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Abstract

Background: Genome-wide transcriptome profiling generated by microarray and RNA-Seq often provides
deregulated genes or pathways applicable only to larger cohort. On the other hand, individualized interpretation of
transcriptomes is increasely pursued to improve diagnosis, prognosis, and patient treatment processes. Yet, robust
and accurate methods based on a single paired-sample remain an unmet challenge.

Methods: “N-of-1-pathways“ translates gene expression data profiles into mechanism-level profiles on single pairs
of samples (one p-value per geneset). It relies on three principles: i) statistical universe is a single paired sample,
which serves as its own control; ii) statistics can be derived from multiple gene expression measures that share
common biological mechanisms assimilated to genesets; iii) semantic similarity metric takes into account inter-
mechanisms’ relationships to better assess commonality and differences, within and cross study-samples (e.g.
patients, cell-lines, tissues, etc.), which helps the interpretation of the underpinning biology.

Results: In the context of underpowered experiments, N-of-1-pathways predictions perform better or comparable
to those of GSEA and Differentially Expressed Genes enrichment (DEG enrichment), within-and cross-datasets. N-of-
1-pathways uncovered concordant PTBP1-dependent mechanisms across datasets (Odds-Ratios≥13, p-values≤1 ×
10−5), such as RNA splicing and cell cycle. In addition, it unveils tissue-specific mechanisms of alternatively
transcribed PTBP1-dependent genesets. Furthermore, we demonstrate that GSEA and DEG Enrichment preclude
accurate analysis on single paired samples.

Conclusions: N-of-1-pathways enables robust and biologically relevant mechanism-level classifiers with small
cohorts and one single paired samples that surpasses conventional methods. Further, it identifies unique sample/
patient mechanisms, a requirement for precision medicine.

Background
The emergence of precision medicine ushered in a
groundbreaking era in medicine with the opportunity to
incorporate individual molecular data into patient care.
The variability of individual patients at the molecular

level leads to the requirement of individual mechanistic
classifiers for accurate prognosis and drug response.
However, this individual based-approach requires specific
robust statistics, in order to unveil deregulated mechan-
isms at the level of the single patient, tissue, or cell lines
paired samples. Gene expression profile analysis com-
monly requires a large sample size to achieve sufficient
statistical power to uncover deregulated genes or path-
ways. Yet, such analysis highlights common mechanisms
extrapolated to larger population, and overlooks the dif-
ferences between samples to detect specific individual
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response to therapy or tissue specific-dependent
mechanisms. Therefore, methods are required to
empower mechanism-level analysis on a single pairs of
samples (tumor vs. matched control, primary tumor vs.
metastases, before vs. after treatment samples, etc.). The
advent of the increased dynamic range and accuracy of
RNA-Sequencing over expression arrays [1,2] provides a
new opportunity for studying single subject transcriptomes
[3]. N-of-1 clinical trials (or single-subject design) measure
patient disease progression or treatment efficacy over
time. While molecular biomarker discovery in N-of-1
studies may appear unfeasible, investigation may be
headed towards mechanisms and pathways analysis.
Indeed, mechanisms-classifiers were shown to outperform
gene-level classifiers in addition to reproducible results
and advanced understanding of the underpinning
biology [4,5].
The proposed method, N-of-1-pathways, is able to

uncover deregulated pathways at the single patient level,
and highlight both individuality and commonality of
patient trait or tissue specific associated-pathways [6]. Up
to our knowledge, it is the first method that offers the
opportunity to leverage individual molecular data for
improved diagnosis, prognosis, and patient treatment.
N-of-1-pathways relies on three main concepts, which

balance statistics, biological modules and information
theory: i) a single paired sample is considered the “entire
statistical universe”, and its genes are the “statistical
population” under study (within sample statistic); ii)
expressions of multiple genes are combined into genesets
as a proxy for biological modules or “pathway” functions;
iii) p-values generated for each pathway-associated gene-
set are sample specific. Hence, in order to conduct cross-
studies analyses, semantic similarity metric has been used
to reduce the dimensionality of the resulting pathways.
Information theory similarity score takes into account
inter-mechanisms’ relationships, and allows for an
unbiased assessment of similarity of pathways conveying
the same biologic signal within-sample, cross-samples
and across predictions. An unbiased metric of relatedness
is crucial as curated hierarchies of classifications and
ontologies are arbitrary and inaccurate in assessing rela-
tions between genesets. We finally assess common and
patient- or sample-specific deregulated mechanisms
found by N-of-1-pathways, GSEA and DEG enrichment
across studies. Taken together, this new method offers
opportunity to enhance the underpinning biology across
cell/tissue types and between human and animal models.
We conducted these studies to unveil deregulated

mechanisms in the context of the alternative splicing
factor protein PTBP1 knockdown (Polypyrimidine tract-
binding protein 1). PTBP1 was previously reported as a
key player in alternative splicing of many genes asso-
ciated to lineage-specific cell differentiation [7] or tumor

genesis [8,9], such as cell cycle. We previously demon-
strated that PTBP1 depletion inhibits tumor growth,
colony formation and invasiveness in vitro in ovarian
tumor cells [8,9]. Transcriptome analyses of PTBP1-
depleted cells uncover deregulated genesets (mechan-
isms) and therefore, offer potential therapeutic target
discovery. We used one previously reported single
paired RNA-Seq sample as well as our new datasets
derived from breast and ovarian cancer cell lines, and
PTBP1-depleted and matched control samples. We
hypothesized that deregulated mechanisms identified in
individual samples enable pooled analyses for both
“shared pathways” as well as individual results. Further,
we compared the “pooled” results with those obtained
by conventional geneset enrichment analyses (i) within
each dataset when possible (consistency) and (ii) across
datasets (validation).

