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Abstract: Brain tissue contains the highest number of perivascular pericytes compared to other
organs. Pericytes are known to regulate brain perfusion and to play an important role within the
neurovascular unit (NVU). The high phenotypic and functional plasticity of pericytes make this cell
type a prime candidate to aid physiological adaptations but also propose pericytes as important
modulators in diverse pathologies in the brain. This review highlights known phenotypes of pericytes
in the brain, discusses the diverse markers for brain pericytes, and reviews current in vitro and in vivo
experimental models to study pericyte function. Our current knowledge of pericyte phenotypes as it
relates to metastatic growth patterns in breast cancer brain metastasis is presented as an example
for the crosstalk between pericytes, endothelial cells, and metastatic cells. Future challenges lie in
establishing methods for real-time monitoring of pericyte crosstalk to understand causal events in
the brain metastatic process.
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1. Breast Cancer Brain Metastasis

Breast cancer (BC) remains the leading cause of cancer death and disability-adjusted
life years in women [1], and approximately one in eight women will be diagnosed with
breast cancer in their lifetime [2]. Despite significant improvements in diagnosis, treatment,
and outcomes, about 6% of all BC cases are diagnosed at the metastatic stage with a poor
5-year survival rate of less than 27% [3]. BC metastasis to the central nervous system (CNS)
constitutes a serious complication that is a strong clinical indicator of poor prognosis and
can coincide with destructive neurologic complications [4]. CNS lesions comprise 13–30%
of all BC metastases [5,6]. The number of patients with breast cancer brain metastases
(BCBM) may be higher than anticipated due to asymptomatic cases of BCBM identified in
screenings [7,8] and autopsy-based studies [9].

BC is a heterogeneous disease that can be categorized based on multiple morphological
and molecular properties [10,11]. One of the most widely used molecular classifications
divides BC into four different subtypes based on the presence/absence of estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2).
This includes luminal A (ER+ and/or PR+, and HER2-), luminal B (ER+ and/or PR+, and
HER2+), HER2-enriched (ER- and PR-, and HER2+), and basal-like or triple-negative (ER-,
PR-, and HER2-) BC [12]. BCBM are more likely to occur in women with HER2-enriched BC
(30–55%) and triple-negative tumors (24–46%). [13,14]. In addition, patients with hormone
receptor-negative BC were more likely to relapse in the brain in the first 5 years compared
to hormone receptor+ BC tumors [15,16].

BCBM can occur in different CNS regions. Rostami et al. reported that 52.2% of BCBM
were supratentorial and 24.1% infratentorial, and 14% of patients had metastases at both
locations [17]. Magnetic resonance imaging data suggest that the cerebellum (33%), frontal
lobe (26%), and brain stem (5%) are the most common BCBM locations, and multiple
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lesions were observed in 54.2% [17]. These data are partially supported by postmortem
studies [18], where BCBM were most frequently noted in the cerebellum, occipital lobe,
and basal ganglia. While the brain parenchyma is the preferred location for BCBM to form,
the choroid plexus and leptomeninges can also be sites in 5% of women diagnosed with
BCBM [19,20]. Together, these data emphasize a prominent role of the CNS environment for
the successful establishment of BCBM lesions. However, little is known about the molecular
mechanisms that regulate the formation of BC brain metastases and define the complex
cellular microenvironment at BC brain metastatic sites.

2. Brain Colonization of Breast Cancer Cells

Brain metastatic colonization is a multistep process that starts at the primary tumor
site and includes epithelial-to-mesenchymal transdifferentiation (EMT) to enable BC cells
to detach from the primary BC tumor, penetrate extracellular matrices, and invade neigh-
boring tissues. The invasion of blood and lymph vessels signals a major metastatic leap
and provides a selective advantage for the evolution of a heterogeneous group of tumor
cells that have developed strategies to survive as circulating tumor cells (CTC) in the blood
and lymph and crucially have the ability to colonize distant organs [21]. The establishment
of brain metastatic sites is particularly challenging for CTC and is known to take longer
than the colonization of other distant sites such as the lungs or the bones. It requires CTC
capable of transitioning through a tightly controlled blood–brain barrier (BBB) to gain
access to the brain microenvironment with its unique extracellular matrix, metabolic, and
immunological challenges. BC brain metastasizing cells were shown to reside in brain
capillaries in close contact with endothelial cells for up to 7 days [22]. The successful
completion of this treacherous journey results in the formation of micro-metastatic BCBM
lesions that have the potential to progress to macroscopic secondary tumors [23,24].

3. Breast Cancer Brain Metastatic Cells and the Neurovascular Unit (NVU)

The neurovascular unit (NVU) is an anatomically complex functional brain microen-
vironment that the brain metastatic BC cells encounter first when entering the brain vas-
culature (Figure 1). This NVU is a unique vascular niche composed of luminal brain
microvascular endothelial cells (BMEC) on a basal lamina (BL) richly surrounded with peri-
cytes on its abluminal side. These vascular structures form intimate contacts with cellular
extensions of brain resident cells, including glial cells of astrocytic and oligodendroglial
origin, neurons, and microglial cells to create a functional integrated neurovascular barrier
critically important for normal brain functions. The NVU shows region-specific anatomical
specialization, likely reflecting adaptations to the requirements of specialized niches within
the brain microenvironment [25]. NG2 and PDGFRβ reporter studies in mice suggest that
pericytes are more abundant in cortical layer I than in layers II and III [26], but this was
studied in a defined region of the sensorimotor cortex only and likely does not represent
all CNS regions.

The NVU is the site of entry of BC cells for the establishment of BCBM in the brain
parenchyma [27,28]. Activation of both astrocytes and microglia coincides with the arrival
and luminal attachment of CTC, suggesting a role for the NVU in sensing the non-resident
(cancer) cells and acting as a potential early warning system against metastatic brain
colonization even prior to cancer cells crossing the BBB [22,29]. A complex and dynamic
structure separating blood from brain tissue, the BBB consists of non-fenestrated BMEC
connected by tight junctions and adherens junctions, supported by a basement membrane
(BM) and surrounded by astrocytic end-feet and PCs [30]. At the same time, the BBB is
not just a physical barrier, it also acts as a selective transport interface, secretory body, and
metabolic barrier [31].

