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Abstract

Purpose

To utilize Gaussian mixture model (GMM) for the quantification of chronic obstructive pulmo-

nary disease (COPD) and to evaluate the combined use of multiple types of quantification.

Materials and methods

Eighty-seven patients (67 men, 20 women; age, 67.4 ± 11.0 years) who had undergone

computed tomography (CT) and pulmonary function test (PFT) were included. The hetero-

geneity of CT attenuation in emphysema (HC) was obtained by analyzing a distribution of

CT attenuation with GMM. The percentages of low-attenuation volume in the lungs (LAV),

wall area of bronchi (WA), and the cross-sectional area of small pulmonary vessels (CSA)

were also calculated. The relationships between COPD quantifications and the PFT results

were evaluated by Pearson’s correlation coefficients and through linear models, with the

best models selected using Akaike information criterion (AIC).

Results

The correlation coefficients with FEV1 were as follows: LAV, −0.505; HC, −0.277; CSA,

0.384; WA, –0.196. The correlation coefficients with FEV1/FVC were: LAV, –0.640; HC, –

0.136; CSA, 0.288; WA, –0.131. For predicting FEV1, the smallest AIC values were obtained

in the model with LAV, HC, CSA, and WA. For predicting FEV1/FVC, the smallest AIC values

were obtained in the model with LAV and HC. In both models, the coefficient of HC was statis-

tically significant (P-values = 0.000880 and 0.0441 for FEV1 and FEV1/FVC, respectively).

Conclusion

GMM was applied to COPD quantification. The results of this study show that COPD sever-

ity was associated with HC. In addition, it is shown that the combined use of multiple types

of quantification made the evaluation of COPD severity more reliable.

PLOS ONE | https://doi.org/10.1371/journal.pone.0192892 February 14, 2018 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Nishio M, Tanaka Y (2018) Heterogeneity

in pulmonary emphysema: Analysis of CT

attenuation using Gaussian mixture model. PLoS

ONE 13(2): e0192892. https://doi.org/10.1371/

journal.pone.0192892

Editor: Heinz Fehrenbach, Forschungszentrum

Borstel Leibniz-Zentrum fur Medizin und

Biowissenschaften, GERMANY

Received: June 27, 2017

Accepted: January 18, 2018

Published: February 14, 2018

Copyright: © 2018 Nishio, Tanaka. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was supported by JSPS

KAKENHI (Grant Number JP16K19883). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0192892
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192892&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192892&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192892&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192892&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192892&domain=pdf&date_stamp=2018-02-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192892&domain=pdf&date_stamp=2018-02-14
https://doi.org/10.1371/journal.pone.0192892
https://doi.org/10.1371/journal.pone.0192892
http://creativecommons.org/licenses/by/4.0/


Introduction

Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation,

which is usually progressive and not fully reversible [1]. COPD can lead to irreversible struc-

tural changes such as remodeling of airways and destruction of lung parenchyma. These struc-

tural changes are caused by abnormal inflammatory response toward cigarette smoke or other

noxious gases. COPD is in effect a syndrome, with elements of bronchitis, airway hyperreactiv-

ity, inflammation, and emphysema in variable proportions [2].

Computed tomography (CT) and computer software made it possible to quantitatively eval-

uate the structural changes in the lungs caused by COPD, and quantitative evaluation of CT

was more sensitive than visual assessment for evaluating emphysema [3]. Although clinical

evaluation of CT images is usually qualitative or semi-quantitative, the qualitative or semi-

quantitative evaluation of COPD has suffered from inter-observer variability [4]. Quantitative

evaluation of CT images has the potential to identify phenotypes of COPD and assess the pro-

gression of COPD.

The most widely used method to quantify emphysema on CT is the percentage of low-

attenuation volume in lungs (LAV) [5]. However, no single type of quantification can guaran-

tee an accurate assessment of COPD severity. There is, therefore, a need for a new way to

quantify COPD. Many types of COPD quantification have been suggested in previous studies:

LAV and D (D was obtained by analyzing the size distribution of low-attenuation lung

regions) for emphysema [4, 6]; the percentage of wall area (WA) for airway wall change [7, 8];

the percentage of the cross-sectional area of small pulmonary vessels (CSA) for vascular alter-

ation [9]; and Patlak analysis of 18F-fluorodeoxyglucose positron emission tomography for the

inflammatory state [10]. Combining these methods, such as a combination of LAV and WA,

has been investigated and shown to be superior to using a single type of quantification [7, 11–

14].

