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Lung cancer is a common cancer, and expression profiling can provide an accurate indication to advance the medical intervention.
However, this requires the availability of stably expressed genes as reference. Recent studies had shown that genes that are stably
expressed in a tissue may not be stably expressed in other tissues suggesting the need to identify stably expressed genes in each
tissue for use as reference genes. DNA microarray analysis has been used to identify those reference genes with low fluctuation.
Fourteen datasets with different lung conditions were employed in our study. Coefficient of variance, followed by NormFinder,
was used to identify stably expressed genes. Our results showed that classical reference genes such as GAPDH and HPRT1 were
highly variable; thus, they are unsuitable as reference genes. Signal peptidase complex subunit 1 (SPCS1) and hydroxyacyl-CoA
dehydrogenase beta subunit (HADHB), which are involved in fundamental biochemical processes, demonstrated high expression

stability suggesting their suitability in human lung cell profiling.

1. Introduction

According to American Cancer Society, lung cancer is esti-
mated to account for 27.6% of all cancer-related deaths in
America in 2010. In a report surveying cancer occurrence in
Singapore from 1968 to 2007 published by National Cancer
Centre Singapore, lung cancer is rated as the second and
third highest occurrence of cancer in Singaporean men and
women, respectively, (http://www.nccs.com.sg/pat/file/Re-
port_1968_2007.pdf). Although lung cancer is preventable
at early stage, it is usually diagnosed at advanced stage of
disease, which is usually too late for current medical inter-
vention and subsequently causes mortality [1]. Therefore,
there is a need to profile gene expressions of lung epithelial
cells to advance current treatment modalities.
Quantification of gene expressions allows for the analysis
of different genes threshold regulation [2]. Profiling of gene
expression by the mean of quantitative real-time polymer-
ase chain reaction (qQRT-PCR), Northern blot, and DNA

microarray analysis [3] allow the study of tumors-related
biomarkers regulation and the prognosis of disease stage [4]
for lung cancer patient [5]. However, a number of variables,
such as selected cell types, mRNA extraction and handling
techniques, and analytical quantification approaches [6] may
result in different gene expression measurements and affect
analysis accuracy [2]. In order to address these variations,
normalization that usually involves a group of calibrating
genes is employed in many gene expression quantification
studies [2].

It has been suggested that calibrating genes are generally
used as housekeeping gene in gene expression studies [2]
due to their highly stable expression [7]. The ideal set of
housekeeping genes should express stably and consistently
across all samples [8]. To date, the selection of reference
genes can be achieved by few mathematical method, such as
geNorm [9], BestKeeper [10], and NormFinder [11] to evalu-
ate gene expression stability in qRT-PCR [2]. BestKeeper [10]
and geNorm [9] were based on pairwise correlation and had
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been shown to be sensitive to coregulated genes [12]. On the
other hand, NormFinder is less sensitive to coregulated genes
as it took account of the variations across subgroups [11].
However, these tools are usually applicable in a small sample
size cDNA panel to determine the most stable reference genes
[13]. Microarray is commonly used in quantification of gene
expression with the advantage of speed and high throughput
[14, 15]. Due to the ability to analyze the expression of
thousands of genes in an experiment, microarray presents
a suitable resource for the analysis and identification of
reference genes [16]. Previous studies [17, 18] had shown
that the analysis of coefficient of variance (CV) values of each
gene is able to determine the stably expressed genes which
can be used in gene expression quantification studies.