Methods
Dataset description. Three transcriptome datasets per-
taining to PTBP1-depleted cell lines and matched controls
were used: Datasets I, II and III. Descriptions are summar-
ized in Table 1 and details of their respective experimental
design are described in the first section of the Results.
RNA-Seq dataset and preprocessing (Dataset I). The

RNA-Seq dataset (Table 1) pertains to transcriptomes of
PTBP1-depleted mouse neuroblastoma cell line CAD
(Cath. A-Differentiated; a variant of CNS catecholaminer-
gic cell line, Cath. A) and matched controls. The read
counts are normalized by RPKM (Reads Per Kilobase of
transcript per Million mapped reads). All measurements
were log2 transformed. If several alternative transcripts
referring to the same HGNC gene name were present,
only the one with maximum expression was considered
for further analysis. To minimally transform or bias the
data, we processed all the experiments without filtering
genes with low expression. The entire GEO control and
PTBP1-KD RPKM data (1+1 samples) were used for N-of-
1-pathways analysis, while the list of 1.5-fold deregulated
genes between control and PTBP1-KD samples was pro-
vided and further enriched with the Fisher’s Exact Test.
Cell lines, culture conditions (Dataset II and III).

The epithelial human breast cancer cell line MDA-MB231
(ER-/ PR-/ HER2-) were obtained from the American Type
Culture Collection (Manassas, VA). The epithelial human
ovarian tumor cell line A2780 was received as a generous
gift from Dr. Thomas C. Hamilton (Fox Chase Cancer
Center, Philadelphia, PA) Cancer Center, Philadelphia,
PA). Cells were grown in DMEM supplemented with 10%
fetal bovine serum (FBS), 2mM L-glutamine in a humid
environment at 37°C, with 5% CO2. Both cell lines were
free of Mycoplasma species and were maintained for no
longer than 10 weeks in culture after recovery from frozen
stocks. Mycoplasma levels were checked periodically using
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the MycoAlert® Mycoplasma Detection Kit (Lonza Inc.,
Allendale, NJ). The authenticity of cell lines was assessed
by the ATCC carrying out short tandem repeat (STR) ana-
lysis (Verified STR Profiling Service, ATCC® 135-XV).
Additionally, we compared A2780 to the original STR pro-
file collected by the European Collection of Cell Culture
(Catalogue number 93112519).
Doxycycline-inducible knockdown of PTBP1 regulated

by small hairpin RNA (shRNA; Datasets II and III). In
order to analyze the effect of PTBP1 depletion, two
consecutive viral transductions were performed in both
MDA-MB231 and A2780 cell lines. Cells were plated on
24-well plate (10-20 × 104 cells/well), maintained in
culture for 16 hours, and then medium containing LV-
tTR/KRAB-Red lentiviral particles was added. Following
16 h of incubation, cells were transduced a second time
by LVTHM/PTBshRNA or LV-THM/LUCshRNA lenti-
viral particles. Clones expressing both red and green
fluorescent protein (dsRED and GFP respectively) were
selected and expanded. Following 16 h of incubation,
cells were washed and split in two subcultures, one
without doxycycline (PTBP1/-DOX; Control in Figure 1)
and the other with Doxycycline (DOX) at a final con-
centration of 1 µg/ml (PTBP1/+DOX; PTBP1-KD in
Figure 1). Doxycycline was prepared according to the
manufacturer’s recommendations (Sigma-Aldrich, St.
Louis, MO). Five days later, cells were analyzed by fluores-
cence microscopy, and PTBP1 gene expression was
assessed using PCR and Western Blotting (data not
shown). The cells that were transduced by LV-LUCshRNA
express PTBP1 regardless of the presence of DOX
(LUCshRNA/+DOX). Constructs and lentivirus prepara-
tion were performed as previously described [9].
Microarray Analysis (Dataset I and II). For each of

the cell lines, MDA-MB231 and A2780, total RNAs
were extracted from four biological replicates of PTBP1-
depleted cells, PTBP1-KD (4 × PTBP1/+DOX) and eight
biological replicates control cells (4 × PTBP1/-DOX and

4 × LUCshRNA/+DOX) by Direct-zol RNA kit (Zymo
Research, Irvine, CA) (Figure 1). All paired samples con-
sist of PTBP1-depleted cells (PTBP1KD) and matched
control cells. Qualities of RNA were assessed based on
the RNA quality indicator (RQI ≥ 8) using Experion
Automated Electrophoresis System (Bio-Rad, Hercules,
CA). Gene expression microarray measurements were
performed using the GeneChip PrimeView Human Gene
Expression Array that contains 49,395 probes and mea-
sures 36,000 transcripts and variants per sample. Labeling
and hybridization were performed following Affymetrix
protocols. The raw data were normalized according to
the Robust Multiple-array Average (RMA) technique
[10], using Affymetrix Power Tools (APT) [11]. The com-
plete set of raw and normalized data is available for
download on the GEO database (GSE52493; Table 1).
Gene Ontology annotations of Biological Processes