We hypothesized that heterogeneity of CT attenuation was useful for quantifying COPD.

Although spatial heterogeneity of emphysema was investigated in previous studies [15, 16],

here we focused on the heterogeneity of CT attenuation. To assess this, we used Gaussian mix-

ture model (GMM). In GMM, the distribution of CT attenuation is approximated by a mixture

of Gaussian distributions for which the mean and variance can be calculated. Because variance

reflects the heterogeneity of a Gaussian distribution, the heterogeneity of CT attenuation can

be calculated by GMM. In addition, we evaluated combinations of multiple types of quantifica-

tions, in contrast to the previous studies, which mainly investigated the combined use of just

two types. We speculated that the severity of COPD could be assessed more accurately by the

use of multiple types of quantification.

In summary, the aims of the current study were: i) to validate GMM for COPD quantifica-

tion by analyzing CT attenuation distribution in the lungs, ii) to assess whether the heteroge-

neity of CT attenuation obtained from GMM was useful for COPD quantification, and iii) to

evaluate the combined use of LAV, CSA, WA, and heterogeneity of CT attenuation.

Materials and methods

This retrospective study was approved by the institutional review boards of Institute of Bio-

medical Research and Innovation and Chibune General Hospital. The acquisition of informed

consent was waived by the review boards.

Patients

Patients who visited our institution because of their respiratory symptom (such as chronic

cough and dyspnea) were examined retrospectively. If the patient underwent CT and
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pulmonary function test (PFT) and the interval between CT and PFT was less than 90 days, the

patient was included in the current study. COPD was diagnosed based on the Global Initiative

for Chronic Obstructive Lung Disease criteria [1]. These patients had no exacerbation at the

CT and PFT examinations.

This study included 87 consecutive patients (67 men, 20 women; age, 67.4 ± 11.0 years). 39

patients were diagnosed with COPD; 38 were smokers without COPD; and 10 were non-

smokers. The mean smoking history of all the 87 patients, the 39 patients with COPD, and the

38 smokers without COPD were 45.8 ± 38.63, 58.3 ± 45.8, and 45.1 ± 24.1 pack-years, respec-

tively. The mean interval between CT and PFT was 17.3 ± 39.1 days.

CT scan

Noncontrast helical CT scans were acquired from the lung apices through the lung bases with

a 320-detector-row scanner (Aquilion ONE; Toshiba Medical Systems, Otawara, Japan) by

using automated exposure control. The scan parameters were as follows: noise index, 10; tube

current, 200 ± 66.5 mA; tube potential, 120 kV; gantry rotation time, 0.35 s in one patient, 0.6 s

in two patients, and 0.5 s in all the other patients. After receiving careful instruction about

breathing, the patients were scanned in the supine position during a deep inspiratory breath

hold. To reduce computational cost of GMM, raw CT data were reconstructed into 5-mm-

thick images with soft tissue kernel (FC 13 or 14). The CT scanner was calibrated regularly.

Pulmonary function test

The PFT was performed with an automated spirometer (HI-801 or CHESTAC-8900, CHEST

M.I., INC., Tokyo, Japan). Vital capacity, forced expiratory volume in one second (FEV1),

forced vital capacity (FVC), and the ratio of forced expiratory volume in one second to forced

vital capacity (FEV1/FVC), were obtained. Apart from FEV1/FVC, these were expressed as per-

centages of the standard predicted values.

Image preprocessing

The acquired CT images were processed by our prototype software. First, the lungs were auto-

matically segmented from the CT images using region growing, an auto-detected seed point,

and a threshold at −500 HU.

The CT attenuation (HU) of all the lung voxels were collected, and the mean, variance,

skewness, and kurtosis of the CT attenuation distribution were calculated to examine the dis-

tribution of lung voxels. Then, using GMM, the distribution of CT attenuation was approxi-

mated by a mixture of Gaussian distributions, and the mean and variance of each distribution

was calculated. In GMM, the distribution is approximated by:

XK

i¼1

gi Nðmi; s
2

i Þ;

where, K is the number of Gaussian distributions determined experimentally, N(μi, s2
i ) is a

Gaussian distribution with mean μi and variance s2
i , and γi gives the relative weightings of the

distributions and satisfies
PK

i¼1
gi ¼ 1; gi � 0 ði ¼ 1; 2; 3; . . . ;KÞ. K = 2, 3, 4, 5, 6, 7, and 8

were tested in the current study, and K = 4 was selected based on results of preliminary experi-

ments (for the preliminary experiments, please refer to Tables B and C in S1 File of Supporting

information). When a larger K was used, the computational cost of GMM was unacceptable.

