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Ni-catalyzed hydroalkylation of olefins with
N-sulfonyl amines
Xiao-Biao Yan1,2,3, Lun Li1,2,3, Wen-Qiang Wu1, Lun Xu1, Ke Li1,2, Yu-Cheng Liu1 & Hang Shi 1,2✉

Hydroalkylation, the direct addition of a C(sp3)–H bond across an olefin, is a desirable strategy

to produce valuable, complex structural motifs in functional materials, pharmaceuticals, and

natural products. Herein, we report a reliable method for accessing α-branched amines via

nickel-catalyzed hydroalkylation reactions. Specifically, by using bis(cyclooctadiene)nickel

(Ni(cod)2) together with a phosphine ligand, we achieved a formal C(sp3)–H bond insertion

reaction between olefins and N-sulfonyl amines without the need for an external hydride source.

The amine not only provides the alkyl motif but also delivers hydride to the olefin by means of a

nickel-engaged β–hydride elimination/reductive elimination process. This method provides a

platform for constructing chiral α-branched amines by using a P-chiral ligand, demonstrating its

potential utility in organic synthesis. Notably, a sulfonamidyl boronate complex formed in situ

under basic conditions promotes ring-opening of the azanickellacycle reaction intermediate,

leading to a significant improvement of the catalytic efficiency.
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Compounds featured with a carbon–carbon double bond
serve as important precursors for complex aliphatic
molecules because of their ready availability and versatility

in transition-metal-catalyzed functionalizations1–16. In this
respect, advances in nickel-complex-catalyzed hydrocarbonation of
olefins have expanded the chemical space of accessible structures
and enabled new synthetic disconnections17–21. Compared with
hydroarylation22–34 and hydroalkenylation26,32,35, hydroalkylation
produces molecules that are richer in sp3-hybridized carbon centers
and contain more stereogeometric information36–42, a feature that
may improve biological activity43,44. In the 1990s, Mori disclosed
intramolecular C(sp3)–C(sp3) bond formation reactions between
conjugated dienes and carbonyl groups with catalysis by a nickel
hydride complex generated by treatment of Ni(cod)2 with Et3SiH45.
In the past 5 years, an array of elegant Ni-catalyzed hydroalkylation
reactions between olefins and alkyl halides in the presence of a
silane-based hydride source, including both enantiospecific and
enantioconvergent versions, have been established (Fig. 1a)36–42.
In 2020, Koh’s group developed an aminoquinaldine-directed
hydroalkylation reaction, in which one alkyl halide molecule
provides an alkyl motif and another delivers a hydride via β-H
elimination46. In addition to alkyl halides, imines or aldehyde can
also be used as coupling partners for hydroalkylation reactions of
tetrafluoroethylene with silanes47,48.

Inspired by Ni-engaged oxidative cyclometallation ([Ni0] to
nickellacycle a in Fig. 1c), which have been successfully applied in
alkenylation of imines with unsaturated molecules such as
alkynes and olefins49–56, we envisioned that if an amine could
serve both as a hydride source and an imine precursor, formal
olefin insertion into the α-C–H bond of the amine could be
accomplished (Fig. 1c). Although the Ni-catalyzed alkenylation
reaction between alkynes and amines has been reported57,58, the
above-described strategy poses a significant challenge in the form
of competitive hydride elimination from one of the β-positions
relative to the nickel atom (b to c vs b to side product). For
instance, the alkenylation reactions between olefins and imines
established by Zhou’s group provided unsaturated products,
allylic amines54. When tetrafluoroethene bearing no hydrogen
atom was subjected together with silane, alkylation of imines took
place47. Moreover, Ogoshi’s group recently used carbonyl inser-
tion to interrupt the facile β-H elimination; displacement of
the nickel from the nickellacycle intermediate provides saturated
γ-lactams59,60.

