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Abstract: The challenge posed by resistance among Gram-positive bacteria, epitomized by 

methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) 

and vancomycin-intermediate and -resistant S. aureus (VISA and VRSA) is being met by a new 

generation of antimicrobials. This review focuses on the new β-lactams with activity against 

MRSA (ceftobiprole and ceftaroline) and on the new glycopeptides (oritavancin, dalbavancin, 

and telavancin). It will also consider the role of vancomycin in an era of existing alternatives 

such as linezolid, daptomycin and tigecycline. Finally, compounds in early development are 

described, such as iclaprim, friulimicin, and retapamulin, among others.

Keywords: Gram-positive bacteria, vancomycin, anti-MRSA cephalosporins, lipoglycopeptides, 

daptomycin, linezolid, tigecycline

Introduction
Bacterial resistance to antibiotics certainly does not represent a novel event. Since the 

introduction of benzylpenicillins (Figure 1.1), it has been observed that given enough 

time, bacteria will develop resistance to virtually any antibiotic introduced into clinical 

practice (Table 1). Currently, antibiotic resistance largely defi nes the epidemiology 

and pharmacologic therapy of infectious diseases. β-lactam resistant Gram-positive 

bacteria provide the best illustration of this phenomenon. The “persistent pathogen”, 

Staphylococcus aureus, is even more formidable since it manifested resistance to 

methicillin and other semi-synthetic penicillins, giving rise to the acronym “MRSA” 

(methicillin resistant S. aureus) (Sabath and Finland 1962). Presently, and perhaps 

in a more virulent fashion due to its association with Panton-Valentine leucocidin 

(PVL, an exotoxin active against neutrophils), MRSA has been implicated in a surge 

of community-acquired infections (CA-MRSA) that is reaching epidemic propor-

tions (Vandenesch et al 2003; King et al 2006; Voyich et al 2006; Labandeira-Rey 

et al 2007). Unfortunately, the entire class of β-lactam antibiotics currently in use is 

ineffective for the treatment of methicillin-resistant S. aureus (MRSA) infections. By 

virtue of its unique mechanism of action on the cell wall, vancomycin (Figure 1.5), the 

preeminent glycopeptide, became the antibiotic of “last resort” against resistant Gram-

positive bacteria. Unfortunately, Enterococcus spp. established itself in the 1990s as 

a “respected pathogen” in the nosocomial setting, more problematic than in the past 

because of its frequent resistance to vancomycin (vancomycin-resistant Enterococcus; 

VRE) (Murray 1990). This unwelcome development, together with the threat of the 

emergence of vancomycin-intermediate and -resistant S. aureus (VISA and VRSA) 

(Smith et al 1999), conspire to imperil the status of vancomycin as the “workhorse” 

antibiotic for the treatment of infections caused by Gram-positive bacteria.

Efforts to fi nd solutions to the “Gram-positive problem” have been fruitful. In the 

past decade, we witnessed the introduction into contemporary practice of oxazolidi-

nones (eg, linezolid [Stevens et al 2002] Figure 1.11), cyclopeptides (eg, daptomycin 
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[Fowler et al 2006] Figure 1.9) and glycylcyclines (eg, 

tigecycline [Babinchak et al 2005; Ellis-Grosse et al 2005] 

Figure 1.12), new classes of antibiotics with in vitro and 

clinical activity against MRSA and VRE. Furthermore, the 

rational design of new drugs based on “old molecules”, the 

discovery of agents with novel mechanisms of action, and 

the innovative application of the principles of pharmaco-

kinetics (PK) and pharmacodynamics (PD) to improve the 

use of existent drugs, offer great promise. Thus, we are at 

an important time to review the new antibiotics and those 

that are in development which target resistant Gram-positive 

pathogens. This article will summarize: i) the new generation 

of antibiotics effective against Gram-positive bacteria based 

on the modifi cation of the parent β-lactam and glycopeptide 

structures; ii) the insights gained from the use of vancomy-

cin; iii) the experience accumulated with the introduction of 

recently developed classes of antibiotics in the clinical arena; 

and iv) novel compounds in development. We also offer a 

clinical perspective to these emerging issues as infectious 

disease physicians.

Figure 1 Chemical structures of select antibiotics active against Gram-positive cocci.
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Table 1 Timeline of introduction of antibiotics active against Staphylococcus aureus; fi rst report of resistance and description of mechanism 
of resistance

Antibiotic Introduction Resistance
reported

Mechanism of resistance References

Penicillin 1943 1945 β-lactamase Demerec 1945

Methicillin 1959 1961 Penicillin binding protein (PBP) 2a Barber 1961

Tetracycline 1950 1955 Effl ux pumps (tetK and tetL) and ribosomal 
protection proteins (tetM and tetO)

Brodie et al 1955

Vancomycin 1956 1997/2002 Abundance of D-alanyl D-alanine/shift to 
D-alanyl D-lactate

Hiramatsu et al 1997; 
Chang et al 2003

Trimethoprim 1965 1986 Mutation in dihydrofolate reductase Archer et al 1986

Linezolid 2000 2002 Mutations in 23S ribosomal RNA Pillai et al 2002

Daptomycin 2003 2005 Mutations in mprF, rpoB, and rpoC (unclear). Hayden et al 2005

Tigecycline 2005 NR NR

Abbreviation: NR, not reported.
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New β-lactams against MRSA
The construction of the peptidoglycan backbone of the Gram-

positive bacterial cell wall requires the polymerization of a 

polysaccharide chain formed by discaccharide-pentapeptide 

monomers, with alternating N-acetylglucosamine (NAG) 

and N-acetylmuramic (NAM) acid moieties, and cross-

linked by peptide bridges. Enzymes termed D-alanyl-D-

alanine transpeptidases mediate this last key step in the 

process. β-lactam antibiotics inhibit these enzymes, known 

as penicillin binding proteins (PBPs), by covalently binding 

to their serine site (Livermore 2006). Recent studies reveal 

that the bacterial peptidoglycan takes a helical shape with 

a defi ned periodicity (Meroueh et al 2006). These fi nding 

forms the basis of novel approaches to inhibiting cell wall 

synthesis in bacteria.

The identifi cation in 1961 in England of a strain of 

S. aureus resistant to methicillin marked the prelude of the 

end of β-lactam therapy against this organism. This strain 

spread successfully and rapidly in hospitals around the world, 

carrying the mecA gene that codes for PBP2a, which has very 

low affi nity to any of the existent β-lactams. MRSA has since 

become the nosocomial pathogen “par excellence”; now, 

almost fi ve decades later, we are in the midst of an epidemic 

of CA-MRSA that is changing the landscape of antimicro-

bial therapy. Translation from the laboratory to the clinic of 

β-lactams with the capacity to bind to PBP2a has become a 

therapeutic imperative. The current generation of anti-MRSA 

β-lactams, once approved for use by regulatory authorities 

after their validation in clinical trials, will represent a major 

breakthrough (Page 2006; Rossolini 2007).

