Outcome
Measure

Risk of Outcome
Measures

HR (95% CI)

Ray [20] Retrospective 1,030,000 - CVD 2.1(1.8–2.4)

Lin [21] Registry 1,132,064 >3 years

Any MACE
MI

Heart failure
Stroke

MACE-related death

12.6 (2.4–66.3)
13.0 (4.6–6.3)
8.3 (4.2–16.4)

14.5 (1.3–165.1)
2.3 (1.6–3.1)
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Table 2. Cont.

Study/First Author
(Reference) Design Population

Size
Follow-Up

(Period, Years)
Outcome
Measure

Risk of Outcome
Measures

HR (95% CI)

Kestenbaum [22] Retrospective 31,239 - CV events
Thromboembolic events

2.2 (1.3–3.6) (mild
pre-eclampsia) and
3.3 (1.7–6.5) (severe

pre-eclampsia)
2.3 (1.3–4.2) (severe

pre-eclampsia)

Irgens [23] Registry 626,272
0 to 25 years
(median 13

years)
CVD-related death

1.65,
(1.01–2.70)—with

preeclampsia
8.12 (4.31–15.33)

with preeclampsia
and preterm birth

Mongraw-Chaffin [26] Retrospective 14,403 Median 37 years CVD-related death

2.14 (1.29–3.57)
9.54 (4.50–20.26) if

onset of
preeclampsia

before
34 weeks’ gestation

Auger [32] Registry 1,108,581
0–25.2 years

(Median
15.5 years)

CAD
HF

Cerebrovascular disease

3.3 (2.1–5.2)
4.2 (2.9–6.1)

3.0 (2.3–4.1)—with
recurrent

preeclampsia

CALIBER [24] Registry 1,300,000 -

CAD
Stroke

Heart failure,
Hypertension

CVD-related death

1.67 (1.54–1.81)
1.9 (1.53–2.35)
2.13 (1.64–2.76)
4.47 (4.32–4.62)
2.12 (1.49–2.99)

Wikstrom [33] Registry 403,555 15 years CAD

1.6 (1.3–2.0) with
GHA

1.9 (1.6–2.2) with
mild preeclampsia

2.8 (CI 2.2–3.7)
with severe

pre-eclampsia

Smith [34] Registry 129,920 15–19 years CAD-related death 1.7 (0.9–3.3)

Lykke [35] Registry 782,287 14.6 years CVD-related death 2.08 (1.63–2.64)

Kessous [36] Registry 96,370 10 years

CVD: hospitalization for
CAD, stroke, peripheral

vascular disease,
hyperlipidemia, angina,

hypertension,
atherosclerosis, MI, heart
failure, pulmonary heart

disease, cardiac arrest,
cardiac catheterization, or
cardiovascular stress test

1.7 (1.6–1.9)

Crillo [37] Registry 14,062 40 years CAD-related death 3.6 (1.04–12.19)

Hannaford [38] Prospective 23,000 Not available

Hypertension
CAD

Angina
Venous thromboembolism

2.35 (2.08–2.65)
1.65 (1.26–2.16)
1.53 (1.09–2.15)
1.62 (1.09–2.41)
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Table 2. Cont.

Study/First Author
(Reference) Design Population

Size
Follow-Up

(Period, Years)
Outcome
Measure

Risk of Outcome
Measures

HR (95% CI)

McDonald [39] Metanalysis 2,375,751 Not available
CVD-related death

Stroke
Peripheral artery disease

2.29 (1.73–3.04)
2.03 (1.54–2.67)
1.87 (0.94–3.73)

Wu [25] Metanalysis 6,400,000 Not available

CAD
CAD-related death

Heart failure
stroke

CVD-related death

1.46 (0.95–2.25)
2.1 (1.25–3.51)
1.6 (0.73–3.5)

1.18 (0.95–1.46)
2.21 (1.83–2.66)

Abbreviations: CAD, coronary artery disease; CV, cerebrovascular; CVD, cardiovascular disease; HF, heart failure;
MACE, major adverse cardiovascular event; MI, myocardial infarction.