This review focuses on pericyte populations at the NVU, their molecular markers, and
the roles of these brain pericytes during BC cell colonization of the brain.
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Figure 1. Perivascular arrangement of pericytes among NVU cellular structures. Pericytes extend 
their ramified processes along the brain vasculature, coming into direct contact with the vascular 
endothelium and astrocytic end-feet. Pericytes embedded in the capillary basement membrane, to-
gether with the endothelial cells of the capillary wall and astrocytic end-feet, form the blood–brain 
barrier. Different types of pericytes are found in distinct locations of the NVU. Ensheathing peri-
cytes occupy mostly pre-capillary arterioles, while mesh and thin-strand pericytes are found mainly 
at the capillary portion of the brain microvasculature. 
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4. Pericytes Provide Key Functional Support for the NVU 
Pericytes were first identified in 1873 when Charles-Marie Benjamin Rouget de-

scribed a population of contractile cells surrounding the endothelial cells (EC) of small 
blood vessels. Originally, these cells were called “Rouget cells”, but later Zimmermann 
termed these cells “pericytes” (PC), as this name best describes their location around ca-
pillary vessels [32]. The vasculature in the human CNS has the highest density of pericyte 
coverage, with a 1:1–3:1 EC-to-pericyte ratio [33]. CNS pericytes are derived primarily 
from the neural crest. The neuroectodermal origin of these cells was confirmed using Wnt-
1 Cre [34] and Sox10-Cre [35] fate mapping mouse models. However, CNS pericytes may 
also originate from the mesoderm and bone marrow. CNS pericytes of neuroectodermal 
origin comprise the most prevalent population destined for the forebrain, while pericytes 
of mesodermal origin may be found in the brainstem, spinal cord, and mid-brain [36,37]. 

Figure 1. Perivascular arrangement of pericytes among NVU cellular structures. Pericytes extend
their ramified processes along the brain vasculature, coming into direct contact with the vascular
endothelium and astrocytic end-feet. Pericytes embedded in the capillary basement membrane,
together with the endothelial cells of the capillary wall and astrocytic end-feet, form the blood–brain
barrier. Different types of pericytes are found in distinct locations of the NVU. Ensheathing pericytes
occupy mostly pre-capillary arterioles, while mesh and thin-strand pericytes are found mainly at the
capillary portion of the brain microvasculature.

4. Pericytes Provide Key Functional Support for the NVU

Pericytes were first identified in 1873 when Charles-Marie Benjamin Rouget described
a population of contractile cells surrounding the endothelial cells (EC) of small blood
vessels. Originally, these cells were called “Rouget cells”, but later Zimmermann termed
these cells “pericytes” (PC), as this name best describes their location around capillary
vessels [32]. The vasculature in the human CNS has the highest density of pericyte coverage,
with a 1:1–3:1 EC-to-pericyte ratio [33]. CNS pericytes are derived primarily from the neural
crest. The neuroectodermal origin of these cells was confirmed using Wnt-1 Cre [34] and
Sox10-Cre [35] fate mapping mouse models. However, CNS pericytes may also originate
from the mesoderm and bone marrow. CNS pericytes of neuroectodermal origin comprise
the most prevalent population destined for the forebrain, while pericytes of mesodermal
origin may be found in the brainstem, spinal cord, and mid-brain [36,37]. Brain pericytes
are responsible for the integration of endothelial functions with glial/astrocyte functions at
the NVU [38], the regulation of cerebral blood flow [39], angiogenesis [40], BBB formation
and integrity [41], neuroinflammation [42], and stem cell activity [43].

Pericytes regulate the BBB by reducing the expression of endothelial genes involved
with transendothelial permeability (e.g., plasmalemma vesicle-associated protein (PLVAP))
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and promote astrocyte end-feet polarization [32,33,44]. Crosstalk of pericytes with EC
during early vasculogenesis aids in vascular cell development and maturation. The anti-
angiogenic potential of pericytes helps with the proper stabilization of blood vessels by
reducing the proliferation and migration of endothelial cells [45]. Pericyte-deficient mice
exhibit BBB breakdown, allowing perivascular IgG accumulation in the hippocampus and
cortex in an age-dependent manner. In contrast to wild-type controls, 6–8-month-old and
14–16-month-old platelet-derived growth factor receptor-beta (PDGFR-β)-deficient mice
showed an approximately 8–10-fold and 20–25-fold greater IgG perivascular accumulation
in the hippocampus and cortex, respectively [46]. This points to an important function of
the pericyte receptor PDGFRβ in the brain endothelial cell differentiation and function.
As the breakdown of the BBB typically indicates disruption of the BBB tight junctions,
PDGFR-β-deficient mice showed a progressive age-dependent reduction in the expression
of key tight junction proteins ZO-1, occludin, and claudin-5 by 40–50% at 6–8 months and
80% at 14–16 months of age, respectively [46]. Mice deficient in PDGF-B and PDGFR-β
receptors exhibit abnormal capillary shape and morphology. In PDGFR-β-deficient mice,
this translates into a 25% increase in mean blood vessel diameter compared to wild-type
mice, confirming that pericyte contractile capabilities regulate blood flow [47,48]. These
findings have established pericytes as a critical cellular NVU component that cooperates
with EC to facilitate BBB integrity in an age-dependent manner in the mouse brain.

Pericytes also have critical roles in tumor vasculature. In fibrosarcoma and osteosar-
coma mouse models, pericytes were shown to display aberrant PDGF signaling and, similar
to mice lacking PDGF-B and its receptor, this coincides with increased blood vessel diame-
ters and reduced endothelial cell junctional circumference in the tumor vasculature [49,50].
Pericytes with abnormal morphology are loosely attached to the tumor vessels and show
rapid turnover, thus rendering these vessels leaky [50,51]. Pericytes have stem cell ability
and can differentiate into multiple types of mesenchymal precursor cells: fibroblasts, os-
teoblasts, chondroblasts, adipocytes, vascular smooth muscle cells, and skeletal muscle
cell precursors. These cells express stem cell markers such as CD44, CD73, CD90, and
CD105 [52]. Pericytes in the brain were also shown to have multilineage differentiation
potential in vitro capable of differentiating into neural and vascular cells under hypoxic
conditions [53]. This identifies the pericyte population as a source of regeneration and
plasticity for functional gain of the NVU.