The most advanced among these molecules is ceftobiprole 

(Figure 1.3) (Bush et al 2007). This “fi fth generation” cepha-

losporin demonstrates potent binding to PBP2a in MRSA 

(including VISA and VRSA [Bogdanovich et al 2005]), 

as well as to PBP2x in a penicillin-resistant Streptococcus 

pneumoniae strain and to PBP2 and PBP3 in Escherichia coli 

and Pseudomonas aeruginosa (Davies et al 2007). Addition-

ally, it has demonstrated activity similar to ampicillin against 

Enterococcus faecalis, including vancomycin-resistant and 

β-lactamase-producing isolates (Arias et al 2007); it is not 

active against Enterococcus faecium (Jones 2007) (Table 2). 

Although ceftobiprole is resistant to inactivation by a broad 

range of β-lactamases, it is hydrolyzed by extended-spectrum 

β-lactamases (ESBLs) found in Escherichia coli and 

Klebsiella spp. rendering its activity against Gram-negative 

bacteria comparable with that of cefepime (Queenan et al 

2007). The typical minimum inhibitory concentration (MIC) 

of ceftobiprole against MRSA is 2 µg/ml, contrasted with an 

MIC of  �64 µg/ml for ceftriaxone. PK/PD studies in humans 

demonstrate that ceftobiprole has an elimination half-life of 

about 3 hours and predominantly urinary excretion (Murthy 

and Schmitt-Hoffmann 2008).

A phase 3 multi-centered, global, randomized, double-

blind trial comparing the effi cacy of ceftobiprole with that 

Table 2 Activity of different antibiotics against selected Gram-positive bacteria

Antibiotic MSSA MRSA VRSA VRE References

MIC50 MIC90 MIC50 MIC90 MIC range MIC50 MIC90

Vancomycin 1 1 1 1 32–1024 �64 �64 Zeckel et al 2000; Sader et al 2008b; Sievert 
et al 2008

Linezolid 2 2 2 2 2–4 1 2 Deshpande et al 2007; Sader et al 2008b; 
Sievert et al 2008

Daptomycin 0.25 0.5 0.25 0.5 �0.5–2 2 4 Sader et al 2007, 2008b; Sievert et al 2008

Tigecycline 0.12 0.25 0.12 0.25 0.12 0.03 0.06 Bozdogan et al 2003; Hoban et al 2005; 
Gales et al 2008

Ceftobiprole 0.25 0.5 1 2 1 4 8 Swenson and Tenover, 2002; Bozdogan et al 
2003; Jones, 2007; Pillar et al 2008

Ceftaroline 0.25 0.25 1 2 Not reported 16 �32 Sader et al 2005

Oritavancin 1 2 1 2 0.25b 1 2 Zeckel et al 2000; Bozdogan et al 2003

Dalbavancin 0.06 0.06 0.06 0.06 0.5b 4 32 Bozdogan et al 2003; Streit et al 2004; Jones 
et al 2006

Telavancin 0.5 0.5 0.25 0.5 2–4c 2 4 King et al 2004; Leuthner et al 2006

Abbreviations: MSSA, methicillin-susceptible Staphylococcus aureus; MRSA, methicillin-resistant S. aureus; VRSA, vancomycin-resistant S. aureus; VRE, vancomycin-resistant 
Enterococcus; MIC50, minimal inhibitory concentration for 50% of tested strains; MIC90, minimal inhibitory concentration for 90% of tested strains; MIC, minimal inhibitory 
concentration (µg/ml).
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of vancomycin in patients with complicated skin and skin 

structure infections (CSSSI) caused by Gram-positive 

bacteria (MRSA, MSSA, Staphylococcus epidermidis, and 

β-hemolytic streptococci) showed that both drugs were 

equivalent. In this trial, 282 patients received ceftobiprole 

intravenously (IV) 500 mg every 12 h and were compared 

with 277 patients who received vancomycin 1 gram IV every 

12 h. Cure rates for patients with MRSA infections were 

91.8% (56/61) with ceftobiprole treatment and 90.0% (54/60) 

with vancomycin treatment (Noel et al 2008b). A second 

clinical trial comparing ceftobiprole monotherapy versus 

treatment with vancomycin plus ceftazidime was also carried 

out, with important variations (Noel et al 2008a). This design 

included patients with CSSSIs caused by Gram-negative 

bacteria (E. coli, P. aeruginosa, Klebsiella pneumoniae, 

Proteus mirabilis, and Enterobacter cloacae) in addition 

to Gram-positive bacteria. Thus, patients with diabetic foot 

infections could be included. A more frequent dosing scheme 

(ceftobiprole 500 mg IV every 8 hours), and a longer infu-

sion period (120 minutes vs. 60 minutes) were used. These 

modifi cations derived from PK studies that demonstrated a 

higher probability of achieving bactericidal and bacteriostatic 

targets with this dose; an important caveat derived from 

this data is that bactericidal concentrations against AmpC 

producing Enterobacteriaceae were not achievable (Lodise 

et al 2007). Clinical cure rates and microbiological outcomes 

were similar in both arms across the range of pathogens and 

CSSSIs. Of note, slightly worse outcomes (but similar in both 

arms) were observed in patients with diabetic foot infections 

and MRSA infections; the subgroup of patients infected with 

MRSA that expressed PVL had better outcomes when treated 

with ceftobiprole (although statistical signifi cance was not 

reported). Importantly, adverse events were rare among cef-

tobiprole-treated patients in both trials; a prolonged infusion 

time of 120 minutes caused a lower incidence of nausea and 

vomiting. Clinical trials evaluating the utility of ceftobiprole 

in the treatment of community- and hospital-acquired pneu-

monia (CAP and HAP, respectively) are underway.