In this work, we report a Ni-catalyzed hydroalkylation of ole-
fins with N-sulfonyl amines, which provides α-branched amines
without the need for an exogenous hydride source, and obtains
high enantioselectivity by using a P-chiral phosphine ligand
(Fig. 1b).
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Results
Reaction optimization. To evaluate the feasibility of our strategy,
we selected N-tosyl benzylamine (1a) and styrene (2a) as cou-
pling partners. We conducted the hydroalkylation by using a
Ni(0) species Ni(cod)2 and a phosphine ligand PCy3. After trying
a number of weak inorganic bases (Fig. 2a), including NaOAc and
K3PO4, which are crucial in our previous studies57, we only detect
a trace amount of the desired hydroalkylation product 3a together
with a side-product allylic amine 3a’ by 1H NMR spectroscopy.
However, we found strong bases could dramatically promote the
designed reaction profile, as well as suppress the competitive
pathway that leads to 3a’. For instance, KOtBu provided 3a in an
almost quantitative yield (98% NMR yield) with a 10 mol% Ni
catalyst. Phenyl boronic acid is not necessary, but it influenced
the efficiency of this catalysis that a lower yield (40%) was
obtained in the absence of it. Moreover, we evaluated other boron

reagents and found that 2-phenyl-1,3,2-dioxaborinane and its
analogue bearing no protons also gave high yields (Fig. 2b). Next,
we moved to evaluate ligands beside PCy3, including mono-
dentate and bidentate phosphines, as well as other type pivotal
ligands: the analogues of PCy3, such as PCyp3 (Cyp, cyclopentyl
group) and PCy2Ph, yielded product 3a in around 70% yields; the
use of other ligands resulted in much lower or even undetectable
yields (Fig. 2c).

Although nickel is more earth-abundant and much less
expensive than precious metals (Pd, Rh, Ir, etc.), carrying out
reactions with less catalysts is vital from both an atom-economy
and an environmentally friendly standpoint. Therefore, we
carried out experiments with lower catalyst loadings and found
that the loading of the nickel/phosphine catalyst could be reduced
to 2.5 mol% with no obvious decrease in yield (Fig. 2d).
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1 mol% afforded 3a with no need for column chromatography
(Fig. 2e), and the protecting group (Ts) could be easily displaced
by a Boc group (see Supplementary Methods 2.4 for details).

Substrate scope. With the optimized reaction conditions in hand,
we investigated the generality of this method. First, we examined
the scope of the reaction with respect to the N-tosyl amine
(Fig. 3). A wide range of benzylic amines bearing an ortho (3b–d),
meta (3e–h), or para (3i–r) substituent on the aromatic ring
underwent the coupling reaction with styrene (2a), delivering the
desired α-branched amines in 42–99% yields. Substrates with
disubstituted phenyl rings (3s–t and 3v) or a naphthyl ring (3 u)
were also well tolerated. Heterocycles containing an oxygen,

sulfur, or nitrogen atom are prevalent in pharmaceuticals, but
metal-catalyzed reactions involving such compounds are chal-
lenging because of coordination between the heteroatom and the
metal. Indeed, we found that heteroatom-containing substrates
gave low yields (3w–y) under the standard conditions. When a
higher loading of the catalyst (5 mol%) and an additive, pival-
dehyde, were used, the reactions afforded the desired products in
moderate yields.

In addition to benzylic amines, various primary aliphatic
amines were also acceptable substrates under modified
conditions. Substrates with linear (3z–af), γ-branched (3ag–ai),
β-branched (3aj), and cyclic (3ak–an) alkyl groups at the
α-position of the nitrogen were tolerated, affording the
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corresponding unsymmetrical α-branched amines in moderate
to good yields.

The scope of olefins was then examined with N-tosyl amine 1a
(Fig. 4). Both electron-donating and -withdrawing groups on the
phenyl rings of olefins were well tolerated; desired products
3ao–ba were obtained in moderate to excellent yields. Moreover,
a diverse array of functionalities such as fluorine, trifluoromethyl,
methoxy, ester, morpholino, and ketone were tolerated. Multi-
substituted aryl olefins, including a molecule derived from
estrone, were suitable substrates, affording 3ay–ba in good yields.
Olefins containing a heterocycle, such as indole, benzofuran, and
quinoline, as well as ferrocene were also compatible with the
reaction conditions. In addition, hydroalkylation of aliphatic
olefins with 1a in the presence of pivaldehyde provided mixtures
of linear and branched products in 41–92% yields.

