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Introduction

Clostridium difficile is a gram-positive anaerobic bacillus that 
was originally identified in the normal colonic flora of infants.1 
Later, C. difficile was identified as the causative agent for human 
disease, most notably antibiotic-associated diarrhea and pseu-
domembranous colitis.2 The history of CDI is comprehensively 
reviewed in refs. 3 and 4.

Different strains of C. difficile can be distinguished by molec-
ular methods such as PCR ribotyping, which is based on differ-
ent banding patterns obtained by amplifying the 16S-23S rDNA 
intergenic regions.5 A pan-European survey revealed 65 different 
circulating PCR ribotypes during the sampling period.6

Since 2004, a marked increase in cases of CDI was noted. 
Most of these were identified as PCR ribotype 027 (RT027; BI/
NAP01). This type caused healthcare-associated outbreaks in 
North America, the UK, and mainland Europe and is associated 
with increased morbidity and mortality.7-11

Risk factors for CDI include (advanced) age, antibiotic treat-
ment, and hospitalization, and for that reason it has long been 
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Clostridium difficile infections (CDI) have emerged as a 
major cause of healthcare associated disease, and recent 
epidemiological evidence also suggests an important role in 
community-acquired diarrhea. This increase is associated with 
specific types, especially PCR ribotypes 027 and 078, which 
are sometimes referred to as “hypervirulent”. Over the past 
years major advances have been made in our understanding 
of C.  difficile pathogenicity, with the identification and 
characterization of the major clostridial toxins TcdA and TcdB. 
However, the relation between the toxins, their regulation, 
and “hypervirulence” remain unclear. Here I review our 
current understanding of C.  difficile pathogenicity and argue 
that “hypervirulent” is an inadequate term to describe PCR 
ribotypes 027 and 078, that the ability of C.  difficile to cause 
problematic infections is a consequence of a multifactorial 
process that extends beyond toxins, sporulation, and 
antimicrobial resistance, and that vigilance is in order toward 
types that are closely related to ribotypes 027 and 078, but are 
currently not considered problematic.
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regarded as a mere nosocomial disease. However, recently an 
increase in community-acquired CDI has been noted.12,13 At least 
in Europe PCR ribotype 078 (RT078) is the dominant type iden-
tified in CA-CDI cases,6 and as for RT027 this type is associated 
with an increased severity of CDI and higher attributable mortal-
ity.14 It is of note that RT078 is also the dominant strain of C. dif-
ficile in livestock, such as pigs, suggesting zoonotic potential.15-17

Together, RT027 and RT078 are often referred to as “hyper-
virulent” types of C. difficile. Though technically the term indi-
cates undefined increase in virulence, it is generally used to signify 
strains that cause outbreaks, with morbidity and mortality that is 
significantly higher than that of a common reference. However, 
the term deserves more careful consideration. The success of epi-
demic strains (fitness) not necessarily reflects a mere increase in 
virulence. Such strains are not only characterized by their abil-
ity to cause disease (virulence) but also their ability to transmit 
from one host to the other. Fitness is a concept from evolution-
ary biology, describing the probability of a particular genotype 
or phenotype to survive and reproduce. For pathogenic bacteria, 
lower virulence might favor host survival and thus transmission 
to new susceptible hosts, illustrating a fine balance between viru-
lence and fitness. Interestingly, the index case for the problematic 
RT027 C. difficile, R20291, isolated during an outbreak in Stoke-
Mandeville (UK) is located on a stunted branch of the RT027 
evolutionary tree.18 It may therefore represent a hypervirulent, 
but not fit, example of this type as it caused a severe outbreak 
but did not spread widely. It is likely that other successful RT027 
strains, in fact, demonstrate lower virulence than R20291, and 
are more representative of the whole epidemic lineage.

Toxins and Virulence

The major virulence factors of C. difficile are the toxins TcdA 
and TcdB.4,19 The genes encoding these proteins are contained in 
a 19 kb genomic region called the pathogenicity locus or PaLoc, 
which also encodes a sigma factor that is required for toxin 
expression (TcdR), a holin like protein (TcdE), and a putative 
anti-sigma factor (TcdC). Though it is agreed upon that at least 
one of the toxins is required for pathogenicity, the individual con-
tributions of the toxins remain subject of debate.20-23 It is note-
worthy that some pathogenic strains are found to have deletions 
in their PaLoc that abrogate the production of toxin A or toxin B 
(e.g., PCR RT017, RT033, RT047) but not its capacity to cause 
disease.24,49
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forming highly resistant endospores. These spores are also meta-
bolically inactive, rendering them insensitive to most classes of 
antimicrobials. Together with its multidrug resistance, these fea-
tures are crucial for C. difficile to outgrow and colonize the host gut 
after treatment with antimicrobials. Sporulation is dependent on 
the key regulator Spo0A.53,54 Direct evidence for a role for spores in 
CDI came from experiments using a RT027 spo0A knockout strain 
that showed that Spo0A is important for transmission and persis-
tence in a mouse model.55 Interestingly, the same study found that 
a spo0A mutant of a RT027 caused more fulminant disease due to 
overproduction of toxins once animals were colonized. Though 
this was in contrast with a previous report,56 an independent study 
also showed no positive effect of Spo0A on toxin production.57 
Thus, Spo0A plays both a positive (formation of spores) and nega-
tive (toxin expression) role in the virulence of C. difficile.