A second cephalosporin with affi nity to PBP2a, ceftaroline 

(Figure 1.4), is also in development. It has demonstrated activ-

ity against MSSA, methicillin-resistant S. epidermidis and 

MRSA. When tested against a collection of CA-MRSA strains, 

the MIC
50

 and MIC
90

 were 0.5 µg/ml (Sader et al 2008a). Cef-

taroline is also active against strains of S. pneumoniae that 

are resistant to ceftriaxone, as well as Hemophilus infl uenzae 

and Moraxella catharralis. Similar to ceftobiprole, ceftaroline 

inhibited strains of both vancomycin-susceptible and -resistant 

E. faecalis, but was inactive against E. faecium. In contrast, 

its activity against Gram-negative bacteria is inferior to that 

of extended spectrum cephalosporins. Ceftaroline shows 

higher ranges of MICs against penicillinase-producing E. 

coli and Klebsiella spp. and Enterobacter, Citrobacter and 

Serratia spp. (0.12–1 µg/ml) than ceftriaxone, cefotaxime, 

ceftazidime, and cefepime. Ceftaroline is inactive against 

organisms producing ESBLs and AmpC β-lactamases; it is 

also inactive against anaerobes, Acinetobacter spp., and P. 

aeruginosa (Mushtaq et al 2007).

A phase 2 clinical trial evaluated the safety and effi cacy 

of ceftaroline in the treatment of CSSSI caused by aerobic 

Gram-positive bacteria, comparing it to “standard therapy” 

(vancomycin with and without aztreonam). The clinical cure 

rate was 96.7% for ceftaroline versus 88.9% for standard 

therapy, but this study was not powered for inferential sta-

tistical analysis (Talbot et al 2007).

A great deal of optimism also accompanies the develop-

ment of anti-MRSA carbapenems. These new compounds 

feature modifi cations to the carbapenem structure that have 

resulted in improved affi nity for PBP2a, among other PBPs. 

In contrast to ceftobiprole and ceftaroline, these molecules 

are also stable against Class A and C β-lactamases and there-

fore retain activity against Gram-negative bacteria producing 

extended-spectrum and AmpC cephalosporinases, as well as 

activity against anaerobes. These products have not been the 

subject of clinical trials yet. Some of the strongest candidates 

for further clinical development include: i) ME1036, which 

demonstrates very high affi nity to miscellaneous PBPs and 

is active in vitro against a broad collection of Gram-positive 

and Gram-negative isolates from the United States such as 

MRSA, penicillin-resistant S. pneumoniae, 3rd generation 

(extended-spectrum) cephalosporin-resistant Enterobacteria-

cea (ESBL and AmpC producing) and vancomycin-resistant 

E. faecalis, but not against vancomycin-resistant E. faecium; 

ii) PZ-601 (SMP-216601), which has been demonstrated 

in vitro activity against a similar collection of clinical 

strains from USA and Japan; iii) FSI-1297, also active in 

vitro against MRSA and vancomycin resistant E. faecalis 

(MIC = 1 µg/ml) but less potent against vancomycin resis-

tant E. faecium (MIC = 8 µg/ml); iv) RO4908463 (CS-023), 

active against MRSA and P. aeruginosa (47th Interscience 

Conference on Antimicrob Agents Chemother (ICAAC), 

Abstracts E-280, F1-341, A-29, Chicago, 2007.)

New glycopeptides in clinical 
development
Vancomycin (Figure1.5) belongs to the class of glycopep-

tides, a family of antibiotics produced by a diverse group of 
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Actinomycetes. Other well-known representatives of this class 

include teicoplanin, widely employed around the world but not 

approved for use in the United States, and avoparcin, formerly 

used in Europe in animal husbandry. The chemical moiety 

that glycopeptides share in common is a heptapeptide. The 

heptapeptide backbone forms a carboxylate binding pocket 

that joins by forming hydrogen bonds to D-alanyl-D-alanine 

(D-Ala-D-Ala) peptidyl residues of the disaccharide-penta-

peptide monomers (composed of N-acetylmuramic acid and 

N-acetylglucosamine). This prevents the transpeptidation and 

transglycosilation reactions that the disaccharide-pentapeptide 

intermediates must undergo in order to polymerize and form 

the peptidoglycan cell wall. This ultimately leads to the inhibi-

tion of bacterial cell wall synthesis.

The best understood mechanisms of resistance against 

vancomycin is the elimination of the D-Ala-D-Ala binding 

target or the replacement of the terminal D-Ala by D-lactate 

(D-Lac) or D-serine (D-Ser), to which the heptapeptide 

cannot bind effi ciently (Courvalin 2006). Even though this 

represents the change of a single moiety, the enzymatic 

machinery necessary to produce it depends on a complex 

mechanism which involves the acquisition and regulation 

of several genes (eg, vanR, vanS, van H, vanA, vanX, vanY) 

through mobile genetic elements or transposons. This results 

in the expression of different phenotypes of glycopeptide 

resistance, denominated as VanA, -B, -C, -D, -E, and -G. 

For example, VanA denotes vancomycin and teicoplanin 

resistance associated with transposon Tn1546, found mostly 

among E. faecium and E. faecalis and described in S. aureus. 

VanB is vancomycin resistant but teicoplanin susceptible, 

and is associated with transposons Tn1547 and 1549. VanC 

differs in that it is not associated with a mobile genetic 

element but is intrinsic to Enterococcus gallinarum and 

casselifl avus, and depends on a shift of D-Ala to D-Ser (as 

opposed to D-Lac). An additional mechanism of resistance, 

the overexpression of D- Ala residues that results in inter-

mediate susceptibility to vancomycin, has been described in 

S. aureus (see below).

Despite sharing the same basic mechanism of action, 

the activity of glycopeptides against Gram-positive cocci 

is not homogeneous, probably explained by differences in 

their structure outside of the common heptapeptide moiety. 

These various structure – activity relationships among 

glycopeptides were exploited to develop a new generation 

of lipoglycopeptides that are able to overcome resistance 

to vancomycin, among which dalbavancin (Figure 1.6), 

telavancin (Figure 1.7), and oritavancin (Figure 1.8) are the 

more advanced representatives. The enhanced antibacterial 

activities of these lipoglycopeptides may derive from the 

ability of a hydrophobic side chain to cause both dimeriza-

tion and binding to bacterial membranes (Allen and Nicas 

2003). These cooperative interactions enhance binding at 

the traditional glycopeptide target. Additionally, the novel 

glycopeptides take advantage of alternative mechanisms 

of action; for instance, they may act by direct binding and 

inhibition of transglycosylation, inhibition of RNA and lipid 

synthesis or direct disruption of the membrane. The coexis-

tence of multiple mechanisms of action in one drug results 

in increased activity as demonstrated by lower MICs, when 

compared against vancomycin (Table 2). For example, the 

MIC of vancomycin against S. pneumoniae ranges from 0.25 

to 2 µg/ml, whereas for the new glycopeptides it ranges from 

0.002 to 0.12 µg/ml; the MIC for VanA and VanB Enterococ-

cus spp. drops eight-fold (Pace and Yang 2006).