5. Pericyte Markers

Improper identification and frequent mix-ups with adjacent cell types, e.g., vascular
smooth muscle cells (vSMCs) and juxtavascular microglia, have resulted in conflicting data
being published [54]. Hence, the identification of specific pericytic markers is fundamental
in better understanding the role of pericytes in normal and tumor environments, including
BCBM. Pericytes can be definitively identified by electron microscopy (EM) features such
as perivascular location with extensions of their slender ramified cytoplasmic processes
along the capillary, an oval nuclear shape with high nucleus-to-cytoplasm ratio, and poorly
developed cell organelles [55]. However, such morphological EM studies only provide very
limited functional information and are not suitable for the selective isolation of defined
populations of microvascular pericytes [56]. The diversity of pericytic phenotypes, the lack
of a definitive pan-pericyte marker, and the differences in expression profiles of pericyte-
associated genes in isolated pericytes versus in vivo samples are major challenges [45,57].
Currently, no single pericyte-specific marker is known, and all current markers used to
identify pericytes are dynamic in their expression and may be up- or downregulated
due to pathological or culture conditions [32]. The markers commonly used to identify
brain pericytes include PDGFR-β [58], membrane alanyl aminopeptidase (CD13) [59],
alpha-smooth muscle actin (αSMA) [60], neuron-glial antigen 2 (NG2) [61], melanoma
cell adhesion molecule (MCAM or CD146) [62], and desmin [63]. The level of expression
of a pericyte marker may also fluctuate as these multipotent cells possess self-renewing
potential and display high phenotypic plasticity [64]. Hence, a state-of-the-art approach
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to identify pericytes in tissues must rely on a combination of tissue morphology, counter-
labeling of EC and vSMC, and simultaneous staining for two or more pericyte markers [32].
Moreover, accurate identification of pericytes in vitro should also consider origin and
co-culture conditions, as these cells tend to rapidly differentiate along multiple lineages
depending on prevailing regulatory signals introduced with the specific culture conditions
and the cellular microenvironment [65].

6. The NVU Contains Distinct Pericyte Populations

Several distinct types of pericytes have been described based upon the morphological
appearance of their processes. This includes ensheathing, mesh, and thin-strand pericytes
(Figure 2) [26]. The ensheathing pericytes cover mostly the pre-capillary portion of brain
microvasculature, possess properties of both vSMCs and pericytes, and are considered a
transitional form. The mesh and thin-strand pericytes of the capillary bed may be referred
to as genuine capillary cells. Confocal imaging of thick coronal mouse brain sections
has shown that only ensheathing pericytes demonstrate the level of αSMA expression
comparable to vSMC, while αSMA expression was undetectable in both capillary mesh
and thin-strand pericytes [57]. Similarly, prominent αSMA staining was exclusively found
on relatively large precapillary arterioles [66]. Further evidence for the presence of distinct
subtypes of pericytes was obtained during in vivo experiments in mice with a commercially
available small molecule fluorescent dye, NeuroTrace 500/525, that labeled exclusively
thin-strand non-contractile pericytes that lack α-SMA expression and possess long thin
processes spanning multiple vessel branches [67]. By contrast, nearly all cultured pericytes
started to express αSMA by day seven, which suggests differentiation of pericytes towards
an ensheathing subtype in culture in the presence of a serum-containing medium [68]. In
spite of the debates on the extent of differences between pericyte subpopulations [39,69],
these in vitro data cast doubt on αSMA as a marker for the in vivo identification of true
capillary pericytes.

The expression of CD146, also referred to as melanoma cell adhesion molecule
(MCAM) or cell surface glycoprotein MUC18, was shown to be primarily confined to
vSMC. High αSMA expression in CD146+ cells in vitro suggests that CD146 identifies a
subpopulation of vSMC, but a role of CD146 as a pericyte marker is questionable [66]. These
findings are supported by single-cell RNA sequencing data demonstrating that MCAM
expression was approximately threefold higher in arterial and arteriolar vSMCs than in cap-
illary pericytes [70]. Pericyte expression of NG2 also proved to be inconsistent. While one
study suggested that 50–80% of isolated PDGFRβ+ cells were also NG2+ [71], another study
demonstrated that prominent NG2 in situ staining was shown only in cases of focal cortical
dysplasia but not in control tissues [72]. These data correlate with weak NG2 staining in
human brain pericytes. NG2 is regarded as a plasticity marker with strongest expression at
early stages of tissue development but declining later in ontogenesis [73,74]. NG2 might not
be an appropriate target for the identification of quiescent human brain pericytes [75]. CD13
has been reported to have high specificity for capillary pericytes [26,38,59,66,76]. In addi-
tion, exclusive vascular staining of PDGFRβ may also serve as a suitable indicator for the
presence of pericytes [38,66,77,78]. Collectively, the most reliable identification of brain peri-
cytes under normal tissue conditions is based on a combination of parameters, including the
double-positive staining for CD13 and PDGFRβ, the characterization of “bump-on-a-log”
morphology with patterns for cell processes, and the selective counterstaining of vSMCs,
EC, and astrocytes. Notably, the combined CD13/PDGFRβ co-staining was shown to be
most reliable for the identification and isolation of brain pericytes using FACS isolation,
thus providing new exciting avenues for the study of brain pericytes [79]. The study of
pericytes in different disease states, including neurodegenerative diseases and brain tumors,
is anticipated to be critical in our understanding of the corresponding pathogenesis. Chal-
lenges to overcome include changes in protein marker expression within diseased tissues
and cells, including tumor-associated pericytes acquiring an αSMA-positive phenotype
likely reflecting tumor-induced angiogenesis and collagen synthesis [80].
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Figure 2. Morphological features of distinct pericyte (PC) subtypes. PC are characterized by a
typical “bump on a log” appearance arising from an ovoid protruding nucleus and extending
cytoplasmic processes that contact the abluminal side of the vascular basal membrane (BM) and
run inside of its duplicature. Thin-strand pericytes (A) possess relatively long thin cytoplasmic
processes with a complex branching pattern that sparsely cover brain capillaries. Mesh pericytes
(B) have a less complex branching pattern, and their thicker and shorter processes provide more
comprehensive coverage of brain capillaries. Ensheathing pericytes (C) are characterized by the least
complex branching pattern and almost complete coverage of pre-capillary arterioles.