2.2. Potential Mechanisms Linking Preeclampsia and Development of Future Maternal
Cardiovascular Diseases

A few potential explanations for the association between preeclampsia and CVD
are discussed. It has been proposed that preeclampsia may contribute as a predictor
of cardiovascular events through distinct pathways [25]. On the other hand, the link
between future CVD and preeclampsia may in part be due to shared risk factors between
these entities. An unfavorable cardiovascular risk profile characterized by dyslipidemia,
insulin resistance, diabetes, obesity, or endothelial dysfunction, heightened inflammatory
responses, and hypercoagulable states frequent in preeclamptic women may result in an
increased risk of CVD [14,25,40]. Another theory, which may be related to the above-
mentioned, includes permanent vascular changes with excessive endothelial dysfunction
that mediate the risk for future CVD [41].

Preeclampsia is characterized by pathological remodeling of the placental vessels,
which is considered the main cause of uteroplacental ischemia. Spiral arteries do not
undergo a physiological transformation and retain thick walls with a narrow lumen. The
unsuccessful remodeling of spiral arteries results in high-velocity maternal blood flow at
the intervillous space (approximately of 1–2 m/s) with a high spurt destroying the villi and
forming thrombus-lined echogenic cystic lesions which can also be released to maternal
circulation [42]. Furthermore, remodeling failure results in a repeated cycle of placental
ischemia/reperfusion and leads to endothelial dysfunction, increases in the formation of
reactive oxygen species (ROS) and the release of inflammatory cytokines and antiangiogenic
factors, and maternal immune cell imbalance [43]. ROS decreases the bioavailability of
proangiogenic factors such as nitric oxide which can result in impaired vasodilation, and
angiogenesis, and increases the bioavailability of antiangiogenic factors such as soluble fms-
like tyrosine kinase 1 (sFlt-1) soluble Endoglin (sEng) [44]. sFlt-1 is linked with defective
angiogenesis and endothelial dysfunction by binding vascular endothelial growth factor
and placental growth factor, while sEng which is a cell-surface co-receptor of transforming
growth factor β (TGF β) initiates the proliferation and migration of endothelial cells [42]. It
is believed that these antiangiogenic biomarkers strongly contribute to endothelial damage
during the preeclamptic pregnancy, but do not remain significantly elevated after the
delivery. It is hypothesized that the vascular damage sustained during the preeclamptic
pregnancy persists and contributes to its own cascade in the CVD development in these
patients [41]. Moreover, ROS disrupts maternal endothelial function by releasing cell-free
fetal DNA and extracellular vesicles such as exomes into the maternal circulation [42].

Endothelial dysfunction is associated with inflammation and in consequence atheroscle-
rosis [43]. The lipid deposition in the walls of the uterine spiral arteries resembles the early
stages of atherosclerosis [45]. During early atherogenesis, low-density lipoprotein delivers
cholesterol to the activated macrophages, which scavenge lipids. In an inflammatory milieu,
the cholesterol cannot be recycled back into the circulation to the liver instead, it is trapped
in the macrophages due to impaired reverse cholesterol transport in inflammation [46].
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Acute atherosis in spiral arteries is represented by subendothelial lipid-filled foam cells
enriched by CD68-positive macrophages, arterial wall fibrinoid necrosis, and perivascular
lymphocytic infiltration [46,47]. It is also postulated that T regulatory cells (Tregs) protect
against the development of atherosclerosis by downregulating effector T cell responses,
despite their main role in maternal immunoregulation. However, the Tregs differentiation
is stimulated by TGF β. As the above-mentioned TGF β is modulated by sEng, so it seems
that high concentrations of sEng could locally inhibit the generation of Tregs cells and
thereby promote acute atherosis [46].