Oritavancin (Figure1.8), the fi rst of the novel lipoglyco-

peptides, illustrates this search for compounds with improved 

spectrum and PK/PD characteristics based upon the existing 

structures of vancomycin and teicoplanin. The addition of a 

clorphenylbenzyl side chain (Figure 1) permits the dimeriza-

tion of oritavancin molecules and hydrophobic interactions 

with the bacterial membrane that facilitate binding to peptido-

glycan residues, even D-Ala-D-Lac (Allen et al 1997; Allen 

and Nicas 2003). Oritavancin demonstrates in vitro activity 

against Enterococcus spp., including VRE (VanA, VanB, and 

VanC), and Streptococcus (S. pneumoniae, S. pyogenes, S. 

agalactiae). It is also active against methicillin-susceptible 

S. aureus (MSSA) and MRSA, with MICs ranging between 

1–4 µg/ml, making it less potent than other glycopeptides 

(Table 2). Nevertheless, it is bactericidal against enterococci 

and staphylococci, unlike vancomycin (Lin et al 2005; 

Noviello et al 2001). Animal models suggest its activity is 

concentration dependent but a study in humans indicated that 

percentage of time above MIC was an important parameter 

of successful therapy in patients with S. aureus bacteremia 

(Boylan et al 2003; Bhavnani et al 2006). Because of its 

prolonged half-life, once daily dosing is feasible. There are 

no published clinical data on the use of oritavancin, but it 

is in development for the treatment of CSSSI. Despite its 

promise, there has been a several year hiatus in the develop-

ment of oritavancin.

Dalbavancin (Figure 1.6), derived from teicoplanin, is 

perhaps the most clinically advanced of the novel glyco-

peptides (Billeter et al 2008). In addition to binding to the 

D-Ala-D-Ala terminals of the growing peptidoglycan chain, 

dalbavancin interacts with the bacterial cell membrane, 

conferring it potent in vitro activity against MSSA, MRSA, 
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S. pneumoniae, and β-hemolytic streptococci (Jones et al 

2006). Dalbavancin was equally potent against enterococci, 

including VRE but not VanA-resistant phenotypes (Jones 

et al 2005; Streit et al 2005). It is active against VRSA 

(Bozdogan et al 2003) and miscellaneous Gram-positive 

anaerobes (Goldstein et al 2006). Its unique characteristic is 

that it is intensely protein-bound, leading to an extended half-

life (mean 181 h), so that it can be dosed once weekly.

Phase 2 and phase 3 trials demonstrate equal effectiveness 

of dalbavancin in the treatment of CSSSI when compared 

with 14-day courses of vancomycin and linezolid, respec-

tively (Jauregui et al 2005; Seltzer et al 2003). A phase 2 

study of patients with staphylococcal (including MRSA) 

catheter-related bacteremias demonstrated superiority of 

dalbavancin administered twice daily for 14 days compared 

with vancomycin. Dalbavancin was administered at 1 gm on 

the fi rst day and then 500 mg on the eighth day of treatment 

in all of these trials. This unusual dosing schedule makes 

it a very appealing compound for outpatient therapy. The 

concern is the potential occurrence of adverse effects, which 

logically would also be long lasting given the long-half life 

of the compound. The above-mentioned studies, however, 

suggest a very favorable safety profi le.

Telavancin (Figure 1.7) is structurally similar to van-

comycin. The modifi cations on the original glycopeptide, 

namely the alkylation of the vancosamine substituent with a 

hydrophobic moiety, result in a multifunctional mechanism 

of action. The side chain promotes interaction with the cell 

membrane, improving affi nity for D-Ala-D-Ala and alter-

ing the bacterial cell membrane potential and permeability 

(Higgins et al 2005). This results in greater bactericidal activ-

ity and potency against staphylococci and enterococci, even 

VISA, VRSA, and VRE with Van A phenotype (Table 2). 

Similar to the other novel glycopeptides, telavancin has 

excellent in vitro activity against β-hemolytic streptococci 

and S. pneumoniae (Leuthner et al 2006; Clouse et al 2007; 

Jansen et al 2007). Additionally, when compared with van-

comycin, telavancin has a longer half-life (up to 9 h) so that 

it can be given once a day (Shaw et al 2005).

There are two published phase 2 clinical trials compar-

ing telavancin (dosed at 7.5 mg/kg/day and 10 mg/kg/day, 

respectively) against standard therapy with a β-lactam or van-

comycin for the treatment of CSSSI caused by Gram-positive 

bacteria. Overall, the outcomes were equivalent beween the 

two arms, except in the group with MRSA infection in which 

microbiological eradication and clinical cure appeared better 

in patients treated with telavancin (Stryjewski et al 2005, 

2006). Side effects consisted mostly of nausea and vomit-

ing; these occurred with equal frequency in the comparator 

arm. Further studies are underway to evaluate the effi cacy of 

telavancin in the treatment of pneumonia, which is supported 

by animal and preliminary human data (Gotfried et al 2008; 

Hegde et al 2008).

A novel compound, TD-1792, is described as a heterodi-

mer in which a cephalosporin moiety is covalently linked to 

vancomycin. TD-1792 therefore inhibits both key cell wall 

synthesis functions, transpeptidation and transglycosilation. 

It has demonstrated bactericidal activity against MRSA, 

with very low MICs (0.03 µg/ml). The administration of its 

individual components, the cephalosporin and vancomycin, 

by themselves or together (but not covalently linked) failed 

to achieve such good parameters of activity (47th ICAAC, 

Abstract F1-2110, Chicago IL, 2007). Its eventual use in the 

clinical arena depends on further development and clinical 

trials that support its effi cacy.

Enduring utility of vancomycin 
against S. aureus
There is an ongoing debate among clinicians regarding the 

continued utility of vancomycin for the treatment of infec-

tions caused by MRSA. Trusting more than 50 years of 

experience and an improved compound free of major toxici-

ties, physicians rely heavily on vancomycin. Furthermore, 

vancomycin retains activity against the vast majority of 

S. aureus isolates. In contrast, many have long considered 

vancomycin a sub-optimal antibiotic, for instance when 

compared with β-lactams for the treatment of MSSA. There 

is fear that vancomycin may be reaching obsolescence given 

the emergence of resistance. As argued in the recent point-

counterpoint arguments published in infectious diseases 

journals, there are many subtleties involved (Deresinski 

2007; Mohr and Murray 2007).