(GO-BP) [12,13]. We aggregated genes into pathway-
level mechanisms using Gene Ontology Biological Pro-
cess, GO-BP. Hierarchical GO terms were retrieved using
the org.Hs.eg.db package [14] (Homo Sapiens) and the
org.Mm.eg.db package [15] (Mus Musculus) of Biocon-
ductor [16], available for R statistical software [17]. We
used the org.Hs.egGO2ALLEGS database (downloaded on
03/15/2013), which contains a list of genes annotated to
each GO term (geneset) along with all of its child nodes
according to the hierarchical ontology structure. The
genesets were filtered so that only those sized between 15
and 500 were kept in the studies. These GO annotations
were used for three types of GO prioritization analyses:
GSEA, DEG Enrichment and N-of-1-pathways analysis
(described below in Methods).
Kyoto Encyclopedia of Genes and Genomes (KEGG)

[18,19]. We aggregated genes into pathway-level mechan-
isms using Kyoto Encyclopedia of Genes and Genomes,
KEGG. KEGG pathways were retrieved using the org.Hs.
eg.db package [14] (Homo Sapiens) and the org.Mm.eg.db
package [15] (Mus Musculus) of Bioconductor [16],

Table 1 Transcriptome datasets

Description Dataset I Dataset II Dataset III

Cell line Neuronal cell line (CAD) Breast cancer cell line (MDA-MB231) Ovarian cancer cell line (A2780)

Samples: PTPB1-KD (controls) 1(1) 4(8) 4(8)

References Authors Yap K at al. Gardeux V et al. Gardeux V et al.

Source Genes & Dev. - -

Date Downloaded 01-2013 2013 2013

GEO ID GSE37933 GSE52493 GSE52493

Expression
measurements

Type RNA-Seq Microarray
GeneChip

Microarray
GeneChip

Platform Genome Analyzer IIx
Illumina

Prime View Human Gene Expression
Array

Prime View Human Gene Expression
Array

Measured transcripts or probes 27389 49395 49395

Deregulated transcripts or genes 707 720 469
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available for R statistical software [17]. We used the org.
Hs.egPATH database (downloaded on 03/15/2013), which
contains a list of genes annotated to each KEGG pathway
(geneset). The genesets were filtered so that only those
sized between 15 and 500 were kept in the studies. These
KEGG annotations were used for three types of KEGG
prioritization analyses: GSEA, DEG Enrichment and
N-of-1-pathways analysis.
N-of-1-pathways method applied to in vitro / in vivo

experiments[6](Figures 2, 3, 4, 5). MECHANISMS
PRIORITIZED WITHIN ONE PAIR OF SAMPLES: The
N-of-1pathways method was performed on the three
datasets (Table 1, Datasets I, II, III) independently for
each paired sample (PTBP1-KD and control, Figure 1).
The first set of the proposed method consists of a non-
parametric paired Wilcoxon test (Wilcoxon signed-rank
test) performed within each sample on the paired gene
expression profiles restricted to a given mechanism.
Wilcoxon statistics, W+ and W−, provide direction on
deregulated genesets as overall “up-regulated” or ‘’down-
regulated’’ respectively. Both FDR and Bonferroni
(Bonf.) corrections were applied to adjust p-values for
multiple comparisons. In each paired sample, only
deregulated mechanisms with adjusted p-values with
FDR ≤ 5%, Bonf. ≤ 1% or Bonf. ≤ 5% were retained for

further analysis. MECHANISMS PRIORITIZED ACROSS
MULTIPLE PAIRS OF SAMPLES: For comparison of the
N-of-1-pathways method with cross-patient enrichment
of mechanisms, a second step is required to prioritize the
mechanisms otherwise found in individual pairs of sam-
ples. Each mechanism has an associated p-value for each
paired sample. The p-values were then ranked according
to the total number of samples sharing a given mechanism
that reached significance at Bonf. ≤ 1% (default suggested
cutoff parameter). The prioritized mechanisms were listed
from the most commonly to the least observed across
samples, yet significant in at least one sample. Adjusted
p-values are then transformed into Z-scores for further
within- and cross-samples analyses. The N-of-1-pathways
software is available in R and Java at http://Lussierlab.org/
publications/N-of-1-pathways
Gene Sets Enrichment Analysis (GSEA). Gene set

enrichment analysis was conducted on breast and ovarian
cancer datasets only (Table 1, Datasets II, III). In the
case of the neuronal dataset, GSEA was not performed as
it is underpowered with a single pair of samples (Table 1,
Dataset I). The GSEA v2.0.10 software [20] was used
with the default parameters except for the permutation
parameter selection, which was set to “geneset” instead of
“phenotype”. Geneset permutation was chosen to achieve

Figure 1 Experimental design.
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Figure 2 WITHIN-STUDY, Dataset I concordance of PTBP1-KD associated mechanisms unveiled by N-of-1-pathways and FET
Enrichment in RNA-Seq neuronal cell line. The Venn Diagrams correspond to the overlap of deregulated mechanisms, GO-BP terms (left
panel) and KEGG pathways (right panel) found between N-of-1-pathways (at different cutoff, Bonf. ≤ 1%, Bonf. ≤ 5% and FDR ≤ 5%) and FET
Enrichment method (FDR≤5%). The Odds Ratios (OR) and p-values are shown below each Venn Diagram. GSEA is not represented, as it cannot
be computed with a single paired sample.

