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Abstract

Background: Recent computational advances in ancient DNA research have opened access to the detection of ancient DNA
methylation footprints at the genome-wide scale. The most commonly used approach infers the methylation state of a
given genomic region on the basis of the amount of nucleotide mis-incorporations observed at CpG dinucleotide sites.
However, this approach overlooks a number of confounding factors, including the presence of sequencing errors and true
variants. The scale and distribution of the inferred methylation measurements are also variable across samples, precluding
direct comparisons. Findings: Here, we present DamMet, an open-source software program retrieving maximum likelihood
estimates of regional CpG methylation levels from ancient DNA sequencing data. It builds on a novel statistical model of
post-mortem DNA damage for dinucleotides, accounting for sequencing errors, genotypes, and differential post-mortem
cytosine deamination rates at both methylated and unmethylated sites. To validate DamMet, we extended gargammel, a
sequence simulator for ancient DNA data, by introducing methylation-dependent features of post-mortem DNA decay. This
new simulator provides direct validation of DamMet predictions. Additionally, the methylation levels inferred by DamMet
were found to be correlated to those inferred by epiPALEOMIX and both on par and directly comparable to those measured
from whole-genome bisulphite sequencing experiments of fresh tissues. Conclusions: DamMet provides genuine estimates
for local DNA methylation levels in ancient individual genomes. The returned estimates are directly cross-sample
comparable, and the software is available as an open-source C++ program hosted at https://gitlab.com/KHanghoj/DamMet
along with a manual and tutorial.
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Introduction

Recent studies in ancient DNA (aDNA) research have demon-
strated that osseous methylomes can be mapped from the
high-throughput DNA sequencing (HTS) data underlying ancient

genomes [1–3]. This paves the way for identifying potentially
evolutionary-relevant epigenetic changes during major environ-
mental and societal transitions [4]. Although aDNA methyla-
tion states can be inferred following methods usually applied to
fresh tissues such as bisulfite DNA sequencing [5] and methyl-
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binding domains enrichment [6], the degraded nature of aDNA
molecules generally limits methylome mapping to indirect com-
putational proxies exploiting post-mortem DNA deamination
(PMD) footprints at CpG dinucleotides.

Two available software programs, epiPALEOMIX [1] and ROAM
[2], have been recently developed to map DNA methylation lev-
els at the regional scale. Specifically, they leverage the observa-
tion that post-mortem cytosine deamination is faster at methy-
lated than unmethylated CpGs [6,7], which leaves an excess of
CpG→TpG conversions at methylated sites. Both programs re-
cover statistical measures for regional DNA methylation levels
from the counts of CpG→TpG mis-incorporations observed in
an ancient genome, relative to a reference genome. The method
accuracy can be especially improved when molecular tools are
used to eliminate CpG→TpG mis-incorporations introduced fol-
lowing PMD at unmethylated cytosines [1]. Although the avail-
able methodologies have been successful in retrieving epige-
netic information from ancient individuals, they have a number
of drawbacks. They overlook the possible presence of (i) true se-
quence variants in CpG contexts, (ii) mapping and sequencing
errors, (iii) remaining PMD footprints at unmethylated CpGs [8],
and (iv) uneven PMD rates along aDNA molecules [8]. Last, the
regional methylation scores returned are neither readily cross-
sample comparable nor directly comparable to methylation data
generated using methods applied to fresh tissues.

Herein, we present DamMet, a software program returning
regional maximum likelihood estimates (MLEs) of CpG methyla-
tion from HTS data obtained from individual ancient specimens.
The underlying algorithm follows a 2-step procedure, the first
step of which aims at obtaining MLEs of PMD rates in a position-
specific manner at both methylated and unmethylated CpG din-
ucleotides. To disentangle PMD events at such sites, we assume
that the expected fraction of methylated cytosines genome-wide
is known. In mammals, the fraction of methylated CpG dinu-
cleotides in somatic tissues is 70−80% [9], implying that 20−30%
of unmethylated states can be expected at CpG sites. The sec-
ond step makes use of the deamination rates obtained in the
first step to recover an MLE of f, the fraction of methylated cells
in any given genomic window (together with a 95% confidence
interval).