The novel hypothesis links cellular fetal microchimerism (cFMC) with acute atherosis
and the future development of CVD [48]. cFMC arises when cells of fetal origin are
released into maternal blood and tissues during pregnancy [48]. These cells are known to
possess stem cell-like properties, with the potential to differentiate into endothelial cells,
smooth muscle cells, or leukocytes, and may persist in maternal circulation for decades [49].
Recent studies reported that cFMCs are more frequent in pregnancies complicated by
preeclampsia or severe FGR than in healthy pregnancies [50,51]. It is hypothesized that in
the dysfunctional placenta, fetal cells transfer more freely into the maternal bloodstream
and induce a maternal anti-fetal immune response towards the fetal cells expressing foreign
HLA surface peptides. If fetal cells persist in the circulation or are engrafted in maternal
endothelial cells, they could induce further inflammation, especially in vessel walls, and
initiate the development of inflammatory arterial lesions, particularly as acute atherosis [48].

Another possible mechanism involved in endothelial dysfunction seen in both atheroscle-
rosis and preeclampsia is abnormal endothelial to mesenchymal transition (EndMT) [43].
EndMT is a normal, complex, dynamic, and reversible process during pregnancy in which
epithelial cells lose polarity and adhesiveness, change to a mesenchymal phenotype, and ac-
quire increased mobility [52]. Abnormal EndMT is observed in preeclampsia and is frequent
in atherosclerotic lesions and plays a role in plaque progression and calcification [43].

It is hypothesized that in preeclamptic women, the endothelial integrity is not fully
restored and remains more sensitized to stress-related or inflammatory stimuli as observed
in atherosclerosis [43]. It was recently reported that women with placental malperfusion
lesions had an adverse cardiovascular profile comprised of microvascular rarefaction with
abnormalities in circulating endothelial and antiangiogenic factors, higher blood pressure,
and more atherogenic lipids years after delivery [53]. Drost et al., showed that women
with a history of preeclampsia have higher levels of SE-selectin and pregnancy-associated
plasma protein A(PAPPA) compared to women with healthy pregnancies a decade after PE,
after adjustment for traditional CVD risk factors [54]. SE-selectin is a marker of endothelial
dysfunction, while PAPPA is a metalloproteinase associated with the presence of vulnerable
atherosclerotic plaques and myocardial infarction [54,55]. Metalloproteinases may be the
link between placental alterations in pregnancy and CVD in later life, supporting the
hypothesis that vascular alterations in preeclampsia lead to persistent vascular damage
and early development of atherosclerosis [54]. It is also postulated that comorbidities (e.g.,
gestational diabetes) may worsen the clinical course of preeclampsia by sharing similar
placental vascular alterations that synergistically increase the risk of future CVD [56,57].

It is also hypothesized that several common genetic or epigenetic mechanisms may
predispose to both acute atherosis and atherosclerosis and future CVDs [58]. It was found
that women with a polymorphism of the regulator of the G protein signaling (RGS2) gene
are at a higher risk of both preeclampsia and acute atherosis [59]. Reduced expression of
RGS2 has also been linked to arterial hypertension [58].

Furthermore, subclinical markers of CVD, such as coronary artery calcium score
(CACS), are also significantly higher in women with a previous pregnancy complicated by
preeclampsia even after adjustment for age, blood pressure, and body mass index [22,23,60–62].
Moreover, 47% of women with prior preeclampsia had coronary atherosclerotic plaques
on coronary computed tomography angiography and 4.3% had significant stenosis [63].
Formerly preeclamptic women develop coronary artery calcifications on average five years
earlier from the age of 45 years onwards than women with prior normotensive preg-



J. Clin. Med. 2022, 11, 6048 7 of 16

nancy [64]. It was hypothesized that the body may not recover from the changes in the
vascular and metabolic systems associated with preeclampsia and may demonstrate in later
life with future cardiovascular events [64]. Similarly, previous studies demonstrated an
increase in carotid intima-media thickness, a marker of subclinical atherosclerosis augmen-
tation index in women with previous preeclampsia compared to age- and parity-matched
controls [65].