The mean μi and variance s2
i (i = 1, 2, 3, . . ., K) obtained by GMM were sorted by the value of

μi. As a result, the variance s2
1

corresponded to the lowest mean μ1. The mean μ1 and variance

Analysis of pulmonary emphysema using GMM

PLOS ONE | https://doi.org/10.1371/journal.pone.0192892 February 14, 2018 3 / 13

https://doi.org/10.1371/journal.pone.0192892


s2
1

were used for the detailed statistical analysis (s2
1

was referred to as HC in the current study).

Here, dimensions of μ1 and HC obtained by GMM were HU and HU2, respectively. Python

(version 2.7; http://www.python.org/) and scikit-learn (version 0.17.1; http://scikit-learn.org/)

were used for performing GMM.

LAV was obtained as the percentage of the number of low-attenuation lung voxels to the

total number of lung voxels [5]. In the current study, 5 different thresholds were evaluated,

and −970 HU was selected as the threshold of LAV (for the results of 5 different thresholds,

please refer to Table A in S1 File of Supporting information). CSA values were calculated by

applying several modifications to the method described in the previous study [9]. First,

python-2.7 and the OpenCV package for python were used for blob detection. Second, CT

images covering the whole chest were analyzed using segmented lungs. Third, the calculation

of CSA was fully automatic. Last, the slice thickness of CT images differed from that of the pre-

vious study. Because of these differences, multiple thresholds of CT attenuation and other CSA

parameters were tested, and the optimal combination of the parameters was selected (in

Table D in S1 File of Supporting information, the effect of CSA parameters was shown). The

optimal parameters were as follows: threshold of CT attenuation, −730 HU; range of circular-

ity, 0.9–1.0; size of vessel area, 5–10 mm2. Measurement of the airway wall change was per-

formed using AirwayInspector, which is available at http://airwayinspector.acil-bwh.org/ and

was used for the previous study [17, 18]. In each patient, the fourth generation of bronchi at

RB1, LB1+2, and RB10 were selected by a consensus reading of two board-certified radiologists

(MN and YT). The software detected the inner and outer boundaries of the airway wall at the

selected bronchi, and WA was calculated automatically. The mean value of WA across the

three bronchi was used for the statistical analysis.

Statistical analysis

To test whether the quantification reflected the severity of COPD, Pearson’s correlation coeffi-

cients were calculated between the results of quantification and PFT. Correlation was also eval-

uated between LAV and μ1 and between LAV and mean of the CT attenuation distribution.

Next, linear models were used to investigate the relationship between the PFT results and

the COPD quantification. One set of linear models was built to predict FEV1 using the COPD

quantification, and another set was built to predict FEV1/FVC. In each set, combinations of

LAV, CSA, WA, and HC were used as predictor variables. Because the values of predictor vari-

ables were not normally distributed, log transformation was applied to the predictor variables.

The coefficients of the predictor variables were evaluated with their P-values, and the best

models were selected as those with the lowest values based on Akaike information criterion

values (AIC) [19]. According to the previous studies, the difference in AIC of more than 1 or 2

was regarded as significant [20, 21]. All analyses were performed using R-3.1.0 (available at

http://www.R-project.org/). P-values less than 0.05 were considered statistically significant.

Results

Patient characteristics and the results of the PFT and COPD quantification values are summa-

rized in Table 1. Table 2 shows the correlations coefficients between PFT results and COPD

quantification values. Figs 1 and 2 show scatter plots of FEV1 and FEV1/FVC, respectively,

against the COPD quantification values. Fig 3 shows the schematic illustration of histograms

of CT attenuation in lungs and the Gaussian distributions obtained by GMM.

Table 2 showed that LAV, the variance of the distribution, and CSA had relatively strong

correlations with FEV1. LAV, μ1, and the mean of the distribution had relatively strong corre-

lations with FEV1/FVC. The correlation coefficient between LAV and μ1 and that between
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LAV and the mean of the distribution were −0.811 and −0.629, respectively. These results sug-

gest that LAV, μ1, and the mean of the distribution were related to the severity of emphysema.

Tables 3 and 4 show the results of the linear models, and AIC values of all the models using

LAV, HC, CSA and WA were shown in Tables E and F in S1 File of Supporting information.

In Table 3, the models with HC had more accurate predictability than those without HC. This

means that heterogeneity of CT attenuation in emphysema was independently useful for

Table 1. Summary of patient characteristics, PFT results, COPD quantification values.