In contrast to Enterococcus spp., high-level resistance to 

vancomycin among S. aureus (MIC � 16 µg/ml) has been 

reported only sporadically, amounting to seven cases (Sievert 

et al 2008), all from the United States. Analysis of the index 

case of VRSA from Detroit, Michigan in 2002 identifi ed 

the transfer of vanA, a vancomycin resistance determinant 

linked to Tn1546, from E. faecalis to S. aureus, a fi nding 

replicated in the subsequent six isolates (Chang et al 2003). 

Because the potential universal dissemination of VRSA has 

not materialized yet (Bush, 2004), the more common and 

immediate threat may be VISA (also referred to as glyco-

peptide intermediate S. aureus; GISA). First identifi ed in 

1996 in Japan and 1997 in the United States, VISA strains 

are characterized by thicker extracellular matrixes due to 
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the overproduction of D-Ala D-Ala or decreased turnover 

in the peptidoglycan wall that serve as a decoy target for 

vancomycin, resulting in MICs 4–8 µg/ml (Smith et al 

1999). Additionally, there is concern about the phenomenon 

of heteroresistance to vancomycin in S. aureus (hVISA). 

Subpopulations (MIC � 2 µg/ml) exist within cultures of the 

same strain of S. aureus that are susceptible to vancomycin 

(MIC � 1 µg/ml). Growth medium containing vancomycin 

selects for these subpopulations.

The gradual loss of S. aureus susceptibility to van-

comycin observed in a patient with MRSA endocarditis 

during unsuccessful treatment with vancomycin, is the 

origin of a remarkable collection of studies investigating 

VISA in vivo (McAleese et al 2006; Mwangi et al 2007; 

Sieradzki et al 2003; Sieradzki et al 1999). Tomasz and his 

group demonstrated the evolution of vancomycin resistance 

in S. aureus (from an MIC of 1 and 2 µg/ml to 8 µg/ml) 

through whole-genome sequencing, identifying the key 

mutations differentiating isogenic strains with progres-

sive increases in the MIC of vancomycin isolated from a 

single patient. Thirty-fi ve mutations appeared sequentially 

during the course of treatment. Furthermore, resistance 

to rifampin resulted as well, after administration of only 

one dose of this antibiotic. More intriguing, a 100-fold 

increase in the MIC of daptomycin (0.01 to 1 µg/ml) was 

observed, even though that antibiotic was not used as 

treatment. The mutations associated with these phenotypes 

were also identifi ed.

Sakoulas and colleagues revealed another important 

component that furthers our understanding of hVISA: the 

loss of function of the accessory gene regulator (agr) operon. 

Changes in this genetic element, identifi ed as the group II 

polymorphism, may confer higher MICs of vancomycin to 

S. aureus. This polymorphism is present in isolates with 

VISA and hVISA phenotypes and may be associated with 

vancomycin failure (Sakoulas et al 2003, 2005, 2006; Moise-

Broder et al 2004b).

The diffi cult detection of hVISA in the microbiology 

laboratory hinders the assessment of the epidemiological 

and clinical impact of this phenotype. The method of refer-

ence, population-analysis profi le (PAP) testing, is laborious 

and resource intensive (Walsh et al 2001). Perhaps the best 

screening test for hVISA is the Etest macromethod, in which 

a high inoculum of bacteria (McFarland of 2) is used against 

Etest strips of vancomycin and teicoplanin (Voss et al 2007). 

The clinical impact of hVISA remains unclear. A study from 

Australia identifi ed fi ve patients with bacteremia caused by 

hVISA (defi ned by PAP); they were more likely to have high 

infections with high inoculum of bacteria, treatment failure 

and low vancomycin levels. A second survey by the same 

group looked at the outcomes of 25 additional patients with 

infections caused by S. aureus with reduced susceptibility to 

vancomycin; they had serious infections ranging from endo-

carditis to osteomyelitis, received prolonged and ineffective 

courses of vancomycin and had been previously infected with 

MRSA. It is diffi cult to ascertain in both cases whether the 

detection of hVISA in these patients was a cause or an effect 

of the above-mentioned factors (Charles et al 2004; Howden 

et al 2004). Falagas and colleagues (2008a) reviewed the 

studies reporting the clinical outcome of infection with 

hVISA, and did not fi nd a consistent negative impact but 

rather confl icting results.

In 2006 the Clinical Laboratory Standards Institute 

(CLSI) lowered the vancomycin MIC breakpoints for 

S. aureus (from �4 µg/ml to �2 µg/ml for “susceptible,” 

from 8–16 µg/ml to 4–8 µg/ml for “intermediate,” and 

from �32µg/ml to �16 µg/ml for “resistant”) (Tenover 

and Moellering 2007). The rationale for this change was, 

among other considerations, to signal that strains with MICs 

close to 4 µg/ml (until then considered fully susceptible) are 

likely to be hVISA and therefore would go unrecognized 

by the microbiology laboratory and may be associated with 

vancomycin treatment failure. Moreover, there are reports of 

poor clinical outcomes associated with strains of S. aureus 

with MICs of 1–2 µg/ml, which is within the new susceptible 

range as determined by CLSI (Schwaber et al 2003; Sakoulas 

et al 2004). The application of a logistic regression model to 

a database of patients from Barcelona with MRSA bactere-

mia yielded similar results (Soriano et al 2008). Treatment 

with vancomycin in the instance of bacteremia caused by 

an isolate with a vancomycin MIC of 2 µg/ml – as defi ned 

by Etest – was a factor independently associated with mor-

tality. The database did not permit to assess the effect of 

serum vancomycin concentrations on outcomes, although 

the dosing regimen used in these patients targeted trough 

levels above 10 µg/ml.