Recent studies have shown that extracellular vesicles (EVs) are essential mediators
in preeclampsia-related maternal CVDs [66,67]. EVs are membrane-bound particles con-
sisting of bioactive proteins, lipids, DNA, mRNA, and microRNA (miR) that participate in
cell-to-cell communication [66]. Placenta-derived EVs interact with the maternal immune
system resulting in vascular inflammation and endothelial injury [66]. Several miRNAs in
the placenta or blood of women with preeclampsia have been reported to be upregulated
or downregulated compared with healthy pregnant women [67]. In particular, has-miRNA-
134 overexpression is hypothesized to be involved in the inhibition of trophoblast cell
infiltration by targeting integrin beta-1. has-miRNA-134 has also been associated with
atherosclerosis, particularly acute myocardial infarction [67]. has-miRNA-23a-3p over-
expression has been demonstrated to be involved in the pathophysiology of myocardial
infarction and heart failure [68]. has-miRNA-23a-3p upregulation has been reported in the
pathophysiology of myocardial infarction and heart failure and vascular calcification [68].
The up-regulation of has-miRNA-499a-5p has been linked with hypertension, preeclampsia,
and FGR [69].

Physiological heart hypertrophy, which occurs during pregnancy in response to vol-
ume overload and hormonal stimuli, enables the heart to fulfill its function without sig-
nificant long-term detrimental effects on cardiac function [66,70]. Higher vulnerability of
ischemia-reperfusion injury during pregnancy complicated by preeclampsia is associated
with increased ROS generation and decreased threshold for triggering the mitochondrial
permeability transition pore opening. Pregnancy also has an impact on the number and
content of EVs affecting the function of the heart. Placenta-derived EVs may impact
ischemia-related injury due to a higher generation of ROS and activation of apoptosis
during pregnancy [40]. Recently, Powell et al., demonstrated that EVs from preeclamptic
women contribute to arterial tone regulation. They documented that ex vivo exposure of
isolated mouse mesenteric arteries to EVs purified from the plasma of pregnant women
with preeclampsia led to constriction in response to intraluminal pressure and resistance
to methacholine-stimulated relaxation [71]. Furthermore, it is also suggested that EVs-
exosomes from preeclampsia contribute to the dissemination of endothelial damage by
sequestering the free vascular endothelial growth factor (VEGF) in the maternal circula-
tion [72–78].

Moreover, gravidas with preeclampsia have significantly lower levels of angiotensin II
compared to normal pregnancy, and these women have exacerbated vascular responses to
angiotensin II in later life which also contributes to impaired microvascular function [74,75].
Interestingly, the expression of neprilysin is significantly increased in preeclampsia [76].
Neprilysin is released into the maternal circulation bound to placenta-derived EVs [66].
Increased levels of neprilysin might contribute to the persistence of hypertension and
cardiac remodeling after pregnancy. A few studies based on animal models found the
important role of the upregulated endothelin-1-mediated signaling in reduced endothelium-
dependent dilation in preeclampsia [41,77].

Another possible mechanism linking preeclampsia with future CVD is increased
sympathetic activity [44]. It has been reported that maladaptive baroreceptor responses
are associated with persistently reduced plasma volume in women after a pregnancy
complicated with preeclampsia opposite to normal sympathetic activity in women with
uncomplicated pregnancies who return to euvolemia [44,78].