DamMet tackles all of the above-mentioned limitations of the
computational packages currently available for mapping ancient
methylomes [1,2]. In particular, DamMet relies on a new, more
realistic statistical model of post-mortem DNA deamination at
CpG sites, which integrates the actual deamination rates along
a DNA fragment (per read group, if needed) for both methylated
and unmethylated cytosines (Supplementary Methods 1.2). It ac-
counts for the presence of true variants in an unobserved dinu-
cleotide genotype space and handles both sequencing and map-
ping errors, all in a probabilistic manner. Finally, MLEs of f are di-
rectly comparable to those measured from modern methylation
data (e.g., whole-genome bisulphite sequencing [WGBS] data)
and between ancient samples, leaving no need for further nor-
malization and/or statistical rescaling (Supplementary Methods
1.3).

Materials and Methods

In this section, we give an overview on the 2-step algorithm im-
plemented in DamMet (for an in-depth description of the entire
model, see Supplementary Methods 1.2 and 1.3).

In the first step, we obtain an MLE of PMD rates (D) at
both methylated and unmethylated cytosines. These rates are

position-specific along DNA fragments to account for differ-
ential deamination within overhanging ends and the double-
stranded parts of aDNA molecules [10]. The full likelihood func-
tion leverages chromosome-wide read observations (D) covering
cytosines in the reference genome, including equal amounts of
those within and outside CpGs:

L (D|D) =
J∏

j=1

I∏

i=1

p(Xj,i,k,v |DM,k,v , Q j,i , ε j,i , Fglobal) , (1)

where DM,k,v denotes the post-mortem cytosine deamination
rate at read position k from the 5′ or 3′ (v) of a DNA fragment,
within methylated (M = 1) or unmethylated contexts (M = 0).
Additionally, Qj,i is the probability of a mapping error for a given
DNA fragment i at site j, εj,i is the probability of a sequencing
error at observation Xj,i,k,v, and Fglobal is the user-defined overall
fraction of methylated cytosines, which defaults to 0.75.

The second step makes use of D, obtained in the first step,
to recover an MLE of f, the fraction of methylated CpGs in a
given genomic window. The likelihood function of f incorporates
all sequencing data (D) overlapping a set of genomic CpG dinu-
cleotides (S):

L ( f |D) =
∏

S

∑

G∈(0...6)

p(G = g)p(X| f, G = g, D, θ ) , (2)

where p(X|f, G = g, D, θ ) is the probability of the dinucleotide
pile of sequencing reads (X) at a site s given f, considering an
unobserved dinucleotide genotype g, and the position-specific
deamination rates (D). p(G = g) is the prior probability of the un-
observed dinucleotide genotype.

The algorithm implemented in DamMet should ideally be
tested against simulated data for which the results are known.
In the absence of a simulator reproducing the characteristics
of aDNA methylation, we have developed a new version of
the gargammel simulator [11], which integrates methylation-
specific and position-specific PMD patterns. The methodology
consists first of simulating sequencing data from an arbitrary
number of 100 diploid genomes, where each CpG position is
flagged as methylated or unmethylated on the basis of user-
provided methylation maps. Post-mortem damage is then added
using position-specific deamination matrices at methylated or
unmethylated sites, and finally, adapters are added. Cytosine
deamination rates outside CpG contexts are assumed to follow
those of unmethylated cytosines within CpG contexts. For an in-
depth description of the sequence simulator, see Supplementary
Results 2.1.1.

Results

We first tested the accuracy of both steps of the model im-
plemented in DamMet using simulated data with gargammel
and following the methodology described above. Specifically, we
simulated sequencing data with 3 different deamination pro-
files spanning a range of PMD rates: the 4,000-year-old Saqqaq
Palaeo-Eskimo [12], the 36,000-year-old Kostenki14 individual
[13], and the 45,000-year-old Ust’Ishim specimen [14] (Supple-
mentary Results 2.1). Simulated data are hereafter referred to us-
ing the ”S-” prefix. The 3 simulated examples allowed us to test
the accuracy of DamMet to obtain known deamination profiles
from samples generated with different wet-lab procedures, in-
cluding the most commonly used double-stranded [15] (Saqqaq
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and Kostenki14) and single-stranded [16] DNA library prepara-
tion protocols (Ust’Ishim).

More specifically, we applied the first step of the model im-
plemented in DamMet, which is aimed at estimating position-
specific PMD rates at both methylated and unmethylated sites,
to the 3 simulated datasets across a wide range of genome cov-
erage. To obtain the MLE of methylation position-specific PMD
rates, the likelihood function makes use of chromosome-wide
read observations covering a cytosine located in a CpG context
in the reference genome and an equal number of observations of
cytosines located outside a CpG context. We find that the MLEs
of position-specific PMD rates at both methylated and unmethy-
lated cytosines (D) are highly accurate, at least down to 5-fold
coverage, regardless of the PMD profile and library protocol con-
sidered (Fig. 1 and Supplementary Results Section 2.1.3). These
results validate the first step of the algorithm.