We next investigated whether this protocol could be applied to
access enantioenriched α-branched N-tosyl amines, which are
valuable and privileged motif found in nature products,
pharmaceuticals, and functional molecules. We immediately
encountered a significant challenge in that a chiral ligand such
as P-chiral phosphine (R)-BI-DIME61 together with Ni(cod)2,
provided the desired product with a poor enantioselectivity
(57.2:42.8 er) (see Supplementary Table 11). We suspected that
the 1,5-cyclooctadiene (cod) liberated from Ni(cod)2 may rebind
to the metal center during the catalysis, leading to a disturbance
in enantioselectivity control. To diminish such influence, we
evaluated other Ni sources, and found that a Ni(II) precatalyst
NiBr2·dme, which could be reduced to Ni(0) in situ, dramatically
improved the enantioselectivity (79.6:20.4 er). Instead of the tosyl

group, using a bulkier mesitylen-2-sulfonyl group (Mts) as the
protecting group for nitrogen resulted in a slightly better result
(83.6:17.4 er). Further optimization of the conditions, including
solvent and reaction temperature allowed us to obtain 5a in 55%
isolated yield with 92.0:8.0 er (for more details, see Supplemen-
tary Table 11).

Then, we move to investigate the substrate scope of the
enantioselective protocol by performing reactions of aliphatic
N-Mts amines with olefins (Fig. 5). First, various styrene
analogues were compatible under the optimized conditions,
providing desired products in moderate yields with good
enantioselectivities (5a–n). Second, the scope of amines is also
broad that both acyclic (5o–aa) and cyclic (5ab–af) aliphatic
amines were suitable. Notably, active functional groups,
including ester (5s), amide (5t), imide (5u), carbamate (5ae),
and cyclopropyl (5w) were well tolerated. The absolute
configuration of (S)-5n was determined by X-ray crystal-
lography (see Supplementary Note 2).

Mechanistic studies. To gain insights into the reaction
mechanism, we performed mechanistic studies. First, we replaced
amine 1a with N-tosyl imine 6a and found that the reaction
yielded only a trace of desired product 3a (Fig. 6a). Moreover,
adding para-methoxybenzylamine (1 l) to the above reaction
mixture dramatically increased the yield of 3a. These experiments
suggested that the N-tosyl amine served not only as the precursor
of the imine but also as the hydride source to terminate the
catalytic cycle. Second, deuterium-labeling experiments were
conducted (Fig. 6b). When the α-deuterated substrate 1u-d2 was
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used, 45.5% average deuterium incorporation at the γ-position
relative to the nitrogen of the product was detected, and the
recovered substrate showed no loss of deuterium. This observa-
tion is consistent with our assumption that the hydrogen in the
product was derived mainly from the N-tosyl amine. Third,
control experiments were carried out to investigate the role
played by pivaldehyde in the reactions of aliphatic olefins
(Fig. 6c). In the absence of the aldehyde, only a very low yield was
obtained (<8%). In contrast, when an α,α,α-trisubstituted alde-
hyde α-naphthalenyl isobutyraldehyde 7 (Compared to pivalde-
hyde, α-naphthalenyl isobutyraldehyde and its corresponding
alcohol are easier to observe by 1H NMR spectroscopy) was used,
3bg was obtained in 57% yield, along with an alcohol derived
from the aldehyde. Moreover, a catalytic amount of N-tosyl imine
(10 mol%) also promoted the reaction, which indicates that the
aldehyde additive may accept hydride from the Ni–H species
generated in the initial step (N-tosyl amine dehydration), prior to
catalysis.

In addition, we investigated effects of the base and boron
reagent. First, a strong base such as KOtBu, LiOtBu, and KOMe
was found to be indispensable; while, beside PhB(OH)2, a borate
such as 2-phenyl-1,3,2-dioxaborinane also dramatically promoted
the reaction (Fig. 2). Second, we used 11B NMR to evaluate
interactions between PhB(OH)2 and reactants, including N-tosyl
amine, styrene, and KOtBu (Fig. 7). After heating the reaction
mixture for a while (in the absence of Ni/P-catalyst), a new peak
appeared in the upfield, implying the formation of a boronate
complex. Notably, this peak still appeared either in the absence of
an olefin or when PhB(OH)2 was treated with potassium
sulfonamide (8) directly. Furthermore, a boronate complex (9)
bearing a B–N bond was isolated and characterized by NMR
spectroscopy as well as elementary analysis ([C20H21BKNO4S],
calcd. for B: 2.57%; found: 2.73%.). Beside KOtBu, we subjected
LiOtBu into the above experiments, and also observed the
formation of lithium boronate by 11B NMR spectroscopy
(see Supplementary Methods 2.6 for details). Inspired by the
previous observations that compounds bearing active protons
(e.g. TsNH2, phenol) could promote opening of the five-
membered nickellacycle intermediate via protonation50,54,62–64,
as well as studies of transmetallation on boronates65–69,

we proposed that a boronate facilitates exchange of the
sulfonamidyl group on the nickel, leading to rapid opening of
the nickellacycle (a to b in Fig. 1c).