The mechanisms underlying the development of heart failure in women with prior
preeclampsia remain poorly understood. It was previously suggested that preeclampsia
might be a part of a pathway that leads to impairments in cardiac function [79]. Miralles
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et al., reported that preeclampsia might have long-term effects on the maternal cardiovas-
cular system independently of any predisposing conditions. They used the STOX1 (the first
gene identified in human families with preeclampsia via positional cloning) mouse model
of preeclampsia and showed the expression of this gene in the disruption of cytotrophoblast
function, associated with a marked imbalance between nitrosative and oxidative stresses
within the placenta. They observed left ventricular hypertrophy, fibrotic cardiomyocytes,
kidney glomerulitis, and modified transcriptome profile of the endothelial cells in female
mice with preeclampsia as compared to normotensive controls [80]. Transcriptomic analysis
indicated the deregulation of 165 genes in the heart, mainly linked with cardiac hyper-
trophy, and of 1149 genes in purified endothelial cells, associated with inflammation and
cellular stress [80].

Women with pregnancies affected by preeclampsia have evidence of biventricular
diastolic dysfunction and impaired systolic strain despite preservation of global systolic
function assessed by ejection fraction [81]. During a hypertensive pregnancy, a significant
increase in ventricular mass and relative ventricular wall thickness is also observed, indicat-
ing that the disproportion between wall thickens and the increase in ventricular volume [82].
Additionally, preeclampsia might cause structural and functional vascular changes that,
along with cardiac remodeling, may result in microcirculatory shortfall [83]. Several pre-
vious studies indicated that in 25% to 72% of these women, the above-mentioned cardiac
adaptations persist and do not revert during the postpartum period, causing a higher
vulnerability to develop cardiovascular disease in later life [84–86]. A recent metanalysis
showed a higher left ventricular mass index in women with prior preeclampsia with a mean
difference of 4.25 g/m2 (95% CI, 2.08–6.42) [87]. On the contrary, others reported either no
increase in left ventricular mass or a reversion to a pre-pregnancy state [81,85,88–90].

Most studies demonstrated a reduction in global strain in all principal directions
(radial, circumferential, longitudinal), whereas few studies with relatively low samples did
not indicate a significant difference [81,85,91,92]. In comparison with the no preeclampsia
population, they also demonstrated a lower E/A ratio and a higher E/e′ ratio with a mean
difference of −0.08 (95% CI, −0.15, −0.01) and 0.84 (95% CI, 0.41, 1.27), respectively [87].
Therefore, subtle contractional dysfunction may already occur without loss of ejection
fraction in formerly preeclamptic women, indicating global strain as a sensitive parameter
for early detection of cardiac function abnormalities [85].

3. Fetal Growth Restriction

Fetal growth restriction (FGR) is a condition of placental etiology with characteristics
of inappropriate maternal cardiovascular system adaptation during pregnancy. In this APO,
the fetus does not reach its biological growth potential due to impaired placental function,
which may result from a variety of factors [93]. It is estimated that FGR complicates up to
10% of pregnancies and is one of the leading causes of infant morbidity and mortality [93,94].
The etiology of FGR is complex and can be caused by maternal (hypertension, diabetes,
cardiopulmonary disease, anemia, malnutrition, smoking, drug use), fetal causes (genetic
factors, congenital malformations, fetal infection, multiple pregnancies), and placental
causes (placental insufficiency, placental infarction, placental mosaicism) [94]. FGR has
been classified based on gestational age at prenatal ultrasound diagnosis as early-onset—
diagnosed before 32 weeks of gestation and late-onset—diagnosed at or after 32 weeks of
gestation [93,95]. The recent international Delphi consensus proposed an algorithm-based
definition of FGR, which combine information on multiple fetal growth indicators in a
deterministic manner [12]. Details are presented in Table 1.

The etiology of FGR differs depending on whether we consider early or late-onset
fetal growth restriction. In early-onset FGR, two possible mechanisms concerning placental
abnormalities and maternal cardiovascular system adaptation explain why this disorder
occurs [16]. Moreover, early-onset FGR is frequently associated with preeclampsia (60–70%).
On the other hand, the late-onset FGR is suggested to unmask a preexisting sub-clinical
maternal cardiac dysfunction [96].
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3.1. Fetal Growth Restriction and Maternal Cardiovascular Risk