The recent lung cell lines profiling studies have widely
employed a group of common endogenous control genes,
such as GAPDH and beta-actin [1] to measure gene expres-
sion changes. However, different studies had shown the
variability of GAPDH expression in non-small cell lung
cancer [19, 20], suggesting that GAPDH may not be the most
suitable housekeeping gene to investigate gene expression
of lung cells. In addition, some studies [1, 2, 21, 22] had
identified that the mRNA expression levels of different
housekeeping genes such as GAPDH and beta-actin may vary
under different conditions [2]. This suggests that no single
housekeeping gene is universal in all types of gene expression
studies [1]. Previous studies had shown that ACTB and
SDHA were effectively used as reference genes in breast
tumour studies [23] while IPO8 and MARK3 were stably
expressed in human lung specimens [1] and mouse liver
[17], respectively. Besides, mouse liver and mouse adrenal
gland study also showed that EIF2A and PPIB were stably
expressed [24]. Other studies also indicated that EEF1A1
expressed consistently in human cervical tissues [25] while
B2M and RPL29 were well used as reference genes in human
stomach tissue studies [26]. High expression stability showed
that RPL32, GAPDH, POLR2A, TBP, PGK1, and RPL4 were
demonstrated as the most reference genes in rodent and
human heart gene expression studies [27] while RPS18 was
stably expressed in head and neck squamous cell carcinoma
[21]. In addition, GUSB was generally used as reference gene
in human ovarian studies [28] while RPS4X and RPL13A
were useful in quantifying the gene expression in larvae of
flatfish [29] and osteoarthritic canine articular tissues [2],
respectively. This proposes that different housekeeping genes
may express inconsistently in different species or organs.

In this study, we investigated a group of endogenous
genes in human lung and analyzed their CV values to suggest
their suitability and stability as reference genes for future
quantitative gene expression studies. Our results suggest that
SPCS1 and HADHB are more stably expressed in human
lungs than any of the 20 reference genes found by previous
studies.

2. Materials and Methods

2.1. Microarray Data. Fourteen microarray data sets study-
ing human lung epithelial from Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) were used. All of
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which employed Affymetrix Human Genome U133 Plus 2.0
Array (GPL570) containing 54,676 probes. This allows for
comparisons across different data sets. The fourteen datasets
were: bronchial epithelial cells at 4 and 24 hours follow-
ing treatment with respiratory syncytial virus (GDS2023),
airway epithelial cells of phenotypically normal smokers
(GDS2486 and GDS2491), airway epithelia from healthy
individuals 7 and 14 days following injury by epithelial
denudation (GDS2495), epithelial and mesothelial lung cell
lines at various time points up to 7 days after exposure
to asbestos (GDS2604), 28 days air-liquid cultured airway
epithelial cells (GDS2615), analysis of resveratrol treated
lung carcinoma A549 cells (GDS2966), analysis of house
dust mite (HDM) extract-exposed H292 bronchial epithe-
lial cells (GDS3003), bronchial epithelial cells exposed to
cigarette smoke from a typical full flavor brand for up
to 24 hours (GDS3493), bronchial epithelial cells exposed
to cigarette smoke from a typical light flavor brand for
up to 24 hours with (GDS3494), lung adenocarcinoma
CL1-5 cells overexpressing Claudin-1 (CLDN1) (GDS3510),
comparison of non-small cell lung cancer histological sub-
types: adenocarcinomas (AC) and squamous cell carcinomas
(SCC) (GDS3627), analysis of normal lung WI-38 fibrob-
lasts exposed to various concentrations of the carcinogen
benzo[a]pyrene-diol epoxide (BPDE) (GDS3706), and anal-
ysis of A549 epithelial cells treated for up to 72 hours with
TGF-beta (GDS3710).

2.2. Z-Score Normalization across Data Sets. Individual GEO
datasets were normalized by arithmetic mean transformation
and Z transformation to construct parallel and comparable
datasets based on the method described in [30]. Within
a microarray data, specific gene with multiple probes may
show different intensities. In each dataset, the intensity value
for each probe (Proberyitia) was used to compute the average
probe intensity for each dataset ({mitialprobe ). Next, by assum-
ing the standard arithmetic mean of all the probes as 1000 for
the overall combined microarray datasets ({assumed)» the cor-
rection factor for the average probe intensity for each datasets
is constructed as a quotient of pasumed and UmitialProbes
Correction Factor = passumed/UmitialProbe- LThe transformed
intensity of each original probe (Probetransformed) is then
calculated using the equation, Probetansformed = Probemitial X
Correction Factor. The Proberiansformed Was then used to
calculate Z-score by the equation, Zscore = (Probetransformed —
Unssumed )/ SDDataset» Where SDpagaser 18 the standard deviation
of the original dataset from which the probe (Probepmitial)
originates. The Z-scores for each probe across different
original datasets will then be comparable.