It has been reported that RT027 strains are highly transmis-
sible because of an increase in sporulation frequency and/or spore 
resistance.30,58 Others, however, have found that the within-type 
variation in sporulation and germination is as large or larger than 
the between-type variation,59-61 suggesting that there is no unam-
biguous relation between sporulation and virulence. One should 
note that—as for many toxin determinations—these studies were 
all done in vitro, and it is unknown how the findings relate to in 
vivo sporulation frequencies, or the antibiotic-associated induc-
tion of a supershedder state.62 Thus, strains that demonstrate 
similar properties in an in vitro system may behave differently 
in vivo.

Resistance

C. difficile is a multidrug-resistant organism, in part due to resis-
tance determinants carried on the many mobile genetic elements 
in the mosaic genome.63,64 As a result, treatment of CDI con-
sists of a limited set of antimicrobials, including metronidazole, 
vancomycin, and fidaxomicin.65 Moderate resistance to metro-
nidazole has been reported,66 but is uncommon and not asso-
ciated with RT027 or RT078 strains of C. difficile specifically. 
Moreover, most epidemic strains show substantial differences in 
resistance patterns.67

So far the only indication of involvement of resistance mecha-
nisms in epidemicity of C. difficile comes from a whole genome 
sequencing effort directed at RT027.18 It was found that two 
independently acquired, but identical, mutations leading to 
fluoroquinolone resistance (FQR) are associated with the global 
spread of this type.

Though fluoroquinolones are not used as a treatment for CDI, 
FQR of epidemic strains explains at least in part the previous 
observation that treatment with fluoroquinolones is a risk factor 
for CDI.8,10,68-70

Whether the relation between FQR and fitness of C. difficile 
extends beyond this remains to be established, but it interesting 
that the expression of certain major cell surface proteins as well as 
toxin levels may be affected by sub-inhibitory concentrations of 
fluoroquinolone antimicrobials in certain strains.71,72

Fluoroquinolone resistance is common in RT078 strains,14,73 
but is also found in other clinically relevant PCR ribotypes 

In vitro TcdC has been shown to act as an anti-sigma factor, 
antagonizing the function of TcdR in a manner that is not yet 
fully understood.25,26 Indeed, introduction of TcdC into strains 
that do not normally express TcdC can lead to reduction in toxin 
levels under certain conditions.27 Interestingly, epidemic RT027 
and RT078 both carry characteristic mutations that lead to a 
frameshift and/or a premature stop codon, as well as deletions in 
the tcdC gene14,28 and this has been exploited to identify epidemic 
strains in the clinic.

Intuitively, the above suggests that there is a clear correlation 
between tcdC status, toxin levels, and virulence. Although this 
was initially reported in a study comparing strains from different 
toxinotypes,29 later studies failed to show such a correlation.30,31 
Similarly, the deletion of tcdC from strains that normally do 
encode it, or introduction of various tcdC alleles into a RT027 
strain was not found to affect toxin levels.32,33 Therefore, one has 
to conclude that the levels of TcdA and TcdB, potentially regu-
lated by TcdC, are insufficient to explain the epidemic nature of 
RT027 and RT078 strains.

One potential explanation lies in the efficacy of the toxins. 
TcdB toxin from a RT027 shows increased toxicity compared 
with TcdB from the lab strain 630 and this may contribute to the 
increased mortality of RT027-related cases of CDI.34,35

In addition to TcdA and TcdB, the epidemic types also encode 
a binary toxin.36,37 As for the major toxins, the binary toxin 
(CDT) is encoded by the genes cdtA and cdtB on a particular 
genomic locus (CdtLoc), which also encodes its positive regulator 
CdtR.38 The role of binary toxin in CDI remains poorly under-
stood, though it was found to cause fluid accumulation in a rab-
bit ileal loop assay,39 to increase adherence of bacteria to epithelial 
cells,40,41 and to induce clustering of its receptor LSR into lipid 
rafts.42,43 The findings that binary toxin positive strains may be 
associated with an increased severity of CDI,44 higher case fatal-
ity rate,45 and recurrence of CDI46 are not undisputed47 and the 
data should therefore be interpreted with care. Notwithstanding, 
binary toxin is also found in RT023 strains, which was found in 
a retrospective analysis to be associated with severe CDI, similar 
to RT02748 and in many strains closely related to RT027 and 
RT078.49 However, as binary toxin is also found in strains that 
are so far considered non-epidemic (e.g., RT058, RT131, and 
others),49 the precise contribution to CDI severity remains to be 
established.