Previous studies indicated that women with a pregnancy complicated by FGR risk
developing CVDs in later life. FGR, similarly to CVDs, is characterized by chronic in-
flammation and oxidative stress [97]. Conditions such as obesity, hyperlipidemia, insulin
resistance, and hypertension are linked with FGR and CVDs [98,99]. Recently, Bijl et al.,
demonstrated that women with a pregnancy complicated by early-onset FGR had unfa-
vorable short-term cardiometabolic profiles with frequent obesity and low high-density
lipoprotein- cholesterol levels (<1.29 mmol/L) in comparison with a control group [100].
Borna et al., reported that delivery of a low-birth-weight child, a surrogate marker of FGR
increases the risk of future coronary artery disease approximately 6.5- fold. This association
is independent of cigarette smoking, hypertension, hyperlipidemia, diabetes mellitus, age,
body mass index (BMI), and waist circumference [98]. On the other hand, the results of the
HUNT (Nord-Trøndelag Health) study indicated that pregnancy complications including
preterm gestational age, led to only minor improvements in 10-year CVD risk prediction
for parous women, as estimated by changes in model discrimination and reclassification [7].
It was also reported that pregnancy complication history does not add to CVD risk strat-
ification for women aged fifty years and older. However, at younger ages, pregnancy
complication history is known to predict the development of conventional CVD risk factors
and may improve clinical risk prediction before the age of fifty years [101].

3.2. Potential Mechanisms Linking Fetal Growth Restriction and Development of Future Maternal
Cardiovascular Diseases

Although preeclampsia and FGR are different entities, they present as interrelated
disorders and share similar pathogenesis of inadequate placentation, inflammation, and ma-
ternal vascular dysfunction [102]. It is postulated that FGR is a result of poor trophoblastic
invasion leading to defective spiral artery remodeling and, consequently, increased mater-
nal peripheral vascular resistance and cardiac afterload [46,103,104]. However, it is also
hypothesized that altered cardiovascular function characterized by low maternal cardiac
output (CO) and high systemic vascular resistance (SVR) can exist before pregnancy and
cause inappropriate placental perfusion and hence trophoblast impairment [96,105,106].
The interplay between the SVR and CO causes a secondary increase in preload and greater
contractility of the left ventricle (LV) and consequently increase in LV mass [5]. Recent
studies demonstrated that women with pregnancies complicated with normotensive FGR
have a persistent myocardial impairment [98,107]. Melchiorre et al., reported that two-
thirds of women with pregnancies complicated by FGR had poorer diastolic reserve with
impaired myocardial relaxation, and a third had overt diastolic chamber dysfunction de-
spite a preserved geometry and ejection fraction as assessed 12 weeks after delivery [107].
Orabona et al., showed subclinical LV impairment in systodiastolic function with concen-
tric remodeling and smaller LV volumes, a slight alteration in right ventricular systolic
function, and left atrial strain, similarly to women with former preeclampsia [99]. During
normal pregnancy, eccentric cardiac remodeling typically occurs. Currently, it is believed
that concentric remodeling is strongly linked with cardiac fibrosis and has considerable
prognostic value in the development of CVDs [108,109]. It was found that most patients
with pregnancies complicated by FGR have abnormal LV strain values. The plausible
underlying mechanism may be related to chronic inflammation and oxidative stress, which
impair production and/or activation of intracellular mediators and result in myocardial
stiffening and interstitial connective tissue deposition leading to overt diastolic dysfunction
and relative ischemia [99]. However, due to the lack of longitudinal studies, it is not yet
elucidated whether FGR causes permanent cardiovascular alterations or whether these
women have preexisting impairments contributing to complicated pregnancies.