All Non-smoker Smoker without COPD COPD

Variables Mean SD Mean SD Mean SD Mean SD

N 87 10 38 39

Age (year) 67.4 10.98 67.5 14.03 65.71 11.44 69.03 9.66

Sex = M (number of male) 67 1 33 33

Smoking history (pack year) 45.8 38.63 0 0 45.05 24.06 58.29 45.83

FVC (%) 91.17 23.93 98.82 19.24 93.98 25.33 86.47 23.19

FEV1/FVC (%) 67.74 15.95 81.97 5.19 78.87 6.15 53.25 11.80

FEV1 (%) 73.54 25.96 99.61 12.53 85.41 21.33 55.29 19.56

VC (%) 97.12 23.68 98.32 24.34 100.85 24.16 93.18 23.03

Mean of CT attenuation distribution (HU) −862.48 35.11 −839.63 34.54 −850.8 32.08 −879.7 30.47

Variance of CT attenuation distribution (HU2) 8100 1920 7260 1490 7990 2180 8420 1690

Skewness of CT attenuation distribution 1.81 0.49 1.82 0.47 1.77 0.58 1.83 0.39

Kurtosis of CT attenuation distribution 3.78 2.06 3.73 1.74 3.69 2.45 3.88 1.74

LAV (%) 6.22 9.89 0.72 0.30 2.11 2.71 11.64 12.62

μ1 (HU) −917.8 38.06 −890.3 25.10 −904.9 28.38 −937.3 39.87

HC (HU2) 702.2 748.4 483.4 175.1 697.3 992.1 763.1 534.3

CSA (%) 0.00599 0.00304 0.00817 0.00265 0.00635 0.00348 0.00507 0.00229

WA (%) 61.37 7.38 62.07 10.5 60.33 7.68 62.21 6.14

Note: The PFT results were expressed as percentages of the standard predicted values, apart from FEV1/FVC. Abbreviations: CSA, percentage of cross-sectional area for

small pulmonary vessels; FEV1, forced expiratory volume in one second; FEV1/FVC, ratio of forced expiratory volume in one second to forced vital capacity; FVC,

forced vital capacity; HC, heterogeneity of CT attenuation in emphysema; LAV, percentage of low-attenuation volume in lungs; PFT, pulmonary function test; VC, vital

capacity. WA, percentage of wall area; μ1, the lowest mean from the Gaussian mixture model.

https://doi.org/10.1371/journal.pone.0192892.t001

Table 2. Pearson’s correlation coefficients between the quantitative evaluation of COPD and PFT results.

Variables FEV1 FEV1/FVC

Mean of CT attenuation distribution (HU) 0.194 0.513

Variance of CT attenuation distribution (HU2) −0.300 −0.222

Skewness of CT attenuation distribution 0.184 −0.039

Kurtosis of CT attenuation distribution 0.167 −0.031

LAV (%) −0.505 −0.640

μ1 (HU) 0.292 0.554

HC (HU2) −0.277 −0.136

CSA (%) 0.384 0.288

WA (%) −0.196 −0.131

Abbreviations: CSA, percentage of cross-sectional area for small pulmonary vessels; FEV1, forced expiratory volume

in one second; FEV1/FVC, ratio of forced expiratory volume in one second to forced vital capacity; HC,

heterogeneity of CT attenuation in emphysema; LAV, percentage of low-attenuation volume in lungs; WA,

percentage of wall area; μ1, the lowest mean from the Gaussian mixture model.

https://doi.org/10.1371/journal.pone.0192892.t002
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quantifying COPD severity. Model 4 in Table 3 (with predictor variables LAV, HC, CSA, and

WA) had the smallest AIC among the models examined in this study, and this model was the

best among those in Table 3 and Table E in S1 File of Supporting information. Table 4 shows

that the smallest AIC was obtained in Model 2, which included LAV and HC as predictor vari-

ables. Table F in S1 File of Supporting information shows that the difference of AIC values

between the model with LAV and HC and that with LAV, HC, and CSA was small, which

means that there was not one best model. However, for the models to predict FEV1/FVC, com-

bining LAV and HC was better than LAV alone.

Discussion

The current study demonstrated three main points: i) GMM could be used for quantifying the

severity of COPD; ii) the heterogeneity of CT attenuation in emphysema obtained from GMM

Fig 1. Scatter plots of FEV1 against COPD quantification. A)–D) show the plots for LAV, CSA, WA, and HC, respectively.