Next, we analyzed the accuracy of the second step, estimat-
ing local methylation levels (f), across a wide range of genomic
window sizes and sequencing efforts using the same 3 simulated
datasets (Supplementary Results 2.1). Here, the likelihood func-
tion is maximized to obtain f, and includes all dinucleotide read
observations covering CpGs in a given genomic window. First,
we investigated the accuracy of f across a range of sequencing
efforts using the root mean squared deviation of the estimates
as measures of accuracy (Fig. 2a) (see Supplementary Results
2.1.4 for a wide range of combinations of diverse sequencing ef-
forts and window sizes). We found that the DamMet accuracy in-
creases with sequencing depth (and/or window size) in all 3 sce-
narios. Additionally, we found that the accuracy is positively cor-
related with PMD levels. Both observations are in line with the
expectations of our likelihood model. We also compared f with
the true methylation levels within a CpG island (chr20:324243–
327679; GRCh38) for the same simulated datasets and sequenc-
ing depths. This specific CpG island was selected to illustrate the
abrupt decline in methylation levels often observed in CpG is-
lands. We found that the accuracy of the MLE of f increased with
higher sequencing depths (Fig. 2B) and that in all simulated sce-
narios, confident estimates of f require ≥20× coverage. Further
information about the trade-off between accuracy of f and res-
olution by permuting a range of window sizes and sequencing
efforts both locally and chromosome-wide can be found in Sup-
plementary Results 2.1.4. Finally, we demonstrated that DamMet
obtains accurate methylation estimates in regions with a high
density of true variants located in CpG contexts by incorporat-
ing the possibility of observing true dinucleotide variants in the
likelihood function (Supplementary Results 2.1.5).

Finally, we further validated DamMet using the sequencing
data from 2 ancient specimens: the 45,000-year-old Ust’Ishim
(42-fold coverage; 17) [14] and the 50,000-year-old Vi33 Nean-
derthal (30-fold coverage; 18) [19] (Supplementary Results 2.2).
All DNA libraries for Ust’Ishim were prepared on uracil-specific
excision reagent (USER)-treated DNA extracts (NEB, USA). Fol-
lowing this enzymatic treatment, almost all PMD events (C→T)
derive from methylated cytosines [8]. In contrast, the Vi33 sam-
ple consists of only a single DNA library prepared following USER
treatment and 8 DNA libraries prepared in absence of treatment
(Supplementary Results 2.2.2). In the latter libraries, both methy-
lated and unmethylated cytosines are sequenced as thymines,
which confounds the methylation estimate if not properly ac-
counted for. By analyzing Vi33, we can thus test the ability of
DamMet to obtain reliable estimates of f despite the presence
of similar conversion signals at both methylated and unmethy-
lated cytosine residues. We found that our chromosome-wide
MLEs of f are comparable (Ust’Ishim: 0.768, Vi33: 0.756) to the

Figure 1 Estimated deamination rates from simulated sequencing data of S-
Saqqaq (a), S-Kostenki14 (b), and S-Ust’Ishim (c) at (un)methylated cytosines lo-

cated in the first 20 positions of the 5′ and 3′ termini of a DNA molecule across
a range of possible coverages (X-fold). Known deamination rates are shown as a
red line.

methylation levels measured in modern samples generated with
WGBS (Modern: 0.748). The same holds true at the regional level,
where DamMet obtains methylation estimates highly similar to
those found in WGBS data from a modern sample (Fig. 3). Both
samples display a minor underestimate (RMSD: 0.04-0.05) due
to the relatively small genomic window sizes. Importantly, we
also demonstrate that reliable methylation estimates can be ob-
tained from non-USER–treated specimen data.

Finally, we investigated whether DamMet retrieved regional
methylation values on par with the Ms count statistic imple-

http://cdna.eva.mpg.de/neandertal/Vindija/bam/
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Figure 2 (a) Root mean square deviation (RMSD) of f estimates (estimated f –
known methylation) for a coverage range (5–40×) and a window size of 50 CpGs
for the 3 simulated datasets. (b) Estimates of f in a local genomic region with a

window size of 50 CpGs and a coverage range (5–40×). The expected methylation
profile is shown as a black dashed line.

mented in epiPALEOMIX [1]. Because Ms is not scaled and thus
not directly comparable in terms of absolute values, we instead
investigated the correlation of Ms and f in various genomic re-
gions (Table 1). We find that for both Ust-Ishim and Vi33, the 2
statistics are positively correlated (p-values <1e−16). In line with
our expectation, we find much lower positive correlation coef-
ficients for Vi33 than for Ust-Ishim because epiPALEOMIX as-
sumes that all observed CpG→TpG conversions, including se-
quencing errors, true variants, and deamination of unmethy-
lated cytosine residues, reflect true signals of methylation.