On the basis of the aforementioned experiments and previous
studies49–51,54,56,57, we proposed the mechanism outlined in
Fig. 8. The process is initiated by dehydrogenation of a N-sulfonyl
amine, liberating a catalytic amount of the corresponding imine
together with a Ni-H species. Subsequently, styrene or the
additive pivaldehyde accepts hydride to regenerate the active
Ni(0) catalyst. In the catalytic cycle, oxidative cyclometallation
produces a nickellacycle intermediate Int1, which is converted
into the nickel intermediate Int2 through a boronate-promoted
exchange of sulfonamidyl group. Finally, the desired product is
derived from Int2 through a β-H elimination/reductive elimina-
tion process, completing the catalytic cycle.

In summary, we have developed a method for nickel-catalyzed
hydroalkylation reactions between terminal olefins and linear
N-sulfonyl amines to afford a variety of branched products. The
method is atom economical because an exogenous hydride source
is not required. Mechanistic studies suggested that a sulfonamidyl
boronate complex formed in situ facilitates the transformation by
promoting the opening of the nickellacycle. Further work aimed
at extending this protocol to related transformations is currently
underway in our laboratory.

Methods
General procedure for hydroalkylation of olefins with N-sulfonyl amines. In a
N2-filled glovebox, a 4 mL oven-dried vial was charged with N-sulfonyl amine 1
(0.2 mmol, 1.0 equiv.), olefin 2 (0.4 mmol, 2.0 equiv.), Ni(cod)2 (0.005 mmol,
1.4 mg, 2.5 mol%), PCy3 (0.01 mmol, 2.8 mg, 5 mol%), PhB(OH)2 (0.05 mmol,
6.1 mg, 25 mol%) and KOtBu (0.05 mmol, 5.6 mg, 25 mol%). Toluene (0.3 mL) was
added. The vial was equipped with a magnetic stir bar, sealed, and the reaction
mixture was stirred at 120 °C for 20 h. The reaction mixture was cooled to room
temperature and concentrated under reduced pressure. Purification by column
chromatography afforded the desired product.

General procedure for enantioselective hydroalkylation of olefins with
N-sulfonyl amines. In a N2-filled glovebox, a 4 mL oven-dried vial was charged
with N-sulfonyl amine 4 (0.1 mmol, 1.0 equiv.), olefin 2 (0.2 mmol, 2.0 equiv.),
NiBr2·dme (0.01 mmol, 3.1 mg, 10 mol%), (R)-BI-DIME (0.02 mmol, 6.6 mg,
20 mol%), PhB(OH)2 (0.12 mmol, 14.6 mg, 120 mol%) and KOtBu (0.12 mmol,
13.4 mg, 120 mol%). Anisole (0.2 mL) was added. The vial was equipped with a

PhB(OH)2 + KOtBu

PhB(OH)2 + KOtBu + BnNHTs

PhB(OH)2 + KOtBu + BnNHTs + styrene

PhB(OH)2 + BnNTs·K

PhB(OH)2

boronate complex (9)

29.8 ppm

15.9 ppm

2.9 ppm

2.1 ppm

2.1 ppm

1.7 ppm

N B
Ts

Ph Ph

OH
OH

K

boronate complex
9

Fig. 7 11B NMR (toluene-d8) studies. 11B NMR spectroscopy was used to evaluate interactions between PhB(OH)2 and reactants, including N-tosyl amine,
styrene, and KOtBu.
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magnetic stir bar, sealed, and the reaction mixture was stirred at 60 °C for 72 h.
The reaction mixture was cooled to room temperature and concentrated under
reduced pressure. Purification by column chromatography afforded the desired
product.

Data availability
All data supporting the findings of this study are available within the article and
Supplementary Information files, or from the corresponding author upon reasonable
request. The X-ray crystallographic coordinates for structure of 5n reported in this study
have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under
deposition number 2092983. The data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.
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