Figure 3 WITHIN-STUDY concordance of PTBP1-KD associated mechanisms found by N-of-1-pathways compared to those found by
GSEA and DEG Enrichment, applied to breast and ovarian cancer gene expression microarray profile (Datasets II-III). To evaluate the
GO-BP and KEGG associated terms of deregulated mechanisms yielded by the N-of-1-pathways method in both breast and ovarian cancer
internal studies, we compared these mechanisms to those found by DEG Enrichment when GSEA is chosen as the ‘Proxy’ Gold Standard (Proxy
GS, Methods). We then generated precision-recall curves based on the exact GO overlap (Without GO-ITS, panels A, D), related GO terms by
Information Theory Similarity overlap (With GO-ITS, panels B, E; GO-ITS ≥ 0.7; Methods), and the exact KEGG overlap (panels C, F).
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enough statistical power for permutation resampling due
to the small number of samples.
Mechanisms enriched from Differentially Expressed

Genes (FET and DEG Enrichment; Figures 2, 3, 4, 5)
Enrichments of GO-BP and KEGG genesets with differ-
entially expressed (DE) genes were conducted in the R
statistical software using the Fisher’s Exact Test (FET)
based on the following contingency table: (DE genes, All
Genes) × (In Pathway, Not In Pathway). Adjustment for
multiple comparisons was performed using Benjamini
and Hochberg method (False Discovery Rate; FDR), and
mechanisms with FDR ≤ 5% were considered signifi-
cantly enriched. Of note, the up-regulated and down-
regulated genes were enriched independently. DE genes
were directly available for neuronal RNA-Seq study, but
only based on fold change cutoff (Table 1, Dataset I).
We called “FET Enrichment” the enrichment of those
deregulated genes to avoid any mixed up with the stan-
dard DEG Enrichment. The breast and ovarian cancer
DE genes (Table 1, Datasets II, III) were calculated in
the following way: (i) genes whose average expression
differs by at least 2-fold between Control (8 samples)

and PTBP1-KD samples (4 samples) were selected for
analysis, (ii) then a t-test was applied between the two
groups, and p-values were adjusted with Benjamini and
Hochberg method (False Discovery Rate; FDR). Only DE
genes with FDR ≤ 5% were retained.
Information Theoretic Similarity (ITS) (only applic-

able for GO-BP mechanisms; Figures 3 and 4). In order
to further stratify mechanisms in those that are unique
to a pair of samples or common to multiple samples,
Information-Theory Similarity (ITS) is utilized to for-
mally assess similarity cross sample pairs versus unique-
ness to a pair. When applied on samples from an
individual patient, this method allows determining
mechanism unique to a patient versus those common to
many, a step forward in personal therapy from tran-
scriptome data. We calculated the similarity between
GOBP terms using Jiang’s information theoretic similar-
ity [21] that ranges from 0 (no similarity) to 1 (exact
match).
Within-Study Proxy Gold Standard (Figure 3).

Mechanisms are statistically prioritized in breast and
ovarian cancer datasets by the three above described

Figure 4 CROSS-STUDIES concordance of PTBP1-KD associated mechanisms found by N-of-1-pathways and conventional methods in
breast and ovarian cancer cell lines using neuronal cell line mechanisms as Gold Standard. We compared mechanisms unveiled by N-of-
1-pathways and DEG Enrichment in neuronal cell lines to those associated in breast and ovarian cancer cell lines and found by all three
methods. We set RNA-Seq neuronal cell related results as a ‘Proxy’ Gold Standard (Proxy GS; Methods) and generated precision-recall curves
using GO-BP semantic similarity overlap (GO-ITS ≥ 0.7; Methods).
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methods: N-of-1-pathways, GSEA and DEG-Enrichment.
The accuracy of the N-of-1pathways method was com-
pared to one of the conventional methods (eg. DEG
Enrichment) while the other serves as a Proxy Gold Stan-
dard (GSEA). Cross-Studies derived Gold Standards
(Figure 4). Significant deregulated mechanisms in PTBP1
depleted neuronal cell lines unveiled by N-of-1-pathways
and DEG Enrichment methods (Table 1, Dataset I) were
used as Proxy Gold Standard. For the DEG Enrichment
method, the list of DEG was directly provided by the
authors and further enriched. These two lists of mechan-
isms serve as derived Gold Standards to compare their
robustness across studies, methods, and underpinning
biology (PTBP1 depleted cells; mouse versus human, neu-
ronal versus cancer cell lines; breast versus ovarian cancer
cell lines.) Precision-Recall curves (Figures 3, 4). Using
the R statistical software, we computed two types of
Precision-Recall curves: (i) within-study (Figure 3) and
(ii) cross-studies (Figure 4) of the mechanisms predicted
by the N-of-1-pathways (Cross-samples; see above),