The investigation of PK/PD parameters of vancomycin 

may clarify the association between heteroresistance and 

response to therapy. Studies have determined that the ratio 

of the area under the concentration-time curve to the MIC 

(AUC/MIC) predicts the clinical response to vancomycin 

(Rybak 2006). Furthermore, in pneumonia caused by MRSA, 

an AUC/MIC �400 is associated with a better clinical 

response (Moise-Broder et al 2004a). In contrast, a retrospec-

tive study on the dosing levels of vancomycin on MRSA 

healthcare-associated pneumonia (HCAP) (Jeffres et al 
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2006), demonstrated that vancomycin trough concentrations 

were similar in patients who lived and in patients who died 

(13.6 and 13.9 µg/ml, respectively). The investigators did not 

explore if the vancomycin MICs of the infecting strain may 

have had an impact on clinical outcome. However, PK data 

from this study showed that in order to achieve the above 

mentioned satisfactory AUC/MIC ratio of �400, both a high 

vancomycin trough concentration (approximately 20 µg/ml) 

and a low MIC of 0.5 µg/ml are required. Other investigators 

have shown that there may be an advantage in achieving 

vancomycin through concentrations �15 µg/ml within the 

initial 24 hours of treatment, but only in cases in which the 

infection is caused by strains with an MIC �2 µg/ml (Hidayat 

et al 2006). The American Thoracic Society guidelines for 

the treatment of HAP caused by MRSA recommend dosing 

vancomycin to achieve trough concentrations of 15–20 µg/ml 

(ATS 2005). This suggestion, however, does not derive from 

clinical studies evaluating the effect of vancomycin serum 

concentrations with respect to patient outcome and has to be 

balanced with a higher risk of adverse events in the form of 

renal dysfunction (47th ICAAC, Session 104, Paper K-1096, 

Chicago, IL). Recently, an in vitro pharmacodynamic model 

investigated different doses of vancomycin for the treatment 

of simulated moderate and high inoculum infections with 

hVISA. In cases of high inoculum infections, up to 105 cfu/ml 

of hVISA organisms (with MICs 2- to 4- fold higher than 

at their baseline) remained after the administration of doses 

of vancomycin as high as 5 g every 12 hours. This data may 

explain why treatment of high-inoculum infections caused 

by hVISA with vancomycin often results in failure (Rose 

et al 2008).

How does one reconcile the above observations in 

order to choose the appropriate therapy against MRSA 

infections in the clinic? We support the opinion that it is 

necessary to determine an accurate MIC of vancomycin in 

the microbiology laboratory, ideally with Etest or a broth-

based method, particularly in cases of MRSA infections 

with high organism loads (eg, pneumonia, endocarditis), 

in diffi cult to reach compartments (eye, brain, etc), and 

in infections requiring prolonged treatment (endovascular 

infections). It can then be determined whether a satisfactory 

AUC/MIC ratio is achievable with aggressive vancomycin 

dosing regimens or if the use of an alternative antibiotic 

is preferable, a decision that needs to be modulated by the 

clinical response. Other strategies have been considered 

plausible improvements upon the limited performance of 

vancomycin against serious MRSA infections. Combina-

tion therapy with vancomycin and other agents has been 

attempted. A natural candidate has been rifampin, which 

is extremely bactericidal against S. aureus even in the 

intracellular compartment. Unfortunately, vancomycin 

is not able to neutralize rifampin’s notable proclivity to 

engender resistance (Simon et al 1983; Yamaoka 2007). 

Continuous infusion therapy, although promising for other 

antimicrobials, did not demonstrate increased effectiveness 

in the case of vancomycin in a randomized, multi-center 

study (Wysocki et al 2001; Kasiakou et al 2005). The pro-

spective evaluation of the above described strategies and 

other considerations is essential to help defi ne the continued 

utility of vancomycin, vis-à-vis newer antibiotics.

The experience with recently 
released antibiotics active against 
resistant Gram-positive cocci
The approval by the United States Food and Drug Admin-

istration (FDA) of linezolid, daptomycin, and tigecycline, 

each representative of a new class of antibiotics active 

against MRSA and enterococci offered welcome therapeutic 

alternatives to vancomycin. Linezolid, approved in 2000, and 

daptomycin, introduced in 2003, have emerged as the “anti-

biotics of last resort” for the treatment of infections caused 

by VRE. A newer addition, tigecycline, combines activity 

against S. aureus (including MRSA) and Enterococcus spp. 

with a broad spectrum of activity against Gram-negative and 

anerobic bacteria. The role of these three agents within the 

antibiotic armamentarium continues to evolve, shaped by 

their specifi c characteristics, the experiences of clinicians, 

and the performance of these drugs in clinical trials (Paterson 

2006; Micek 2007).

Linezolid (Figure 1.11) was the fi rst oxazolidinone 

released. By acting on the 50S ribosomal subunit, specifi -

cally the peptidyl-transferase center, linezolid blocks the 

binding of tRNA, interferes with protein synthesis and 

inhibits bacterial cell growth (Leach et al 2007). Line-

zolid is bactericidal against streptococci but bacteriostatic 

against MRSA and VRE in vitro. In contrast, a study car-

ried out in patients with diabetic foot infection caused by 

MRSA (some of them were additionally VISA or VRSA) 

demonstrated that serum can potentiate the antimicrobial 

effect of linezolid resulting in bactericidal activity (Stein 

et al 2007). Its near-complete oral bioavailability makes 

linezolid a tremendously attractive antibiotic for the 

treatment of suspected or confi rmed MRSA infections. 

In addition, linezolid offers the opportunity to potentially 

lower costs that result from hospitalization (McKinnon 

et al 2006). These advantages should be balanced with a 
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high cost as an oral agent, compared to generic alternatives 

widely used in the community. Patients on linezolid suf-

fer from neurological (peripheral neuropathy and optic 

neuritis) and hematological (anemia, leukopenia and 

thrombocytopenia) side effects resulting from the inhibi-

tion of mitochondrial protein synthesis, as well as drug-

drug interactions (serotonin re-uptake inhibitors) (Bishop 

et al 2006). Furthermore, resistance stemming from single 

nucleotide changes in varying numbers of copies of the 

genes encoding 23S ribosomal RNA has emerged during 

the course of treatment (Meka and Gold 2004).

An open label, multi-center, randomized controlled trial 

demonstrated that linezolid was superior to vancomycin in 

achieving microbiological cure in the treatment of CSSSIs 

due to MRSA (Weigelt et al 2005). However, additional 

trials are needed to confi rm this result and ascertain that 

clinical cure rates with linezolid exceed significantly 

those of vancomycin (Kalil et al 2006). Similarly, there 

is an ongoing controversy regarding the superiority of 

linezolid for the treatment of HAP and ventilator-associated 

pneumonia (VAP) caused by MRSA. Although the initial 

phase 2 randomized controlled trials showed equivalence 

between linezolid and vancomycin, further analysis of 

the same data showed that there was an advantage in 

survival in patients treated with linezolid; of note, the 

serum concentrations of vancomycin in patients included 

in these trials were not reported (Rubinstein et al 2001; 

Wunderink et al 2003). A recently published meta-analysis 

favored linezolid (Falagas et al 2008b), but appropriately 

designed and powered studies (phase 3 trials) are still 

needed to settle this question. Although it does not have 

FDA approval for the treatment of bloodstream infections, 

a pooled analysis of fi ve randomized studies comparing 

linezolid versus vancomycin for the treatment of S. aureus 

bacteremia demonstrated “noninferior” outcomes associated 

with linezolid (Shorr et al 2005). Stevens and colleagues 

(2007) observed that linezolid (as well as clindamycin) 

suppressed the translation in S. aureus of genes coding for 

extracellular protein toxins (eg, PVL, alpha-hemolysin, and 

toxic shock syndrome toxin 1). This supports the notion that 

linezolid not only inhibits bacterial growth but may also 

modulate the expression of virulence. Clinicians need to 

be careful about inferring a clinical advantage from these 

experimental fi ndings. Despite its utility, there are still many 

unanswered questions regarding the use of linezolid for its 

FDA-approved indications (the treatment of CSSSIs and 

HAP/VAP), as well as its role in the treatment of bacteremia 

and endocarditis (Falagas et al 2008b).