2.3. Ranking of Reference Genes. Arithmetic mean and stan-
dard deviation of the Z-scores were derived for all the genes
in the fourteen datasets. The coefficient of variance (CV)
values were defined as the quotient of standard deviation
to the arithmetic mean [17]. By constructing the CV values
for all the probes of the chosen reference genes from the
fourteen datasets, the mean CV values for each reference gene
were generated. Using the Z-transformed dataset, 10% of the
probes with the lowest CV were isolated [17] and filtered
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TaBLE 1: Twenty housekeeping genes, together with SPCSI and
HADHB, and their mean CV values across fourteen datasets.
Within a microarray, multiple probes encode for a specific gene.
By computing the CV value of one probe of a specific gene across
the fourteen datasets, the mean CV values of all the probes that
encode for the same gene were then calculated. SPCSI and HADHB
are stably expressed genes found in this study and are added to the
list for comparison.

Gene symbols ~ Mean of CV Gene symbols ~ Mean of CV
SPCS1 0.2279 GAPDH 0.5708
HADHB 0.3363 HPRT1 0.6222
EIF2A 0.4225 SDHA 0.6563
PPIB 0.4394 B2M 0.6824
RPS4X 0.4455 EEFI1AI 0.8094
RPL29 0.4498 POLR2A 0.8569
RPL4 0.4623 IPOS 0.8735
RPL32 0.4669 GUSB 0.9005
RPLI3A 0.4725 MARK3 1.6441
RPS18 0.4962 TBP 2.0988
ACTB 0.5335 PGK1 2.376

for any duplicate probes with CV that is more than 10%
of lowest CV. In this case, the CV will be the quotient of
standard deviation of the Z-score to the arithmetic mean
of the Z-score. For example, if gene A is represented in the
microarray as 3 probes and all 3 probes are found in list
of 10% lowest CVs, gene A is retained. On the other hand,
if gene B is represented in the microarray as 3 probes and
one of the probe is not in the list of 10% lowest CV, gene
B is removed from the list. Only probes with gene symbols
were included in the list. The filtered list was then analyzed
with NormFinder [11] using the normalized microarray data
as expression values. Due to the reason that NormFinder
has the limitation of analyzing zero and negative values,
the normalized expression values of the fourteen datasets
which were lower than 0.0001 or close to zero value were
transformed into the absolute values or 0.0001, respectively.

2.4. Comparing NormFinder and CV. Spearman’s correlation
was used to determine the correlation between stability index
generated by NormFinder and CV values using the equation,
r = 1-[(6Xd*)/n(n* — 1)] where r is the Spearman’s
correlation, d is the difference in the rank of two parameters,
and n is the sample size. The t-statistic was calculated by

r{(n—=2)/(1- rz)]l/z, which was used to test for the null
hypothesis of no correlation with (n —2) degrees of freedom.

3. Results

Twenty housekeeping genes from previous studies [1, 2, 17,
19-21, 23-28] were analyzed and their mean of mean CV
values was tabulated in Table 1. Our results showed that
different housekeeping genes have indicated diverse gene
expression fluctuations within the human lung tissues with
the CV values ranging from 0.42 to 2.38. Within these house-
keeping genes, Eukaryotic translation initiation factor 2A

(EIF2A) showed the least variation among the 20 housekeep-
ing genes with the CV value of 0.4225 followed by Peptidyl-
prolyl cis-trans isomerase B (PPIB, 0.4394), 40S ribosomal
protein S4 (RPS4X, 0.4455), 60S ribosomal protein L29
(RPL29, 0.4498), and Ribosomal protein L4 (RPL4, 0.4623)
whilst Phosphoglycerate kinase 1 (PGK1) showed the highest
fluctuation with the CV value of 2.3760. The results showed
that Microtubule affinity-regulating kinase 3 (MARK3),
TATA-binding protein (TBP), and PGK1 have the great
fluctuations in their gene expression level with the mean
CV values of 1.6441, 2.0988, and 2.3760, respectively. Based
on the mean CV values, the gene expressions of MARK3
fluctuated at least two times more compared to EIF2A, while
the fluctuation magnitude in the gene expression level of
TBP and PGK1 corresponding to EIF2A was about four times
larger.