GSEA and DEG Enrichment. WITHIN-STUDY: Precision-
recall curves of the “internal validation” compare breast
and ovarian cancer GO-BP and KEGG associated mechan-
isms unveiled by the N-of-1-pathways with those
predicted by DEG Enrichment and GSEA that were
used alternatively as “Proxy Gold Standard” (Proxy GS)
(Figure 3). CROSS-STUDIES: Breast and ovarian cancer
GO-BP and KEGG associated mechanisms uncovered by
the N-of-1-pathways, GSEA and DEG Enrichment were
compared to those found in the RNA-Seq neuronal data-
set by the Nof-1-pathways and DEG-Enrichment (consid-
ered as GS) (Figure 4). STANDARD PRECISION-RECALL
CURVE: The GS list of deregulated mechanisms are fixed
(given a particular cutoff) while the precision and recall
point of each mechanism identification method is ranked
either according to its p-values (GSEA and DEG Enrich-
ment) or the number of samples (N-of-1-pathways). The
precision and recall values are calculated using different
cutoffs of the ranked mechanisms derived from the predic-
tion methods. In this case, a true positive is calculated as

Figure 5 CROSS-STUDIES accuracy of mechanism identification methods using their default parameters. Strong overlap performance of
N-of-1-pathways method. We compared the three different mechanism identification methods (N-of-1-pathways) across the three different
studies (neuronal, breast and ovarian cancer cell lines). The computed overlaps of PTBP1-KD associated mechanisms are represented by Venn
Diagrams. Odds Ratio (OR) and p-values (p) are plotted below the Venn Diagrams to represent the statistical significance of the overlap
(Methods). The symbol “X” marked in the GSEA results represents not computed analysis, as this method cannot be applied to the single paired
sample form the neuronal cell line dataset I.
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an overlap between a prediction and the GS. A true nega-
tive corresponds to a mechanism neither predicted nor
found in the GS. A false positive is a predicted mechanism
not found in the GS while a false negative corresponds to
non-predicted GS mechanism.
Information-Theory Similarity (ITS) in precision-

recall curve (only applicable for GO-BP mechanisms):
for these precision-recall curves, we considered a true
positive prediction if the predicted mechanism is similar
to a mechanism from the GS (ITS ≥ 0.7). We have pre-
viously shown that an ITS score ≥ 0.7 robustly corre-
sponds to highly similar GO terms using different
computational biological validations: protein interaction
[22,23], human genetics [24], and Genome-Wide Asso-
ciation Studies [25].
Statistical significance of overlap of two lists of

mechanisms (Odds Ratio, OR; and p-value; Figures 2,5).
In order to assess the statistical significance of mechanism
overlap unveiled by two different methods, we computed
the following contingency table: (#Overlapping mechan-
isms, #Non-overlapping mechanisms in method 1) ×
(#Non-overlapping mechanisms in method 2, #Remaining
mechanisms in mathematical universe). We then com-
puted an odds ratio (OR) and a p-value using the Fisher’s
Exact Test (FET). The computed p-value obtained with
FET is equivalent using a Hypergeometric Test.

Results
Overview of the datasets and performed studies
Figure 1 provides an overview of the experimental design.
We evaluated the robustness of the N-of-1-pathways
method in three transcriptome profile datasets: a single
paired sample (RNA-Seq from mouse neuronal cell line,

Dataset I) and two small sets of paired samples (mRNA
expression microarray from human breast and ovarian
cancer cell lines, Dataset II and III). Each dataset consists
of a number n of PTBP1-depleted samples and matched
controls. To uncover PTBP1-KD associated mechanisms,
we first performed within-study analyses (N-of-1-path-
ways, FET enrichment, GSEA, DEG enrichment) inde-
pendently for each of the datasets I, II and III (Methods,
Figures 2, 3; Table 2; GSEA and DEG was not applicable
to Dataset I). We then quantitatively and qualitatively
compared the three analytical methods across the three
studies to reveal concordant and tissue/cell specific
deregulated mechanisms associated to PTBP1-KD
(Figures 4, 5; Table 3).

Within-study (Dataset I). Concordance of PTBP1-KD
associated mechanisms unveiled by N-of-1-pathways and
FET Enrichment in neuronal cell line
We first performed an independent within-study analy-
sis from published RNA-Seq transcriptome profile of
PTBP1-depleted neuronal cell lines (Dataset I; Table 2;
Figure 2). To apply geneset-level enrichment analysis,
conventional methods such as GSEA and DEG enrich-
ment require three samples to reach statistical signifi-
cance. The present dataset I consists of a single sample
of PTBP1-KD and a single paired Control (n = 2) and
therefore GSEA and DEG enrichment are not the meth-
ods of choice for such underpowered experiments. We
applied our proposed method, N-of-1-pathways, which
is designed for these experiments while only a Fisher’s
Exact Test (FET) Enrichment analysis could be
performed on genes at a certain fold change level, as
differentially expressed genes cannot be calculated with a

Table 2 GO-BP overlap and similarity between N-of-1-pathways and FET Enrichment derived from RNA-Seq
transcriptome profile of PTBP1-depleted neuronal cell line.