Daptomycin (Figure 1.9) is a cyclic lipopeptide antibiotic, 

unique in its class, with potent in vitro activity against Gram-

positive bacteria, including MRSA and VRE. Its mechanism 

of action is unclear but it seems to involve depolarization 

of the bacterial membrane and effl ux of potassium ions, 

leading to cell death (Steenbergen et al 2005). It is extremely 

bactericidal, even in instances of high inoculum/stationary 

phase infections, as demonstrated in biofi lm and endocarditis 

models (Rose et al 2007a; Roveta et al 2008). Even though 

it penetrates well into vascular structures and the urinary 

tract, daptomycin does not penetrate into the central nervous 

system and its use in the treatment of pneumonia is contra-

indicated because it is inhibited by pulmonary surfactant 

(Silverman et al 2005). It has been demonstrated to be safe, 

with only occasional elevations in creatine kinase observed 

(Kazory et al 2006).

The FDA approved the use of daptomycin for the 

treatment of CSSSI (at 4 mg/kg/day), as well as S. aureus 

including MRSA- bacteremia and right sided endocarditis (at 

6 mg/kg/day). An important randomized controlled clinical 

trial showed that daptomycin was not inferior to a β-lactam 

antibiotic or vancomycin for the treatment of patients 

with S. aureus bacteremia and right-sided endocarditis 

(Fowler et al 2006). However, in this trial daptomycin was 

associated with a high rate of microbiologic failure. It was 

also concerning that reduced susceptibility to daptomycin 

emerged among S. aureus isolates. This resonates with the 

clinical fi nding mentioned above that daptomycin resistant 

S. aureus populations appear to be linked to reduced 

vancomycin susceptibility, a phenomenon that needs further 

elucidation (Rose et al 2007b). The mechanism of resistance 

to daptomycin has not been fully explained, but there are 

specifi c mutations associated with nonsusceptible S. aureus 

strains (Boucher and Sakoulas 2007). Despite this, and 

because of its convenient once-a-day dosing, its bactericidal 

action, and its favorable safety profi le, the role of daptomycin 

in the clinic is expanding (eg, into the treatment of bone 

and joint infections) (Lalani et al 2008). Nevertheless, 

its superiority to vancomycin in the treatment of MRSA 

infections and its effi cacy in the treatment of infections 

caused by VRE has yet to be prospectively demonstrated. Of 

note, it is signifi cantly less potent against VRE than against 

MRSA or than other compounds (Table 2).

Tigecycline (Figure 1.12) is the sole representative of 

the class of glycylcyclines (Rose and Rybak 2006), defi ned 

by a glycylamido (tert-butyl) moiety attached to the original 

tetracycline molecule, making it impervious to the effl ux 

pumps (eg, tetA and tetB) that normally extrude tetracyclines 
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from the bacterial cell. It also avoids the ribosomal protec-

tion proteins (eg, tet(O)). Since it is a tetracycline, it also 

binds to the 30S ribosomal subunit blocking the entry of 

amino-acyl tRNA and ultimately inhibiting protein synthesis. 

It has a broad spectrum of activity that includes MRSA and 

enterococci (including VRE) and also enterobacteria and 

anaerobes. The adequate performance of tigecycline in clini-

cal trials support its use in the treatment of polymicrobial 

CSSSI and intra-abdominal infections (Babinchak et al 2005; 

Ellis-Grosse et al 2005). Although it is known to be inactive 

against Pseudomonas and Proteus spp. (Dean et al 2003; 

Visalli et al 2003), tigecycline held promise as a treatment 

against multidrug-resistant enterobacteria and Acinetobacter 

spp. However, the results of the clinical experiences in the 

treatment of Gram-negatives recently published are disap-

pointing (Anthony et al 2008; Navon-Venezia et al 2007). 

Tigecycline remains an option against MRSA and entero-

cocci CSSTI (Munoz-Price et al 2006).

Of note, tigecycline has excellent penetration into 

tissues. Experiments with radiolabeled antibiotic demon-

strated the AUC value in spleen, liver, and kidney to be at 

least eight times higher than in plasma. Tissue exposure 

in lung was more than four times higher than in plasma, 

whereas in bone it was several hundred-fold higher. It 

appears that tigecycline is primarily the subject of biliary 

excretion. Approximately 30% of the tigecycline is excreted 

unchanged in the urine (Meagher et al 2005). Despite the 

above data, trials involving urinary tract infections were 

abandoned (Livermore 2005). Therefore, more studies are 

needed before tigecycline can be recommended for that 

indication (Cunha et al 2007; Krueger et al 2008). The 

profi le of adverse effects with tigecycline is remarkable for 

nausea and vomiting in a large proportion of patients, as 

well as increases in the blood urea nitrogen (BUN) consis-

tent with the catabolic effects of tetracyclines. It must be 

noted that the original tetracyclines (ie, minocycline and 

doxycycline) have re-emerged to play a major role in the 

therapy against MRSA, mostly in the treatment of uncom-

plicated skin and soft tissue infections and as adjuvants in 

chronic suppressive regimens (Ruhe et al 2005).

On the horizon
Iclaprim (Figure 1.13), a novel compound, represents a 

departure from a preexisting class of antibiotics, dihydro-

folate reductase (DHFR) inhibitors. The best representa-

tive of this class is the diaminopyrimidine trimethoprim 

(TMP), currently used in the clinic in combination with 

sulfamethoxazole (SMX). TMP/SMX largely retains activ-

ity against MRSA and is very often used in the treatment 

of uncomplicated skin and soft tissue infections. However, 

resistance to TMP does occur, resulting from a single amino 

acid change in the active site of S. aureus DHFR that prevents 

the formation of hydrogen bonds with TMP. Iclaprim, also 

a diaminopyrimidine, incorporates a cyclopropyl group that 

allows for the formation of hydrogen bonds even in TMP 

resistant S. aureus (Schneider et al 2003; Hawser et al 2006). 