7. The NVU in Breast-to-Brain Metastasis

Among the most common and adverse scenarios associated with BBB disruption are
intracranial metastatic lesions [81]. The establishment of brain metastasis is a multistep
process eventually leading to successful formation of brain macro-metastases (Figure 3A).
The essential steps in this multistep metastatic process include the initial apposition and
arrest of CTC at the endothelial luminal surface of blood vessels, early extravasation,
perpetuated perivascular localization, vessel co-option, and angiogenic sprouting [82].
The presence of pre-existing blood vessels for vascular co-option and the close physical
contact with the abluminal surface of the blood vessels are critical prerequisites for the
survival of cancer cells in perivascular metastatic loci. The initial adaptation and survival
are considered the most inefficient steps in the metastatic process and represent a stage
of high vulnerability for these cancer cells towards the formation of micro-metastatic
lesions [82]. Importantly, tumor cells have the ability to recruit pericytes to promote
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angiogenesis and, at the same time, displacing them from their initial vascular niche
to enhance the leakiness of blood vessels [83]. The underlying mechanism is primarily
dependent on paracrine PDGFRβ/ PDGF-BB signaling [84], while pro-angiogenic factors,
such as hypoxia-induced factor 1α (HIF1α) and vascular endothelial growth factor (VEGF),
determine both vessel co-option and angiogenesis [85,86] (Figure 3B). Enhanced stem cell
properties and phenotypical plasticity of pericytes emerge as additional mechanisms by
which pericytes may prepare the BC brain metastatic vascular niche to promote metastatic
progression. The ability of pericytes (PC) to give rise to cancer-associated fibroblasts that
promote tumor growth and dissemination was demonstrated in ovarian cancer [87].
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Figure 3. Pericytes support the disruption of the NVU during metastasis. (A) A consecutive pro-
cess of rolling, adhesion, and transendothelial migration of circulating tumor cells results in the
extravasation of the metastatic breast cancer cells. (B) Tumor and astrocyte-secreted VEGF contributes
to vessel co-option. PDGF-BB secreted by the metastatic tumor cells mediates displacement of peri-
cytes and their relocation towards the co-opted and newly formed blood vessels. (C) Transformation
of the tumor cells into endothelial-like cells allows the formation of the vascular mimicry vessels.
Pericytes migrate towards these newly formed leaky vascular mimicry vessels and stabilize them.

Disruption of BBB integrity in BCBM arises from direct cell–cell interactions between
BC cells and the NVU and the secretion of a broad range of cytokines/chemokines de-
rived from tumor cells. In fact, CX3CL1 and CXCL13, also known as B cell-attracting
chemokine (BCA-1), are notably elevated in patients with BCBM and associated with poor
outcomes [88]. CX3CL1 can trigger CXCR1-expressing cancer cells to invade neighbor-
ing tissues [88], while CXCL13 may induce EMT of BMEC by binding to the receptors
CXCR5 and CX3CR1 [89]. These observations were corroborated by the observation that
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CX3CL1 and CXCL13 containing serum obtained from BCBM patients significantly in-
creased paracellular permeability of BMEC monolayers [90]. In addition to vessel co-option
and angiogenesis, tumor vascularization may be explained by vascular mimicry (VM)
(Figure 3C). VM refers to the formation of fluid-conducting networks by non-endothelial
cells and has been reported for melanomas, sarcomas, breast, ovary, lung, and prostate
carcinomas, and glioblastoma [91–94]. Breast cancer stem-like cells of MDA-MB-231 and
SK-3 lines can differentiate into cells with endothelial markers, morphology, and function.
In this way and independent of EC, breast cancer cells and BCBM can assume dual func-
tions by attracting adjacent normal cells and forming primitive blood-vessel-like structures
themselves [95]. The role of pericytes in VM was described in primary and brain metastatic
melanoma. VM+ tumors are characterized by high PDGF-B secretion and a higher num-
ber of PDGFRβ+ pericytes assisting in stabilizing the vascular networks formed by VM+
cells [96,97]. The important supportive role of pericytes in maintaining brain endothelial
barrier function becomes apparent from BBB culture models [98,99]. In vitro co-culture
models demonstrated the ability of pericytes to suppress lung cancer cell migration through
brain endothelial barriers [100]. In mouse models of breast and renal cell carcinoma as
well as melanoma, complete loss of pericytes led to tumor hypoxia followed by EMT and
increased metastasis [101]. These findings suggest that a loss of pericytes or their displace-
ment from vascular structures can promote adverse local metabolic conditions that promote
metastasis [83]. Importantly, tumor cells can transform the BBB into a blood–tumor barrier
(BTB). The ability to induce BBB leakiness varies substantially among BC brain metastatic
lesions [102]. While brain metastases of basal-like BC are reported to disrupt the BBB, this
was less frequently observed in brain metastases of HER2-enriched breast cancers [103,104].

Vascular endothelial growth factor (VEGF) is implicated in the formation of BM and
is frequently overexpressed and secreted by tumor cells in BM [105]. Pericytes express
vascular endothelial growth factor receptor 1 (VEGFR1) [106] and stimulation of retinal
pericytes with BC-derived VEGFR1 agonists, VEGF, or PlGF [107], resulting in pericyte
vascular ablation, increased vascular leakage, and tissue edema [106]. This initiated a
cascade of events leading to profound alterations in the behavior of angiogenic EC, which
accumulated in thick protrusions but failed to form the normal number of vascular sprouts
and branches [108].

8. Role of Pericytes in the Establishment of Metastatic Lesions

The initial steps of BC cell brain colonization have been described: (1) arrest of BC
CTCs in brain capillaries, (2) BC cell passage through the BBB, (3) extravasation of BC
cells from capillaries that are surrounded by PDGFRβ+ pericytes, and (4) initial growth
of extravasated BC cells in the perivascular niche [22,82] (Figure 4). Upon successful
extravasation and growth initiation, the fate of the metastatic cells is determined by the
tissue milieu and cellular communication networks at the NVU niche [109].