Curated GO-BP
classes

GO-BP Terms GO-BP
overlap

GO-BP
ITS ≥ 0.7*

Neuronal
specific

Cell cycle and DNA Replication GO:0006260: DNA Replication ✓

GO:0051325: interphase ✓

GO:0007067: mitosis ✓

GO:0051329: interphase of mitotic cell cycle ✓

GO:0010564: regulation of cell cycle process ✓

GO:0033261: regulation of S phase ✓

GO:0000279: M phase ✓

GO:0000087: M phase of mitotic cell cycle ✓

GO:0006974: response to DNA Damage Stimulus ✓

DNA repair GO:0006281: DNA Repair ✓

GO:0006310: DNA recombination ✓

GO:0006302: double-strand break repair ✓

Neuronal
transmission

GO:0007268: synaptic transmission ✓ ✓

*GO-BP terms with Information Theoretic Similarities (ITS) ≥ 0.7 are considered highly related (Methods).
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p-value between two samples. Arguably, FET enrichment
is barely applicable with n = 2, since only a fold change
of differentially expressed genes between two samples
can be measured and considered for further analysis. To

our knowledge, no method can compute a p-value at the
mRNA level (gene-level) from a single paired sample ana-
lysis of RNA-seq based-transcriptome. We then show sig-
nificant overlap of PTBP1-KD associated mechanisms

Table 3 Concordance of regulated mechanisms by PTBP1 across three cell lines (neuronal, breast cancer and ovarian
cell lines) discovered by N-of-1-pathways.

GO-BP Classes GO-BP Overlap GO-BP ITS ≥ 0.7

RNA splicing/RNA
processing

GO:0008380 RNA splicing GO:0000398 mRNA splicing, via spliceosome

GO:0006397 mRNA processing GO:0000375 RNA splicing, via transesterification reactions

GO:0000377 RNA splicing, via transesterification reactions with bulged
adenosine as nucleophile

GO:0016071 mRNA metabolic process

GO:0034470 ncRNA processing

GO:0006364 rRNA processing

Cell cycle/cell division GO:0007067 mitosis GO:0000279 M phase

GO:0051301 cell division GO:0000216 M/G1 transition of mitotic cell cycle

GO:0000280 nuclear division GO:0000082 G1/S transition of mitotic cell cycle

GO:0000087 M phase of mitotic cell
cycle

GO:0000086 G2/M transition of mitotic cell cycle

GO:0051325 interphase GO:0000236 mitotic prometaphase

GO:0051329 interphase of mitotic cell
cycle

GO:0051320 S phase

GO:0006260 DNA replication GO:0000084 S phase of mitotic cell cycle

GO:0007059 chromosome segregation GO:0000819 sister chromatid segregation

GO:0071156 regulation of cell cycle
arrest

GO:0006261 DNA-dependent DNA replication

GO:0010564 regulation of cell cycle
process

GO:0000070 mitotic sister chromatid segregation

GO:0000075 cell cycle checkpoint GO:0007093 mitotic cell cycle checkpoint

GO:0000226 microtubule cytoskeleton
organization

GO:0045786 negative regulation of cell cycle

GO:0007017 microtubule-based process GO:0010948 negative regulation of cell cycle process

GO:0048285 organelle fission GO:0007346 regulation of mitotic cell cycle

GO:0051439 regulation of ubiquitin-protein ligase activity involved in
mitotic cell cycle

GO:0031023 microtuble organizing center organization

GO:0051327 M phase of meitic cell cycle

GO:0007051 spindle organization

GO:0007126 meiosis

GO:0051321 meiotic cell cycle

Chromatin modifications/
remodeling

GO:0016568 chromatin modification

GO:0006325 chromatin organization

GO:0016569 covalent chromatin modification

GO:0016570 histone modification

GO:0051052 regulation of DNA metabolic process

DNA repair GO:0006310 DNA recombination GO:0006974 response to DNA damage stimulus

GO:0006281 DNA repair GO:0006302 double-strand break repair

Neuronal process GO:0031644 regulation of neurological system process

GO:0007268 synaptic transmission

GO:0050804 regulation of synaptic transmission

GO:0051969 regulation of transmission of nerve impulse

Others GO:0007600 sensory perception
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prioritized by both methods using GO-BP and KEGG
genesets (Figure 2; p < 0.05; Odds Ratio: OR>7). The dif-
ferent Odds Ratios (OR) were comparable regardless of
the multiple comparison cutoffs of the N-of-1-pathways
method (Bonf. ≤ 1%, Bonf. ≤ 5%, FDR ≤ 5%). In order
to limit the number of false positive results for N-of-1-
pathways and produce succinct, interpretable, lists of
mechanisms, we favored a Bonferroni ≤ 1% in the
remainder of this paper while we kept a FDR ≤ 5% for
GSEA and DEG Enrichment. Thereafter, we evaluated
the biological relevance of such GO-BP associated
mechanism overlaps between N-of-1-pathways and FET
Enrichment (Figure 2 leftmost panel; Table 2). Six
GO-BP were found overlapping and ten others were
found related based on ITS semantic similarity computed
score (ITS ≥ 0.7, Methods). All together, the 16 mechan-
isms belong to three GO-BP classes: Cell Cycle/DNA
Replication, DNA repair and neuronal transmission.
Indeed, N-of-1-pathways and FET enrichment recapitu-
late the tissue-specific deregulated mechanisms of
synaptic transmission and synaptic vesicle exocytosis
that were previously confirmed in biologic assays by the
study from which the RNA-Seq dataset I was generated
[26]. The authors showed that the depletion of PTBP1
affects alternative splicing and triggers transcriptome
changes on a large scale, which increased the propensity
of the neuronal CAD cells to undergo neuron-like differ-
entiation. However, unlike N-of-1-pathways, FET enrich-
ment did not uncover alternative splicing related
mechanisms.