Furthermore, iclaprim is as equally effective as TMP in inhib-

iting DHFR in S. aureus and E. coli, but is an order of mag-

nitude more effi cient against DHFR from S. pneumoniae and 

Pneumocystis jiroveci. This translates into activity against 

MRSA, VISA, and VRSA, and against multidrug-resistant 

S. pneumoniae (β-lactam, macrolide, quinolone and TMP 

resistant). Iclaprim, like TMP, has adequate enteral bioavail-

ability (Kohlhoff and Sharma 2007; Laue et al 2007) and its 

clinical development is followed with interest.

A second class of DHFR inhibitors currently under 

development is that of dihydrophthalazine antifolates. Three 

compounds, BAL-30543, BAL-30544, and BAL-30545, 

have demonstrated activiy against MSSA, MRSA, VISA, 

and VRSA, and TMP-resistant S. aureus, as well as MDR-

resistant S. pneumoniae. Similar to other DHFR inhibitors, 

they can be administered enterally and parenterally with 

excellent bioavailability (47th ICAAC, Abstracts F1-934 

and 935, Chicago IL, 2007).

RWJ 416457, a novel oxazolidinone with a pyrrolopyr-

azolyl substitution, has been tested in vitro against a variety 

of organisms, including MRSA and VRE. It generally had 

two- to fourfold lower MICs than those of linezolid against 

most pathogens tested (Foleno et al 2007). Similarly, when 

tested against linezolid-resistant enterococci and S. aureus it 

demonstrated lower MICs than linezolid but only by a couple 

of dilutions, indicating that RWJ 416457 is susceptible to 

the same mechanism of resistance than linezolid, namely 

mutations in genes coding for the 23S rRNA (Livermore 

et al 2007).

Friulimicin (Figure 1.10), the natural product of Acti-

noplanes friulensis, is structurally similar to daptomycin 

and therefore is classifi ed as a cyclic lipopeptide. Their 

mechanism of action, however, seems to differ. Friulimicin 

prevents cell wall synthesis by forming a calcium dependent 

complex with the bacroprenol-phosphate carrier whereas 

daptomycin’s putative mechanism of action is the formation 

of pores that leads to extrusion of potassium and cell death. 

In general, friulimicin has a similar bactericidal activity 

as daptomycin against MRSA, S. pneumoniae and VRE, 

but typically its MICs are one dilution higher. The excep-
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tion is Streptococcus pyogenes for which friulimicin has a 

fourfold higher MIC (4–8 µg/ml). Despite sharing a similar 

structure, friulimicin does not demonstrate cross-resistance 

with daptomycin. Unlike daptomycin, it is not inhibited by 

pulmonary surfactant and it appeared effective in a murine 

S. pneumoniae pneumonia model, as well as in a S. aureus 

abscess model (47th ICAAC, Abstracts F1-1640, 1642, 1643, 

1647, 1651, 1652, Chicago, IL, 2007).

Api-1252 exploits a novel mechanism of action, the 

inhibition of bacterial enoyl-acyl carrier protein (enoyl-ACP) 

reductase (FabI). This compound is in development for the 

treatment of staphylococcal infections. In preliminary trials, it 

demonstrated potent in vitro activity against clinical isolates 

of MRSA (MIC
90

, 0.015 µg/ml), as well as Staphylococcus 

epidermidis (Karlowsky et al 2007).

CBR-2092 is a novel rifamycin-quinolone hybrid antibi-

otic in the preclinical stages of development for the treatment 

of MRSA. It has shown activity in animal models of endo-

carditis against quinolone resistant MRSA. (47th ICAAC, 

Abstract F1-2102 Chicago, IL, 2007).

Finally, in the fi eld of topical antibiotics, retapamulin 

(Figure 1.14) received FDA approval for the treatment 

of impetigo. A semisynthetic pleuromutilin derivative, it 

is active against MRSA, as well as Streptococcus spp. It 

inhibits protein synthesis by binding to the 50S portion of 

the ribosome in a different fashion than other antibiotics 

(blocks peptidyl transferase activity, and partially inhibits 

the binding of the initiator tRNA substrate to the ribosomal 

P-site), explaining the lack of cross-resistance (Yan et al 

2006; Champney and Rodgers 2007; Jacobs 2007; Oranje 

et al 2007). Another promising class of topical agents is that 

of diphenyl-ureas, active against MRSA and Streptococcus 

spp. and effective in murine models studying MRSA skin 

infection and nasal colonization (47th ICAAC, Abstract F1-

2094-2100 Chicago, IL, 2007).

Conclusion
The immediate conclusion after reviewing close to twenty of 

the antibiotics that are already in use or are in development 

for the treatment of infections caused by resistant Gram-

positive bacteria is that there are indeed many options. The 

state of the antibiotic pipeline for Gram-positive bacteria 

appears to be very healthy. This poses a stark contrast with 

the situation in the Gram-negative realm, where there are 

serious and widespread misgivings about the capacity and 

willingness of the pharmaceutical industry to continue to 

meet the medical needs posed by certain infectious patho-

gens (Talbot et al 2006). The ever present need for new 

antimicrobials is made more poignant by the emergence 

of resistance, which either has already been described for 

many of the agents discussed (Table 1) or is predictable and 

waiting around the corner.

It also seems that, despite or because of the many options 

available, defi ning the therapy of “choice” for serious Gram-

positive bacterial infections has become more diffi cult than 

ever. This apparent paradox underscores the notion that 

the value of an antibiotic does not lie within its chemical 

structure but in the body of knowledge supporting its use. 

As illustrated in the above discussion on the continued utility 

of vancomycin, multiple considerations and points of view 

apply and there are no simple answers. We hope that similar 

discussions about the newer compounds can be made in the 

future, informed by sound microbiological, clinical, and 

epidemiological studies.

A single drug is not likely to dominate the future 

antibiotic landscape; different indications may call for 

different therapies, as suggested by the example of MRSA 

pneumonia and linezolid. Individual patient responses to 

antibiotics and the multiplicity of side effects will also be 

a consideration; pharmacogenomics will be a powerful 

tool to discern the best therapy for each patient (Davison 

and Barrett 2003). The longevity and robustness of our 

new armamentarium against Gram-positive bacterial 

infections will be determined by factors specifi c to each 

drug, such as effectiveness, convenience, cost, and emer-

gence of resistance, as much as by efforts in the general 

aspects of immunization, infection control, and antibiotic 

stewardship.
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