By extracting the 10% probes with the lowest CV values
from the transformed Z-score data, 5,458 probes were
extracted from the original 54,676 probes. After removing
those gene probes without specific gene name, the total
probes number left 2,213 probes. Among these 2,213 probes,
specific genes that only fall within the lowest 10% CV
but not vice versa were found to be 743 genes, which
are originally encoded by 932 probes. The analysis result
showed that among the 20 housekeeping genes only EIF2A,
PPIB, RPL4, 60S ribosomal protein L13a (RPL13A), 60S
ribosomal protein L32 (RPL32), and 40S ribosomal protein
S4 (RPS4X) were found in the lowest 10% CV subset.
NormFinder [11] was used to analyze these 932 probes,
and their stability indices were tabulated in Table 2. Our
analysis showed that signal peptidase complex subunit 1
(SPCS1) and hydroxyacyl-CoA dehydrogenase/3-ketoacyl-
CoA thiolase/enoyl-CoA hydratase, beta subunit (HADHB),
have the highest stability of rank 1 and 2 with the stability
index of 0.326 and 0.355, respectively, followed by 71
genes with the stability index of 0.360. EIF2A, PPIB, RPL4,
RPL13A, RPL32, and RPS4X have the rank ranging from 305
to 730. The mean Z-score of the probes within the lowest
10% CV ranges from —0.4073 to 11.7692. The mean Z-
scores of HADHB and SPCSI are 1.8419 (61.8 percentile)
and 2.8516 (75.8 percentile), respectively.

The standard deviation of CV values and NormFinder
stability index were 0.077 and 0.265, respectively. Due to a
more than 3 times difference in standard deviation, homo-
scedasticity (constant variance) was not assumed. Thus,
Spearman’s rank correlation coefficient was carried out to
determine the correlation of stability index by Norm-Finder
and CV values which showed that the sum of d? is 85109486
(Spearman’s rank correlation coefficient = 0.369) and the P
value was 1.79 x 107°!. Since the P value was lesser than
0.01, the null hypothesis is rejected, indicating that there
is correlation between the stability index from NormFinder
and CV values.

4. Discussion

The accuracy of human lung specimens profiling mainly
relied on the gene expression study of the lung epithelial
cells using the reference genes that must remain stable and



TasLE 2: Stability of housekeeping genes generated by NormFinder
[11]. By extracting the pool of Z-transformed probes intensities
with the lowest 10% CV, the remaining 5,458 probes (out of 54,676
probes) were further selected to eliminate undefined genes. The
selected 743 genes was input in NormFinder [11] to generate
the stability value for each gene as a direct measure for the
estimated expression variation and rank them accordingly. SPCS!
and HADHB, which were found to have the lowest CV values,
demonstrated the lowest stability index and ranked as first and
second, respectively.

Gene symbols NormFlilzl((lieel;(stablhty Rank
SPCS1 0.326 1
HADHB 0.355 2
EIF2A 0.691 371
PPIB 0.862 630
PPIB 0.867 634
RPLI13A 0.651 305
RPLI3A 0.811 548
RPLI3A 0.832 587
RPLI3A 0.911 689
RPLI13A 0.950 730
RPL32 0.739 454
RPL4 0.723 428
RPL4 0.789 518
RPL4 0.805 541
RPS4X 0.777 499
RPS4X 0.838 592

constant [8]. Therefore, the selection criteria to identify
suitable reference genes must be stringent such that identified
genes can be globally used in human lung profiling [1].
Previous studies [1, 2, 21, 22] had shown that not all
commonly used housekeeping genes such as GAPDH and
beta-actin can be utilized in different clinical samples as those
gene expression levels may vary under different conditions
[2]. In addition, some studies [19, 20] also demonstrated that
the GAPDH is not the desired housekeeping gene in human
lung gene expression study. Hence, this study employs a pool
of microarray datasets to identify genes with low expression
variation that can be used in human lung gene profiling.