The intravascular arrest of BC cells at the NVU includes cell–cell interactions of
metastatic BC with microvascular EC, and this is sufficient to activate astrocytes. Upon
extravasation, the formation of micro-metastatic lesions coincides with the appearance
of activated astrocytes that accumulate both around and inside of the metastatic foci
and form direct contacts with tumor cells [110]. The role of activated astrocytes in this
brain metastatic process is largely unknown but may include supportive functions for
nutrient transport, ion trafficking across the ECM, and neuronal signaling [22]. Co-culture
experiments with astrocytes have demonstrated the ability of astrocyte-derived factors to
induce a migratory response in BC cells [29]. Activated astrocytes can secrete potentially
oncogenic factors such as interleukin 6 (IL-6), transforming growth factor beta (TGFb)
and matrix metallopeptidase 9 (MMP-9) [111–113]. The astrocyte-derived secretion of the
Erb-B2 receptor tyrosine kinase 3 (ErbB3, HER3) ligand neuregulin-1 (NRG-1) induces
the proliferation, invasion, and BBB transmigration in Erb-B2 receptor tyrosine kinase
2 (ErbB2, HER2)-positive BC cells [114,115]. BCBM lesions were shown to have higher
HER3 activity compared to the corresponding BC primary tumors [116], suggesting HER3
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signaling may support metastatic growth. Activated microglia utilize Wnt signaling to
promote the invasion and colonization potential of BC cells in brain metastatic lesions [117].
Unlike astrocyte activation, microglia activation was more variable and the differences
in phagocytic activity and morphology observed may reflect the presence of different
microglial subpopulations and/or different experimental conditions [109,118].
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Figure 4. Key steps of the breast-to-brain metastatic process. (Step 1) Adhesion of the metastatic
circulating breast cancer cells to the brain microvascular endothelial cells; (Step 2) BBB passage
of metastatic cells leaving the circulation by transendothelial migration; (Step 3) adaptation and
proliferation of the metastatic cells in their new perivascular niche; (Step 4) establishment of the
tumor microenvironment with metastatic breast cancer cells interacting with the key NVU cellular
partner pericytes, astrocytes, and microglia. Astrocyte foot processes associated with the parenchymal
basal lamina form the outermost layer of central nervous tissue known as glia limitans.

Despite the close proximity between pericytes, EC, and cancer cells during and after the
trans-endothelial passage, the detailed role of brain pericytes in the process of BBB invasion
and metastatic niche formation is largely unknown. BC dormancy in the brain perivascular
niche was shown to be controlled by thrombospondin-1 secretion from well-differentiated
EC [119]. Sprouting EC at developing branch points reduces thrombospondin-1 expression,
which terminates BC cell quiescence and allows BCBM growth [119]. Although the role of
pericytes in tumor dormancy at this early stage of BM is not known, tumor-cell-derived
PDGF-BB leads to pericyte removal from the vessel and vessel sprouting [120]. Simi-
larly, VEGF over-expression may alter pericyte activation and differentiation, resulting in
increased CD31 expression, proliferation, and tumor angiogenesis of EC [105]. Several
growth factors secreted by tumor cells, such as PDGF-B, VEGF-A, and TGFβ-1, may trigger
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the prevalence of a PDGFRβ+/desmin+ pericyte phenotype through the acquisition of
αSMA, RGS5, NG2, and desmin immunopositivity in activated pericytes at BCBM sites [32].
Intriguing data from mouse models of BCBM indicate dynamic changes in pericyte sub-
populations that coincide with altered BTB permeability and enhanced BCBM invasiveness.
Mouse metastatic brain lesions arising from brain-trophic triple-negative MDA-MB-231 as
well as HER2+ SUM190 and HER2+ JIMT-1 cell lines were highly permeable to Texas Red
dextran, indicating a leaky BTB. These lesions showed an increase in PDGFRβ+/desmin+
and a decrease in PDGFRβ+/CD13+ perivascular cell populations presumed to reflect
different pericyte subpopulations. In patients with brain metastasis, vessels of the unaf-
fected brain were primarily surrounded by CD13+ pericytes, whereas desmin+ perivascular
cells were primarily associated with brain metastatic lesions [105]. These observations are
indicative of increased pericyte plasticity at BCBM lesions. Pericyte plasticity in the brain is
not as well-documented as in other organs, but their stem cell capability in culture and their
ability to differentiate into cells of vascular and neural lineages has been demonstrated
in vitro [64]. PDGFRβ+ brain pericytes isolated from ischemic brain were shown to express
the stem cell marker nestin and were capable to in vitro differentiate into vascular and
myeloid lineages with phagocytic activity, suggesting microglial differentiation [121]. In hu-
man grade III and grade IV glioma with high PDGFβ expression levels, tumor microvessels
were associated with increased microvascular α-SMA+ pericyte density and reduced CD31
staining, suggesting that pericytes take an active role in tumor microvessel formation [122].
Lineage tracing in vivo studies are needed to demonstrate the plasticity of pericytes in
support of a metastasis-promoting function of brain pericytes.

Cancer cells and other cellular components of the tumor microenvironment respond to
depleted oxygen levels with increased activity of hypoxia-inducible factors (HIFs) [123] and
the activation of multiple HIF-1α target genes and downstream signaling cascades [124].
Importantly, HIF-1α stabilization leads to the increased expression and secretion of VEGF
by astrocytes [125], which may promote the appearance of a PDGFRβ+//desmin+ pericyte
vascular phenotype. Pericytes themselves respond to hypoxia with an upregulation of
angiopoietin-1 (ANG-1) and rapid expression of VEGF [126,127]. Pericytes can also induce
MMP expression in EC during hypoxia with downstream effects on extracellular matrix
composition in the vicinity of the NVU niche. The abundance of perivascular pericytes in
the CNS and their phenotypic and functional plasticity suggest that pericyte populations
are rewarding targets for brain-metastasizing BC cells.