The reduced CO and Increased SVR ”re a’sociated with the activation of the renin-
angiotensin-aldosterone system. Previous studies indicated dysregulated angiotensin-
processing enzyme and neprilysin expression with the vasoconstrictor pathway predomi-
nance [110].
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Vascular dysfunction signs in FGR include a small placenta, decidual arteriopathy,
placental infarcts with loss of functional placental parenchyma, and abnormalities of the
placental villous tree, involving distal villous hypoplasia [96]. Similarly to preeclampsia,
repeated ischemia/reperfusion events are associated with increased levels of antiangiogenic
sFlt-1 and suppressed secretion of proangiogenic placenta growth factor (PIGF) [111]. It
is believed that the sFlt-1/PlGF ratio corresponds to the severity of placental vascular
dysfunction [112]. Inadequate trophoblastic invasion with the persistence of smooth muscle
in the vessel walls and vascular damage results in acute atherosis and fibrinoid necrosis
of vessels [113,114]. Moreover, cFMCs are also detected in pregnancies complicated by
severe FRF combined with impaired placental perfusion [48]. Moreover, patients with
previous FGR had a more severe degree of endothelial dysfunction than those with previous
preeclampsia [115].

Notably, it was proven that maternal genes might modulate fetal growth by altering
the intrauterine environment and uterine blood flow or by directly inheriting genes that
regulate fetal growth changing. An increased risk of coronary artery disease and FGR is
associated with mutations in genes encoding G proteins, glucokinase, angiotensinogen,
and coagulation factors [116–119].

Placenta-derived eVs are involved in maternal immunotolerance towards the fetal
allograft, inflammation, and angiogenesis. The fraction of circulating placenta-derived
eVs is reduced in FGR, likely because of the impaired placental trophoblast activity, and
may act as fetal growth markers [120,121]. A few studies indicated upregulation of specific
eVs containing miRNAs including miR-499a-5p, and miR-1-3p, miR-127-3p, and miR-519a,
and downregulation of others, particularly miR-210, miR-518b as a common feature of
placental insufficiencies including FGR [122–124]. Among dysregulated miRNAs in CVD,
miR-499-5p and miR-127-3p are highly overexpressed in heart failure and myocardial
infarction [125,126]. miR-210 is a well-known hypoxia miRNA, which is upregulated in
normal cells exposed to hypoxia in various diseases. In CVD, miR-210 is thought to protect
the cardiovascular system from potentially lethal injury by inhibiting cell apoptosis and
promoting angiogenesis, thus potentially guiding to revascularization [127]. However, the
potential links between these miRNAs on maternal cardiovascular system dysfunction
remain unclear. Thus, more studies are required to investigate whether epigenetic factors
and the expression of miRNAs are predictive in evaluating the association between FGR
and lifespan risk of CVDs.

It is postulated that FGR following maternal chronic bacterial infections is strongly re-
lated to a higher risk for atherosclerosis. Moreover, atherosclerotic plaques contain bacterial
DNA, and it seems reasonable that an infectious trigger underlies the development of acute
atherosis as well [48]. Exposure of human primary trophoblast to bacterial lipopolysaccha-
ride leads to tumor necrosis factor α (TNFα) upregulation and macrophage accumulation
in these cells [43]. TNFα is a strong inflammatory cytokine that is also upregulated in
atherosclerosis. It was also demonstrated that in patients with FGR, the inflammatory
response is stronger and remains stronger over time when compared to women with un-
complicated pregnancies [128]. Thus, TNFα seems to be a key player in several shared
pathologic mechanisms of both FGR and atherosclerosis [43].

4. Summary

Adverse pregnancy outcomes such as FGR and preeclampsia are strongly related
to long-term maternal CVDs risk. These pregnancy complications likely share common
pathophysiologic pathways and are related to similar predisposing factors in women.
Nonetheless, the intermediary mechanisms responsible for this association have not been
sufficiently elucidated. Since pregnancy occurs early in a woman’s life, typically before the
onset of clinically evident CVDs, it serves as a unique opportunity to evaluate a woman’s
later life CVDs risk and introduce meaningful risk-reduction strategies. Future studies
should address the issue of a structured screening for CVDs and the impact of timely
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preventive intervention in improving cardiovascular health in women with pregnancies
affected by APOs.
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