The determination of expression stability in our study is
dependent on two parameters, CV values and NormFinder
Stability Index [11]. NormFinder was used in this study as
it is less sensitive to coregulated gene expressions compared
to geNorm and BestKeeper [12]. In our study, CV values
were generated based on the probe intensity deviation of
the microarray data. Low CV values indicate that those
probes on the microarray chip that encode for the same
gene have low fluctuation in gene expression. Similarly, low
NormPFinder Stability Index [11] indicates low fluctuation in
gene expression.

In this study, CV serves as a basic filter for genes with low
expression variation. This is useful when the sample size is
large as the performance of CV is linear to sample size.
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However, CV does not take into account systematic vari-
ations such as those introduced by inaccuracy in sample
preparation. Thus, CV can only be used as a categorical filter
of gene expression into a striation of classes. NormFinder
is employed as the fine diagnostic tool to further determine
the stability of gene expression within the class of genes with
low expression variation to identify the most stably expressed
gene.

However, it is plausible that the results of CV and
NormFinder analysis may be correlated as both methods
had been used to identify reference genes within a dataset
[2, 17]. Our results suggest that CV and NormFinder stability
are significantly correlated to each other (P value = 1.79 X
10°"). However, the strength of this correlation is difficult
to establish as the significance in P value did not indicate
the correlation strength. At the same time, the comparison
between CV, NormFinder [11], geNorm [9], and BestKeeper
[10] requires a more comprehensive study using a datasets
spanning across different tissues and organisms.

Our results showed that common housekeeping genes
such as GAPDH and HPRT1 that had been used widely
in many gene expression studies are not the appropriate
reference genes to be employed in the human lung gene
expression profiling. The mean CV values of GAPDH and
HPRT1 were found to be higher than EIF2A which indicated
that GAPDH and HPRT1 did not express stably compared
to EIF2A. Although GAPDH and HPRT1 had been used as
general reference genes in most gene expression studies [31,
32], our results suggested that the expression of GAPDH and
HPRTI in human lung epithelial cells varies significantly as
they are not within the lowest 10% CV, suggesting that they
are not suitable reference genes for human lung epithelial
cells.

GADPH has a role in glycolysis pathway, DNA replication
and repair, and RNA transportation [33] while HPRT1 is
involved in magnesium ion binding [34], purine salvage
pathway [35], and protein binding [36] in human body. Since
both genes function as the building block of fundamental
biochemical pathway in human body, they are assumed
to be expressed stably most of the time under normal
condition. Therefore, many studies have used GAPDH [1, 2]
and HPRT1 [37] as the reference gene. Nevertheless, the
lung specimens of these 14 datasets have been treated in
different conditions. These conditions may upregulate or
downregulate certain gene functions and in turn affect the
gene product. In fact, one reference gene may be sufficient
to profile a specific specimen, yet the stability may not hold
true for other specimen or organisms [2]. As the result, the
expression level of GAPDH and HPRT1 varied and affect
their suitability as reference gene in human lung epithelial
cell lines profiling.

Among the twenty selected housekeeping genes, only
EIF2A, PPIB, RPL4, RPL13A, RPL32, and RPS4X were found
within the list of lowest 10% CV. However, their stability
indices were significantly higher compared to SPCS1 and
HADHB which showed the stability index of 0.326 and 0.355,
respectively, followed by 71 genes with the stability index of
0.360, suggesting that the expressions of SPCS1 and HADHB
are considerably stable among the datasets analyzed. This
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suggests that both SPCS1 and HADHB are suitable reference
genes in the human lung studies. Our results indicated that
the mean Z-scores of HADHB and SPCS1 are 61.8 percentile
and 75.8 percentile, respectively, suggesting that HADHB
and SPCSI are suitable reference genes for genes with average
to high expression. Further studies are needed to determine
their validity for genes with low expression.