Abbreviations: FEV1, forced expiratory volume in one second; LAV, percentage of low-attenuation volume in the lungs; HC,

heterogeneity of CT attenuation in emphysema; CSA, percentage of cross-sectional area for small pulmonary vessels; WA, percentage

of wall area.

https://doi.org/10.1371/journal.pone.0192892.g001
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was useful for quantifying COPD; and iii) Combination of COPD quantification values

allowed COPD severity to be evaluated accurately.

To our knowledge, this was the first study to apply GMM to COPD quantification. Previ-

ously, GMM has been used for several biomedical or medical applications [22, 23]. We hypoth-

esized that the distribution of CT attenuation consisted of multiple components, and that

these components could be captured separately as Gaussian distributions by using GMM. In

this study, we examined the relationship between emphysema quantification (LAV) and the

Gaussian distribution with the lowest mean (μ1) obtained with GMM. The correlation between

LAV and μ1 was strong (correlation coefficient = −0.811); hence, this suggests that the Gauss-

ian distribution with the lowest mean μ1 corresponded to the emphysema component. This

result supports our hypothesis.

Fig 2. Scatter plots of FEV1/FVC against COPD quantification. A)–D) show the plots for LAV, CSA, WA, and HC, respectively.

Abbreviations: FEV1/FVC, ratio of forced expiratory volume in one second to forced vital capacity; LAV, percentage of low-

attenuation volume in the lungs; HC, heterogeneity of CT attenuation in emphysema; CSA, percentage of cross-sectional area for

small pulmonary vessels; WA, percentage of wall area.

https://doi.org/10.1371/journal.pone.0192892.g002
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We also hypothesized that the heterogeneity of CT attenuation (HC) was useful for COPD

quantification. Because the Gaussian distribution with the lowest mean μ1 corresponded to the

Fig 3. Histogram of CT attenuation for lungs and result of GMM in 59-year-old man with COPD. A) shows the histograms of CT attenuation for lungs when width

of histogram bar was 1 HU. B) shows the four Gaussian distributions obtained by GMM. The mixture of these four Gaussian distributions approximated the histogram.

The Gaussian distribution with the lowest mean is represented by the red solid line, which corresponds to the distribution of emphysema. Abbreviations: GMM,

Guassian mixture model; COPD, chronic obstructive pulmonary disease.

https://doi.org/10.1371/journal.pone.0192892.g003

Table 3. Results of the linear model between FEV1 and the COPD quantification.

Model index Predictor variable Coefficient P-value AIC of model

1 794.8

LAV −9.42 1.58 x 10−6

2 785.2

LAV −8.63 3.33 x 10−6

HC −13.7 0.000871

3 776.6

LAV −6.14 0.00104

HC −13.9 0.000385

CSA 15.6 0.00152

4 774.6

LAV −5.95 0.00126

HC −12.9 0.000880

CSA 16.3 0.000791

WA −33.8 0.0532

Note: Log transformation was applied to values of predictor variables. Abbreviations: AIC, Akaike information criterion value; CSA, percentage of cross-sectional area

for small pulmonary vessels; FEV1, forced expiratory volume in one second; HC, heterogeneity of CT attenuation in emphysema; LAV, percentage of low-attenuation

volume in the lungs; WA, percentage of wall area.

https://doi.org/10.1371/journal.pone.0192892.t003
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distribution of emphysema, the variance of the Gaussian distribution with the lowest mean μ1
reflected the heterogeneity of CT attenuation in emphysema. Table 2 shows that HC was nega-

tively correlated with FEV1, and Tables 3 and 4 show that HC was independently useful for

COPD quantification, which verify our hypothesis. The previous studies showed that the spa-

tial distribution of emphysema was associated with COPD severity [15, 16]. In these studies,

LAV was used to assess the spatial distribution of emphysema. Because the CT attenuation of

lung voxels was binarized in LAV, the distribution of CT attenuation could not be assessed

using LAV. Our study investigated the distribution of CT attenuation in emphysema, and the

heterogeneous distribution of emphysema was associated with low FEV1.

While the Gaussian distribution with the lowest mean was investigated intensively, the

other Gaussian distributions were not examined in the current study. Both COPD and intersti-

tial lung abnormality were caused by smoking [17]. Interstitial lung abnormality was repre-

sented as relatively high density area, such as ground-glass opacity. We speculated that, using

GMM, the distribution of lung voxels in COPD patients might be divided into distributions of

normal lung tissue, emphysema, and interstitial lung abnormality. Therefore, it may be possi-

ble to use GMM for the assessment of interstitial lung abnormality and emphysema separately.