Within-study, datasets II and III: concordance of PTBP1-KD
associated mechanisms unveiled by N-of-1-pathways, DEG
Enrichment and GSEA in Breast and Ovarian cancer cell lines
We performed a within-study analysis independently for
two different human cancer cell lines (breast and ovarian
cancer; Table 1, Dataset II, III). Each study consists of
four biological replicates of PTBP1-KD and eight
matched control (not depleted PTBP1) samples. We
applied GSEA, DEG Enrichment and N-of-1-pathways
methods independently on each dataset I and II and
compared their accuracies (Figure 3). The results show
that three out of the six N-of-1-pathways method predic-
tions were found comparable or better to those of DEG
enrichment when GSEA is chosen as a Gold Standard
(GS) (Figure 3 Panels A, B and F). Compared to DEG
Enrichment, the proposed N-of-1-pathways offers the
same level of results with the advantage of being applic-
able to a single paired sample. Additional File 1- Supp.
Figure S1 shows the results taking DEG Enrichment as
the Proxy GS. However, DEG Enrichment did not pro-
vide enough statistically significant deregulated pathways
to perform an accurate comparison.

Cross-studies: concordance of PTBP1-KD associated
mechanisms unveiled by N-of-1-pathways, DEG Enrichment
and GSEA across all three datasets
Using either N-of-1-pathways or DEG Enrichment as
the two alternate Gold Standards (performed in the neu-
ronal cell lines), N-of-1-pathways surpasses well-known
methodologies in five out of six predictions conducted
in ovarian and breast cancer cell lines (Figure 4). Speci-
fically, mechanisms discovered by N-of-1-pathways
method applied in the RNA-Seq neuronal cell line data-
set are highly concordant to those found in breast can-
cer and ovarian cancer (Figure 4, Panels A and D).
Taken together, the precision and recall curves of each
method in breast and ovarian cell lines (vertical
columns) and the overall accuracies of GSEA (Figure 4,
Panels B and E) and DEG Enrichment (Figure 4, Panels
C and F) are lower than those of N-of-1-pathways (Fig-
ure 4, Panels A and D), regardless of the GS used (GS
from neuronal study). Of note, N-of-1-pathways per-
forms better than GSEA and DEG Enrichment with
only one exception (Figure 4, Panel C). Moreover, the
concordance of DEG Enrichment fails in breast cancer
cell lines (Figure 4, Panel C) as well as in ovarian cancer
cell lines (Figure 4, Panel F). Therefore, both consistency
and robustness of the mechanisms unveiled by DEG
Enrichment across datasets are questionable. In sum-
mary, these results highlight the advantage of applying
the N-of-1-pathways for a single paired sample analysis
compared to conventional methods.
To qualitatively assess the biologic relevance of mechan-

ism overlap, we curated the associated and unrelated GO-
BP deregulated mechanisms across the three datasets
found by the N-of-1-pathways method. As shown in Table
3, N-of-1-pathways discovered the most common and
highly related mechanisms previously reported [8,9,26] as
associated to molecular and cellular phenotypes that are
triggered by PTBP1 depletion such as GO:0000398, mRNA
splicing via spliceosome and GO:00010564, regulation of
cell cycle process. We also studied the dissimilar mechan-
isms between datasets; Additional File 2-Supp. Tables S1-
S3 displays sets of GO-BP classes underlying tissue-specific
mechanisms affected by PTBP1 depletion. For the neuro-
nal cell line (Additional File 2- Supp. Table S1), 10
GO-BP are clustered in 3 GO-BP classes, such as RNA
localization/transport including GO:0051028, mRNA trans-
port and Nucleic acid transport including GO:0015931
nucleobase-containing compound transport. For the breast
cancer cell line (Additional File 2- Supp. Table S2), 10
GO-BP are clustered in 4 GO-BP classes such as cytokine
production class including GO:0001816, regulation of cyto-
kine production and immune response class including GO:
cellular response to type I interferon. For the ovarian
cancer cell line (Additional File 2-Supp. Table S3), 117
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GO-BP are clustered in 10 curated class such as, hormone
secretion/process class including GO:0046883, regulation
of hormone secretion; organ/tissue development class
including GO:0030855, epithelial cell differentiation and
GO:001655 urogenital system development; pathway sig-
naling class including GO:0007179, transforming growth
factor beta receptor signaling pathway. Although some
deregulated mechanisms could help to decipher tissue-spe-
cificity of PTBP1 role in alternative transcription, further
investigations are required to understand their underpin-
ning biology.

Cross-studies: tissue-specific and concordance of
mechanisms regulated by PTBP1 unveiled by N-of-1-
pathways, DEG Enrichment and GSEA across all three studies
We further evaluate the reproducibility of each mechan-
ism based-method and their robustness across studies
using Venn Diagrams and Odds Ratios (OR; Figure 5).
Since PTBP1 has a major role in alternative splicing
mechanism, its depletion in all three type of cells (Neuro-
nal, breast and ovarian) provides an advantage to deter-
mine the accuracy of PTBP1 common and tissue-specific
deregulated mechanisms. Interestingly, unlike N-of-1-
pathways, the lack of reproducibility of DEG Enrichment
results across studies prevents the recovery of significant
overlap. While GSEA provided good overlap (OR≥19)
between breast and cancer cell line datasets, it failed to
provide an overlap between these studies and the neurolo-
gical dataset, as it cannot be applied to a single paired
sample studies (eg. dataset I). In contrast, N-of-1-pathways
can be applied robustly in each case scenario achieving
overall the best performance with high OR ≥ 13 at signifi-
cant p-values (p ≤ 1 × 10−15) far surpassing those of GSEA
and of DEG Enrichment in every combination of dataset.
Taken together, N-of-1-pathways is able to provides both
PTBP1 common and tissue-specific deregulated mechan-
isms independently of the sample size do datasets.