A major limitation of most studies on the relation between 
toxin production and strain type is that they are based on in vitro 
assays, or single round infections. As host passage can affect viru-
lence of pathogens,50,51 these results should be interpreted with 
care. Of note, based on BLAST homology searches the recep-
tor for CdtAB42 appears to be absent from the Syrian Golden 
Hamster, a commonly used animal model for CDI,52 suggesting 
that this model is not suitable to study the effects of binary toxin 
in vivo.

Sporulation Efficiency and Virulence

C. difficile is a strict anaerobic bacterium. In order to survive the 
oxygen-containing environment outside the host, it is capable of 
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RT036, RT176; all sequence type 1/clade 2) and RT078 (RT033, 
RT045, RT066, RT126, RT193; all sequence type 11/lineage 
5).49,64,78-80 In fact, some of these are indistinguishable from the 
epidemic ribotypes in a phylogenetic reconstruction based on the 
core genome. As these types so far are not very common, insuf-
ficient data is available to determine the morbidity and mortality 
vs. RT027, RT078, or other ribotypes. It should be noted however 
that outbreaks of RT176 and fulminant disease from a non-char-
acterized RT027-like strain have been reported.81,82

Though a more careful consideration of the virulence char-
acteristics of these strains is required, it is clear that there is an 
epidemic potential for strains that are not regarded with special 
attention in current clinical practice. Together with the fact that 
several ribotypes are as common or more common than RT027 
and RT078,6 care should be taken to not place an unbalanced 
emphasis on the clinical importance of the epidemic ribotypes.

Concluding Remarks

The picture that emerges from our current understanding of the 
pathogenicity of C. difficile is that no single factor (toxins, spor-
ulation, or resistance) is responsible for the increased virulence 
of epidemic strains, though at least one of the major clostridial 
toxins is required.4 What then determines the successfulness of 
C. difficile as a pathogen?

Cell surface proteins (including surface layer proteins, flagel-
lae and other membrane/wall-associated factors) directly interact 
with the host immune system and are highly relevant for adher-
ence and colonization.13,30,83-86 It is to be expected that these are 
major contributors to the virulence of C. difficile but it is unlikely 
that a single surface protein is responsible epidemicity.

The multifactorial nature of virulence makes it a fluid phe-
notype and it will be a challenge for the future to determine 
characteristics of C. difficile that affect its propensity to become 
epidemic. Until such time, vigilance for all types—not merely 
RT027 or RT078—is appropriate.
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that are common but not considered epidemic (e.g., RT001, 
RT014/020).74,75 This suggests that there may be a link with clin-
ical isolates in general, rather than epidemic strains specifically.

A limitation of whole genome sequencing single nucleotide 
polymorphism typing such as the RT027 study is that the analy-
ses are based on a conserved core genome. The contribution of 
the accessory genome, including horizontally acquired elements, 
to resistance and virulence has so far largely been unexplored.

Evolutionary Relationships

Typing is an essential tool in clinical practice to identify and 
characterize C. difficile isolates. The fact that infections with 
RT027 and RT078 strains are associated with increased morbid-
ity and mortality can be used to guide physicians in choosing 
the most appropriate course of treatment and manage infections. 
However, it is important to put the current emphasis on typing 
in perspective, as illustrated below.

One specific ribotype can contain both epidemic and non-
epidemic strains. For instance, CD196 is a historic isolate of 
RT027 that is not considered epidemic,76,77 but in current clini-
cal practice would be classified as a hypervirulent strain. One 
might argue that as a result of the increased fitness of epidemic 
strains the non-epidemic isolates of the same ribotype are likely 
underrepresented in clinical diagnoses, and may therefore be dis-
regarded from a precautionary principle.

It should be noted that in literature the terms historic and 
hypervirulent have also incorrectly been applied to two dif-
ferent ribotype strains, 630 (RT012) and R20291 (RT027), 
respectively.34,35 This has led to the proposition that differences 
in toxicity between the TcdB toxins might explain the rise of 
hypervirulent RT027 strains. A careful comparison between the 
sequences of the TcdB proteins of CD196 and R20291, however, 
reveal no differences. Therefore, though it may (partially) explain 
the difference in CDI severity between different ribotype strains, 
it does not explain the rise of epidemic isolates of RT027 from its 
non-epidemic ancestors.

Any typing method balances discriminatory power vs. ease. 
For instance, whole genome sequencing has superior power of dis-
crimination but so far is too expensive, too time consuming and 
too labor intensive to have found its way into the clinic for routine 
diagnostics. Multi-locus sequence typing (MLST) and PCR ribo-
typing are more widely applied because of their ease of use. They 
have similar discriminatory power and show good general con-
cordance, with a few notable exceptions. MLST has revealed that 
multiple PCR ribotypes are highly related to RT027 (i.e., RT016, 
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