9. Pericytes and Endoplasmatic Reticulum (ER) Stress—An Emerging Science

Imbalances in the cellular homeostasis may generate cell stress from aberrant pro-
tein folding, which leads to ER stress. This causes the activation of the unfolded protein
response (UPR) as an adaptive cellular response aimed at restoring homeostasis and cell
survival [128]. ER stress may also affect pericyte viability and functions. Cultured retinal
pericytes subjected to glucose deprivation or intermittent glucose reduction activate the
ER transmembrane protein kinase PERK, which induces autophagy and the expression
of VEGF-A and pro-inflammatory monocyte chemoattractant protein-1 (MCP1) [129,130].
Pericytes undergo regulated apoptosis resulting from ER stress induced by hypoglycemia
or fluctuating glucose levels [129,131]. In glioblastoma brain tumor models, the activation
of chaperone-mediated autophagy causes brain pericytes to release anti-inflammatory
cytokines, such as TGF-β or IL-10, to block anti-tumor immune responses and instead pro-
mote brain tumor survival [132,133]. Recently, the transmission of ER stress from one cell to
another cell was described as a process by which tumor cell-derived extracellular vesicles
laden with functional proteins can initiate ER stress in other cells, such as macrophages,
brain resident cells, and likely pericytes. This vesicular cargo can contain upstream regu-
lators of UPR that activate UPR stress-related immunosuppressive responses to promote
tumor cell survival, metastasis, and angiogenesis [130]. Intercellular transmissible ER
stress (TERS) under metabolic stress was also shown to occur in hepatocytes through direct
cell–cell contacts [134]. Information is currently lacking on adaptive ER stress responses be-



Cells 2022, 11, 1263 11 of 23

tween metastasizing cancer cells and perivascular pericytes, which influence the metastatic
process. Emerging TERS research is likely to make ground-breaking discoveries on the
multifaceted roles of pericytes in TERS at the NVU and in BCBM as well.

10. Pericytes and Metastatic Invasion Patterns

BM can be distinguished on the basis of their invasion patterns. Berghoff et al. pro-
posed to categorize all metastatic brain lesions into three distinct types: well-demarcated,
vascular co-option, and diffuse [135]. Another classification was later suggested by Teglasi
et al., who distinguished pushing-type, papillary-type, and diffuse invasion patterns [80].
Primary tumors of different origins were shown to form metastatic lesions of distinct mor-
phologies. Breast carcinoma metastases predominantly produced papillary-type metastases
(Figure 5A), while pushing- (Figure 5B) and mixed phenotypes were distinctive for colon
and lung carcinoma metastases. A prominent feature of pushing-type metastases was
the formation of a multicellular PDGFRβ+ pericyte layer embedded within a thickened
vascular basement membrane. By contrast, thickening of the pericyte layer was uncommon
in papillary-type metastases and restricted to vessels at the metastatic site.
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Figure 5. Invasion patterns of breast-to-brain metastasis. (A) Breast-to-brain metastases are of
the papillary type and characterized by the abundant vessel co-option and close direct contacts
between the breast cancer cells, blood vessels, and pericytes. (B) Brain metastases of the pushing type,
originating, for example, from colon cancer, show a distinct collagen layer separating the metastatic
lesion from the capillaries and surrounding pericytes.

Metastatic growth was accompanied by an increased pericytic expression of Serpin
H1 (an enzyme involved in collagen biosynthesis) and αSMA, which coincided with
elevated levels of collagen in the vessel walls [80]. Hence, pericytes possess the capability
to differentiate into other cell types and may be viewed as the main source of the connective
tissue in human parenchymal BM. In human BCBM xenograft, MDA-MB-231/BR or HER2
overexpressing MCF-7 cells secrete PDGF-BB [136,137]. A high PDGF-BB gradient arising
from the tumor attracted the pericytes to move toward tumor cells. This caused the
separation of tumor cells from tumor microvessels, stimulated pericyte-to-fibroblast-like
transition, the expression of fibroblast-specific protein 1 (FSP-1), and promoted tumor
invasion and metastasis [84]. Moreover, it is speculated that pressure exerted from the
growing tumor may result in the acquisition of an α-SMA-positive pericytic phenotype with
cellular transformation into highly contractile pericytes capable of bracing the expansive
force of the tumor [80].

Several findings suggest a critical role of pericytes in the development of BM lesions by
directly influencing key steps of tumor progression. In a syngeneic mouse 4T1 mammary
carcinoma model of brain metastasis, pericytes were shown to be located adjacent to capil-
laries within BM lesions [138]. In vitro, MDA-MB-231 triple-negative BC cells preferentially
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co-localized with pericytes and actively migrated closer towards pericytes than in the
direction of EC [138]. Insulin-like growth factor 2 (IGF2) is expressed in and secreted by
brain pericytes, and blocking IGF1R with the selective IGFR1 inhibitor picropodophyllin
was shown to reduce BC cell proliferation and adhesion and to reduce the size of 4T1 brain
metastatic lesions [138]. Enhanced adhesion of tumor cells in pericyte-conditioned medium
might be explained by the pericyte-derived secretion of collagen type IV and fibronectin,
which are major components of vascular BM in the brain [138,139].