However, because it was difficult to quantify normal lung tissue and interstitial lung abnormal-

ity automatically, we focused on the Gaussian distribution with the lowest mean in the current

study.

The current study investigated the combined use of four types of COPD quantification

(LAV, HC, CSA, and WA). AIC values in Tables 3 and 4 and those in Tables E and F in S1 File

of Supporting information show that the model with four types of quantification was the best

for the prediction of FEV1, and that, for the prediction of FEV1/FVC, the model with LAV and

HC was better than that with LAV alone. The results of these linear models showed that LAV

and HC were independently useful for the COPD quantification. As shown in the previous

studies, LAV has been most widely used for emphysema quantification. In accordance with

these results, LAV was the strongest predictor in the linear models of our study. Our results

Table 4. Results of the linear model between FEV1/FVC and the COPD quantification.

Model index Predictor variable Coefficient P-value AIC of model

1 680.4

LAV −8.02 6.24 x 10−13

2 678.2

LAV −7.77 1.61 x 10−12

HC −4.39 0.0441

3 679.9

LAV −7.52 1.93 x 10−10

HC −4.41 0.0441

CSA 1.53 0.577

4 680.2

LAV −7.45 2.65 x 10−10

HC −4.03 0.0670

CSA 1.81 0.509

WA −12.5 0.214

Note: Log transformation was applied to values of predictor variables. Abbreviations: AIC, Akaike information criterion value; CSA, percentage of cross-sectional area

for small pulmonary vessels; FEV1/FVC, ratio of forced expiratory volume in one second to forced vital capacity; HC, heterogeneity of CT attenuation in emphysema;

LAV, percentage of low-attenuation volume in the lungs; WA, percentage of wall area.

https://doi.org/10.1371/journal.pone.0192892.t004
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also showed that HC was significant predictor, supporting our hypothesis that heterogeneity

of CT attenuation in emphysema was associated with severity of COPD.

As shown in Table 2, the correlations between WA and FEV1 and between WA and FEV1/

FVC were relatively weak (coefficients = −0.196 and −0.131, respectively). Nakano et al. sug-

gested that measurements of large airway wall thickening could be used for COPD quantifica-

tion [7]. However, the study of Lee et al. failed to show a direct relationship between the

severity of PFT abnormality and WA [8]. Our results were intermediate between those of the

previous two studies. Although WA was measured by the consensus reading of the two radiol-

ogists with the aid of AirwayInspector, we speculate that measurement error caused by techni-

cal problems related to WA weakened the correlation between WA and the PFT results.

Population differences may be attributable to changes in correlation between WA and PFT

results; Nakano et al. included all smokers [7], Lee et al. included patients with moderate or

severe COPD [8], and we included non-smokers, smokers without COPD, and COPD

patients. In addition, the location where WA was measured affected the correlations between

WA and FEV1 and between WA and FEV1/FVC, because airflow limitation in COPD was

more closely related to WA in distal airway than that in proximal airways [24].

There are several limitations in the current study. First, this study was performed retro-

spectively, and the number of patients included in this study was relatively small. To confirm

our results, it will be necessary to use a large cohort of patients as a prospective study. Second,

the CT parameters used in this study were different from those commonly used in previous

studies; for example, use of automated exposure control and the thickness of CT images (thick-

ness = 5 mm) might affect our results for COPD quantification. Third, although the relation-

ship between results of PFT and COPD quantification was investigated in the current study,

those with clinical outcomes, health status, and disease progression of COPD were not exam-

ined. Because FEV1 correlated weakly with clinical outcomes and health status in COPD

patients [25], other types of metric should be used when comparing COPD quantification with

clinical outcomes or disease progression. We will perform a prospective study for investigating

whether results of GMM are correlated well with these factors. Last, we did not evaluate the

effect of cluster analysis. In a previous study [20], the usefulness of combined use of LAV and

D was examined for predicting PFT results. It is difficult to precisely compare the results

between the previous study and the current study because of the difference in study design.

However, the improvement of statistical model obtained by addition of D seems to be smaller

than by addition of HC based on the values of AIC. Therefore, it is speculated that the useful-

ness of D would be limited in the current study.

In conclusion, our results showed that GMM could be applied to COPD quantification, and

that COPD severity was associated with the heterogeneity of CT attenuation in emphysema. In

addition, combining COPD quantification values, including the heterogeneity of CT attenua-

tion in emphysema, improved the reliability of COPD severity evaluation.
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