Figure 3 Genomic regions with contrasted methylation levels including CpG is-
lands (CGI), their shores and shelves, and promoter regions stratified by their
percent guanine and cytosine content and CpG density (high, intermediate, and

low). Modern (green) is provided as a comparative baseline using methylation
data retrieved from a fresh somatic adipose tissue sample.

Table 1: Pearson correlation of MLE of f and Ms in genomic regions

Genomic region Ust-Ishim Vi33

Shelves.5′ 0.4935 0.2729
Shores.5′ 0.5704 0.3278
CGI 0.8345 0.4403
Shores.3′ 0.6974 0.3306
Shelves.3′ 0.5315 0.2686
High 0.5944 0.3415
Intermediate 0.8334 0.4263
Low 0.4347 0.2501

Note: all P-values <1e−16.

Conclusion

DamMet provides a new statistical method to obtain reliable es-
timates of methylation levels that are directly comparable be-
tween ancient and modern samples. It is robust to the presence
of true genotype variants, takes mapping and sequencing errors
into account, and facilitates analyses of non-USER–treated se-
quencing data by estimating the position-specific deamination
rates at both methylated and unmethylated CpG dinucleotides.

By combining DamMet and the novel sequencing simulator,
a qualified estimate of the necessary sequencing efforts and/or
window sizes to recover reliable f estimates can be obtained ac-
counting for the specific properties of any given ancient sample
(e.g., PMD levels and/or read length distribution). Thus, the opti-
mal trade-off between the accuracy of f and resolution in terms
of genomic window size can be quantified.

Given that the vast majority of high-coverage ancient
genomes are from human and domesticated animal specimens,
the current implementation of DamMet estimates methylation
in symmetric CpG contexts. This is by far the most dominant
context associated with methylation in mammals. Nonethe-
less, following an increase in high-coverage ancient genomes
for which methylation occurs predominantly in asymmetric se-
quence contexts (e.g., CpNpN, which often occurs in plants [20]),
MLE estimates of f in such contexts could be added in future re-
leases of DamMet.
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Implementation Details

DamMet software is implemented in C++ and can be found
at [21] https://gitlab.com/KHanghoj/DamMet. It takes a BAM file
[22] as input, together with the reference genome used for read
alignment. Three canonical filters for HTS data, namely, base
quality, mapping quality, and minimum DNA fragment length,
are implemented in DamMet [23]. These can be modified by the
user. Moreover, DamMet ignores ”N” nucleotides present in ei-
ther the reference genome or sequencing data.

The reconstruction of the entire methylome of Ust-Ishim and
Vi33 took 11 and 8 hours on a single CPU (E5-2683 v4 at 2.10 GHz)
with memory usages peaking at 10 and 9GB, respectively. Be-
cause DamMet analyzes each chromosome individually, it can
easily be parallelized per chromosome to speed up the compu-
tation time. Regional methylation levels can be recovered us-
ing either a sliding window procedure along the chromosome
or within genomic regions based on a user-provided BED file.
Low-mappability regions can be masked prior to estimating the
regional methylation level by providing the regions in a BED for-
mat file. Particular genomic sites can also be excluded if needed.
Along with DamMet, 2 dependencies will be installed, namely,
nlopt and htslib.

The new sequence simulator, implemented as a novel feature
in gargammel [11], is available at https://github.com/grenaud/g
argammel, together with a manual and running examples.

Availability of source code and requirements
� Project name: DamMet
� Project home page: https://gitlab.com/KHanghoj/DamMet
� Operating system(s): platform indepedent
� Programming language: C++
� Other requirements: htslib, nlopt
� License: MIT
� RRID: SCR 016959

Availability of supporting data and materials

Supporting data and an archival copy of the code are available
via the GigaScience repository GigaDB [24].

Additional file

Supplementary information: Supplementary Methods and Re-
sults are available via the additional file associated with this ar-
ticle.
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aDNA: ancient DNA; HTS: high-throughput DNA sequencing;
MLE: maximum likelihood estimate; PMD: post-mortem DNA
deamination; RMSD: root mean square deviation; USER: uracil-
specific excision reagent; WGBS: whole-genome bisulphite se-
quencing.
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