11. In Vitro and In Vivo Models in Pericyte Research
11.1. Pericytes Co-Culture Models

Pericytes have been predominantly investigated for their role in BBB functions. Sev-
eral in vitro BBB models have demonstrated the role of pericytes in supporting BBB
function [98,99,140,141]. Measuring the transendothelial electrical resistance (TEER) to
assess EC barrier tightness has become the standard for determining the success of in vitro
models at recapitulating BBB properties characterized by high TEER values and low per-
meability [142,143]. Models with primary endothelial cells and pericytes isolated from
mouse, rat, and porcine brains are commonly used [142]. A rat BBB model with a co-culture
of primary brain EC, pericytes, and astrocytes [98,99] demonstrated that these co-culture
conditions improved the tightness of the EC barrier, indicating that cellular signals from
pericytes and astrocytes may modulate BBB properties [98,99]. The effect of pericytes on
brain EC barrier functions was found to be dependent on the differentiation stage and
tissue origin of the pericytes [144]. α-SMA-positive, but not negative, pericytes induced
higher TEER values in the co-cultures of primary porcine brain EC with pericytes [141],
and growth factors such as TGFβ could upregulate α-SMA in pericytes [141,144]. Using
a BBB co-culture system of human cells demonstrated that cerebral microvascular EC
generated increased TEER when co-cultivated with cerebral astrocytes and brain vascular
pericytes (HBVPs). This increase in TEER coincided with the expression of tight junction
proteins claudin-5 and ZO-1 in the endothelial layer [140]. Hence, a sophisticated in vitro
modeling system must consider the dynamic impact of co-culture conditions on the dif-
ferentiation potential and functions of pericytes by ideally performing live monitoring of
pericyte differentiation in a multi-cellular system equipped with highly sensitive sensors
to assess functional changes in real time [65]. The use of primary cells isolated from brain
tissue or immortalized cell lines can present limitations due to their suboptimal barrier
properties or difficulties in obtaining sufficient quantities of isolated brain primary cells for
co-culture [145]. To overcome these obstacles and improve the scalability of human models,
BBB models using human pluripotent stem cell (hPSC)-derived cell components have
been developed [36,145,146]. Brain pericyte-like cells with robust expression of pericyte
markers were obtained through mesodermal and neural crest differentiation of hPSCs [36].
Such cells maintained stable expression of CD13 and PDGFR markers when used in co-
cultures [146]. The functionality of hPSC-derived pericytes was found to be comparable to
HBVPs [36,146]. Similar results were observed in pericytes derived from patient-derived
iPSCs, providing a promising pericyte cellular tool for future disease modeling [146].

Replicating the functions of pericytes for a functional BBB requires culture conditions
that reflect the proper cellular and spatial organization of the NVU. Transwell inserts are
most commonly used for in vitro models of the BBB [147] for studying cell–cell interactions
that affect barrier functions [98,140,141] as well as cancer cell migration across the endothe-
lium [100]. Transwell inserts have a porous filter membrane that separates the well into
luminal and abluminal compartments while allowing communication between cells in both
compartments. Endothelial cells are typically seeded on the luminal (upper) side of the
insert. Pericytes or astrocytes can be seeded on the abluminal (lower) side to permit direct
contact with endothelial cells through membrane extensions or on the bottom of the well
to make a non-contact model. In both animal and human cell models, contact co-cultures
were able to induce higher TEER than with non-contact cultures, suggesting the impor-
tance of cell–cell contacts between pericytes and EC for increased barrier functions [98,140].
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Transwell assays are also useful in studying the process of cancer cell migration across
the BBB. Fluorescently labeled tumor cells seeded on top of an EC monolayer on the lu-
minal side of the insert mimic cancer cells in the vasculature and the interaction with the
endothelium [100,148,149]. In addition to improving EC barrier function, the presence
of brain pericytes reduced the permeability of the endothelium to lung cancer cells and
inhibited cancer cell colony growth on the “luminal” side of the chamber [100]. These
studies suggest that brain pericytes may indirectly inhibit cancer cell colonization of the
brain. However, their direct role on cancer cells on the abluminal side has not been studied
and more research is needed to understand the role of brain pericytes on cancer cells in
close proximity in the perivascular space (Figure 6).
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Figure 6. Transwell system for co-culture. (a) Direct contact model with endothelial cells and
pericytes. (b) Direct contact model with endothelial cells and astrocytes. (c) Tri-cellular culture
model with endothelial cells, pericytes, and astrocytes. Endothelial cells and pericytes are in contact.
(d) Non-contact model with endothelial cells and pericytes. (e) Non-contact model with endothelial
cells and astrocytes.

11.2. Microfluidics—Dynamic In Vitro Modeling of the Brain Microvasculature

Transwell systems are limited by the large fluid-to-cell volume ratio and lack of flow,
which is a critical parameter in blood vessels and a major contributor of shear stress in
EC [150]. Microfluidic devices can overcome these drawbacks by providing a highly con-
trolled platform capable of better mimicking the in vivo microenvironment [151] (Figure 7).
Microfluidic BBB models allow for co-culturing of multiple cell types in a flow-through
system with simultaneous high-resolution imaging and real-time monitoring of cellular
migratory responses [151]. A microfluidic system comprised of human iPSC-derived EC,
human brain pericytes, and astrocytes was shown to exhibit perfusable vasculature with
low permeability values that were comparable to the in vivo rat brain [152]. A similar
microfluidic co-culture model demonstrated specific BBB properties, including a narrow
vessel lumen, high tight junction protein expression with low permeability, and a func-
tional efflux transport system [153]. Other microfluidity systems have been established
with human EC differentiated from iPSC in conjunction with primary brain pericytes and
astrocytes [154,155] that demonstrate similar in vivo-like barrier functions and are promis-
ing screening models to assess pharmacological drugs for improved BBB passage to the
brain [153]. These microfluidity models have primarily been created for drug testing but
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likely are suitable to investigate cancer cell endothelial transmigration in real time, under
flow conditions and with much smaller numbers of cancer cells. A point of caution is the
presence of αSMA+ pericytes, which may reflect an in vitro-induced pericyte differentiation
phenotype that could bias the experimental outcome.
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Figure 7. Properties of BBB in vitro models. (a) Transwell systems utilize a porous filter insert
that divides culture wells into luminal and abluminal compartments and allows for diffusion of
molecules and cell migration across the filter. (b) Microfluidic devices recapitulate a more complex
tissue environment in vitro by co-culturing cells in 2D and 3D matrices. Parameters including shear
stress and gradient formation are tunable to establish a controlled microenvironment. Microfluidics
enable integration of sensing systems and high-resolution microscopy. Multichannel designs allow
samples to be screened in parallel, creating compact medium-throughput systems for simulating
biological conditions and enabling drug screening. Brain EC are shown in pink on the luminal side,
and brain pericytes are marked in green on the abluminal side.

Microfluidic devices are promising BBB model systems that provide the in vivo mi-
croenvironment more closely and have the potential to be adapted for high-throughput
clinical studies [156]. Microfluidic organ-on-a-chip assays are emerging that study inter-
cellular communication in “brain-on-chip” modeled tissue- and organ-specific cellular
compartments and are summarized elsewhere [157]. These multicellular brain-on-chip
in vitro models combine capillary flow with multi-cellular brain compartments and allow
for the monitoring of cell proliferation and migration in the context of relevant cell connec-
tions [158], as well as cell responses from paracrine signaling between compartments [159].
Table 1 summarizes in vitro models for the BBB.