Discussion
Future studies. In the context of paired samples,
the validation studies results are so favorable for N-of-1-
pathways that we are planning large-scale studies (syn-
thetic and real datasets) systematically comparing N-of-
1-pathways to multiple conventional geneset enrichment
methods. Further, we are investigating the scalability of
N-of-1-pathways in genome-wide measurements other
than the transcriptome (e.g. methylation) to reveal
mechanisms of resistance to therapy.
Limitations. At the biological level, the large extent of

shared mechanisms between RNA-Seq (Dataset I) and
mRNA expression microarrays (Datasets I and II) attests
the sheer ability of N-of-1-pathways to be applied across
platforms. However, unlike the neuronal RNA-Seq dataset,

the two newly generated datasets submitted to GEO were
conducted using microarrays without exon-specificity mea-
sures, preventing the identification of alternative tran-
scripts. Therefore, shared mechanisms such as cell cycle,
RNA processing, and splicing need further experimental
investigations to reveal the underpinning biology of PTBP1
in regards to alternative splicing. At the computational
level, simulation across samples is required to establish the
dynamic range of precision and recall of N-of-1-pathways
as compared to geneset enrichment studies. The methodol-
ogy should be extended to single samples rather than
paired samples using a different unpaired rank statistic and
reference samples from GEO (underway). Moreover, as a
large number of GO-BP may be found deregulated within
two paired samples, GO-ITS scores could be further auto-
mated in order to reduce the dimensionality and facilitate
the interpretation of the results.

Conclusions
In the present study, we established a novel methodology,
N-of-1-pathways, empowering mechanism-based analysis
using as few as two samples. N-of-1-pathways relies on
three principles. First, the statistical universe is a single
patient or a set of paired samples. Second, mechanisms
unveiled within paired samples can be measured from
genesets. Indeed, multiple measures for each mechanism
can be obtained and a statistic can be derived. Third, the
“naive” exact overlap of mechanism’s coded terms is not
sufficient to assess commonality or differences between
patients or between pairs of samples. A formal similarity
metric is required to take into account the hierarchy and/
or the shared genes among mechanisms’ genesets. To
extrapolate general population-level conclusions, popular
comparative study analyses require achieving sufficient
statistical power based on a large sample size. Here, statis-
tical power is attainable despite a small sample size: a sin-
gle patient (or cell line, or tissue, etc.) with as few as
2 samples. Yet, population-based generalizations can be
conducted by merging significant individual results
together. Thus, we compared the results of N-of-1-path-
ways with two conventional methods: GSEA and DEG
Enrichment, which are well-known pathway-level techni-
ques applied to large sample sets. So far the results show
that our method surpasses previous mechanism-discovery
methods even if it was originally designed to identify the
deregulated mechanisms at the single patient-or paired
sample-level. Importantly, novel translational bioinfor-
matics methods provide advanced understanding of the
dynamic range of PTBP1 role in regulating alternative
transcript expression of genes associated to proliferation,
invasiveness, drug-resistance, etc. Such methods offer the
opportunity to serve as proof-of-concept, paving the way
to potential therapeutic agents to be investigated, such as
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small molecules and biologics inhibiting aberrant PTBP1
expression as in the case of ovarian cancer and glioma.
Further, the N-of-1-pathways method is likely to be scaled
up to a new type of mechanism, such as “chromoplexy”.
Recently, this unveiled phenomenon showed the interde-
pendency and biologic modularity of somatic mutations
from which oncogenicity emerges [27,28] rather than the
old paradigm of one single point mutation to trigger an
oncogenic phenotype.
Taken together, the increased accuracy for population-

based study and the sub-group stratification empowered
by this computational biology method prepares the path
to leverage individual molecular data for profoundly
improved mechanistic classifiers of prognosis and che-
motherapeutic response. Recent DNA sequencing results
support the massive somatic mutation differences in indi-
vidual patient cancers [29,30]. Therefore, it is important to
further develop patient-specific interpretations and high
throughput experiments that support off-label medication
repositioning for individualized precision therapy.

Additional material

Additional file 1: Supplementary Figure S1 - WITHIN-STUDY
concordance of PTBP1-KD associated mechanisms found by N-of-1-
pathways compared to those found by GSEA and DEG Enrichment,
applied to breast and ovarian cancer gene expression microarray profile
(Datasets II-III). To evaluate the GO-BP and KEGG associated terms of
deregulated mechanisms yielded by the N-of-1-pathways method in
both breast and ovarian cancer internal studies, we compared these
mechanisms to those found by GSEA when DEG is chosen as the ‘Proxy’
Gold Standard (Proxy GS, Methods). We then generated precision-recall
curves based on the exact GO overlap (Without GO-ITS, panels A, D),
related GO terms by Information Theory Similarity overlap (With GO-ITS,
panels B, E; GO-ITS ≥ 0.7; Methods), and the exact KEGG overlap (panels
C, F).

Additional file 2: Supplementary Tables S1, S2 and S3. This file
contains the three supplementary tables in numbering order. Those
tables list the mechanisms regulated by PTBP1 in neuronal, breast and
ovarian cell lines, respectively.
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