The datasets used in this study include lung cell
lines (GDS2604), bronchial epithelial cells (GDS2486 and
GDS2491), A549 lung adenocarcinoma cells line (GDS2966),
lung adenocarcinoma CL1-5 cells line (GDS3510), and squa-
mous cell carcinomas (GDS3627). This suggests that SPCS1
and HADHB are suitable reference genes for primary lung
tissues, lung cell lines, lung tumours, and bronchial epithelial
cells. In addition, the datasets used in this study include
healthy bronchial tissues and bronchial tissues from smokers
(GDS2486), as well as normal lung tissues (GDS2615).
This further suggests that SPCS1 and HADHB are suitable
reference genes for both healthy and perturbed tissues.

SPCS1 is the gene located at 3p21.1 that functions as
signal peptidase complex in the signal sequences cleavage of
most secretory and membrane proteins [38]. Most secretory
proteins are required to be translocated into endoplasmic
reticulum (ER) membrane in order to allow the proteins to
fold and assemble in a proper way before they are transported
to the Golgi apparatus. Proteins that fail to assemble or
fold into their native state will be translocated back across
ER membrane to cytoplasm and undergo degradation [39].
In order for this to take place, the signal sequences on
the protein must be cleaved during protein synthesis [38].
SPCS1 plays a role in cleavage of signal sequences of most
secretory proteins to enable their translocation across the ER
membrane [38].

HADHB is located at 2p23 and is involved in mitochon-
drial betaoxidation of long-chain fatty acids [40]. Previous
study [41] had shown that different organs have different
tendencies in fatty acid distribution, as liver is served as the
largest reservoir for fatty acids followed by brain and lung.
Since lung is one of the reservoirs for fatty acid, HADHB, a
lipase, will be likely expressed more stably in the lung in order
to degrade fatty acids and generate ATP.

However, these two genes had not been used as reference
genes in gene quantification studies.

A previous study showed that Importin 8 (IPO8) has
expressed stably in human lung clinicopathological speci-
mens [1]. However, its mean CV value of 0.8735 (Table 1)
indicated that IPO8 has high gene expression fluctuation
across different human lung specimens. Besides, the mean
CV value of IPO8 was absent from the lowest 10% CV values
subset that indicates that IPO8 may not be a good reference
gene in human lung gene profiling as compared to SPCS1
and HADHB.

The identification of reference genes for the tissue of
study is pivotal in analyzing the results of gene expressions
[2]. Using an expressionally variant gene as reference gene
in expression studies is likely to result in erroneous inter-
pretation [1]. Hence, it begs the question of whether there
is an organ-specific reference gene across a taxonomical
lineage of organisms or an organism-specific reference gene,

or even more globally, whether there is a universal reference
gene within a taxonomical hierarchy such as a family-
specific reference gene or an order-specific reference gene.
The suggestion of a possible universal reference gene within a
taxonomical hierarchy does imply the presence of organism-
specific reference gene.

A previous study [27] had suggested the low availability
of organ-specific reference gene across different organisms,
showing that RPL4 was found to be the most suitable
reference gene in mouse myocardium but not in human
heart. Although this suggests against having a universal
housekeeping gene across different organism in gene pro-
filing studies [8], it may be possible that there can be
common reference genes for specific organs across a few
organisms. However, this preposition requires an extensive
study to identify genes across a wide variety of organisms and
organs. In this study, SPCS1 and HADHB were identified as
the most suitable reference genes in human lung profiling.
As SPCS1 and HADHB had not been used as reference
genes, there is no evidence to suggest that these genes are
stably expressed in other organs even though they may
be suitable reference gene candidates for lung profiling
in other organisms but this requires further studies. In
addition, another study [42] also suggested the absence
of robust reference gene which is organism specific by
demonstrating that GAPDH is not expressed consistently
across the human subject candidates and resulted in high
fluctuation of RNA expression. Taken together, this suggests
the need to identify suitable housekeeping gene for every
organ of every organism, by normalizing the gene expression
using stringent mathematical model.
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