Table 1. Summary of in vitro BBB models.

Model Species Cells in Co-Culture Reference

Transwell Rat
Primary cerebral pericytes
Primary brain capillary EC
Primary cerebral astrocytes

Nakagawa et al., 2009

Transwell Porcine Primary brain EC
Primary astrocytes Malina et al., 2009

Transwell Porcine Primary brain capillary pericytes
Primary brain capillary EC Thanabalasundaram et al., 2010
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Table 1. Cont.

Model Species Cells in Co-Culture Reference

Transwell Porcine
Primary cerebral pericytes

Primary brain EC
Primary astrocytes

Thomsen et al., 2015

Transwell Human
Primary brain vascular pericytes

Primary cerebral microvascular EC
Cerebral astrocytes

Hatherell et al., 2011

Transwell Human
Primary fetal brain pericytes

hPSC-derived brain microvascular EC
Differentiated neural progenitor cells

Lippman et al., 2014

Transwell Human

Primary brain pericytes
hPSC-derived pericytes

hPSC-derived neural crest stem cells
iPSC-derived brain microvascular EC

Stebbins et al., 2019

Microfluidic Mixed iPSC-derived human brain microvascular EC
Primary rat astrocytes Wang et al., 2016

Microfluidic Human
Primary brain pericytes

iPSC-derived EC
Primary brain astrocytes

Campisi et al., 2018

Microfluidic Human

Primary placental pericytes
Primary brain microvascular EC

Primary umbilical vein EC
Primary astrocytes

Lee et al., 2019

Microfluidic Human
Primary brain pericytes

iPSC-derived brain microvascular EC
Primary astrocytes

Park et al., 2019

Microfluidic Human
Primary brain pericytes

iPSC-derived brain microvascular EC
Primary astrocytes

Noorani et al., 2021

Brain-on-chip Human
Primary brain pericytes, vascular endothelial cells

and astrocytes
Human neurons differentiated from neuronal stem cells

Maoz et al., 2018

Brain-on-chip Human
Primary brain pericytes, vascular endothelial cells

and astrocytes
iPSC-derived cortical neurons and astrocytes

Brown et al., 2016

Brain-on-chip Human Different combinations of human brain and NVU cells
in review Saliba et al., 2018

11.3. In Vivo Monitoring of Pericytes

The high variability in the temporal and spatial occurrence of hematogenic brain
metastasis imposes great challenges for in vivo tracing and monitoring of pericyte func-
tions during the initiation and formation of brain metastases. Two-photon imaging through
a chronic skull window has been used for in vivo pericyte imaging by monitoring calcium
flux in anesthetized transgenic mice expressing genetically encoded calcium sensors in
ensheathing pericytes [160]. A multimodal imaging approach was described to visualize
NG2-tdTomato-labeled pericytes in mouse brains. Transcranial two-photon microscopy
with a 3D imaging volume of 500 × 500 × 250 µm combined with transcranial epifluores-
cence time-lapse microscopy allowed the study of pericyte turnover after seizure induction
in mice and treatment with PDGF-BB [161]. The fluorescent Nissl dye NeuroTrace 500/525
specifically labels αSMA-negative pericytes in brain capillaries in vivo, thus enabling
in vivo imaging of selected pericyte subpopulations devoid of αSMA in mouse brains [67].
The topical dye application caused uptake by PDGFRβ+ pericytes, which remained labeled
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for up to 3 days allowing for in vivo monitoring to a depth of 400 µm using intracranial
two-photon microscopy. However, the requirement for a localized cranial window and the
duration of the anesthesia for a pre-defined observational time windows currently limit the
use of these methods for metastasis research. The zebrafish emerges as a promising in vivo
model to study brain pericytes [162]. Platelet-derived growth factor receptor β (Pdgfrβ),
notch receptor 3 (Notch3), and neural/glial antigen 2 (Ng2) depict pericytes in zebrafish.
Transgenic lines are suitable for lineage tracing and monitoring pericyte plasticity in trans-
genic zebrafish, and the short developmental duration and the transparency of the zebrafish
larvae allow for in vivo lineage tracing of mural cells during development [163] and make
this fish model a promising and powerful in vivo tool to study the role of pericytes in brain
metastasis in the future. Brain tissue clearing techniques [164] suitable for brain imaging
in adult zebrafish contribute to the 3D visualization of brain cells. A summary of suitable
pericyte in vivo models is shown in Table 2.

Table 2. Summary of in vivo models to study pericyte function.

Model Species PC Visualization Reference

Cranial window Mouse Transgenic mice; αSMA promoter to label
ensheathing pericytes; 2-Photon microscopy Meza-Resillas et al., 2021

Transcranial imaging Mouse Neurotrace™ labeling of pericytes;
multimodal optical transcranial imaging Arango-Lievano et al., 2020

Whole brain imaging Zebrafish Transgenic zebrafish; confocal microscopy Bahrami et al., 2018

Whole mount imaging Zebrafish pdgfrb promoter transgenic zebrafish;
confocal upright fluorescence imaging Ando et al., 2016

Cranial window Mouse

αSMA-mCherry transgenic reporter mice;
NeuroTrace 500/525 and TO-PRO-3 PC

labeling; optogenetic manipulation of PC in
rhodopsin transgenic mice

Tong at al., 2021

12. Conclusions

A better understanding of the interactions between BC and the NVU as well as
the BCBM tumor microenvironment is critical in advancing effective treatments against
fatal brain metastases. Newly emerging in vivo molecular imaging and tissue profiling
technologies are expected to reveal detailed gene and/or protein expression patterns at
a high contextual and spatiotemporal resolution. This will excel our understanding of
the diversity and functional roles of pericyte populations in normal and diseased tissues,
including the NVU and brain metastases. Putting these spatial tissue data to the test in
sophisticated in vitro devices as well as genetic and tumor animal models will contribute
major advances to our understanding of BCBM and be instrumental in the development
of new and more efficacious treatment options for breast cancer and other cancer patients
with brain metastasis.
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