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Existing cognitive diagnosis models conceptualize attribute mastery status discretely

as either mastery or non-mastery. This study proposes a different conceptualization of

attribute mastery as a probabilistic concept, i.e., the probability of mastering a specific

attribute for a person, and developing a probabilistic-input, noisy conjunctive (PINC)

model, in which the probability of mastering an attribute for a person is a parameter to be

estimated from data. And a higher-order version of the PINC model is used to consider

the associations among attributes. The results of simulation studies revealed a good

parameter recovery for the new models using the Bayesian method. The Examination

for the Certificate of Proficiency in English (ECPE) data set was analyzed to illustrate the

implications and applications of the proposed models. The results indicated that PINC

models had better model-data fit, smaller item parameter estimates, and more refined

estimates of attribute mastery.

Keywords: cognitive diagnosis, probabilistic logic, PINC model, DINA model, higher-order model, cognitive

diagnosis models

INTRODUCTION

Unlike item response theory (IRT) models, which locate an examinee’s latent trait on a continuum,
the purpose of cognitive diagnosis models (CDMs) is to classify an examinee’s latent attributes into
a set of binary categories. The output of the analysis with conventional CDMs is a profile with
binary outcomes (either 1 or 0) indicating a person’s mastery or non-mastery of each attribute. The
binary classification follows standard or ordinary logic in that every statement or proposition is
either true or false without uncertainty, which is referred to in this paper as deterministic logic.
However, things are rarely black and white. A fundamental aspect of the human condition is that
no one can ever determine without uncertainty whether a proposition about the world is true or
false (Jøsang, 2001).

In contrast to deterministic logic, the aim of probabilistic logic is to integrate probability theory
to handle uncertainty with deductive logic, in order to exploit the structure of formal argument
(Nilsson, 1986; Jøsang, 2001). Probabilistic logic is a natural extension of deterministic logic,
indicating that the results it defines are derived through probabilistic expressions. Specifically, a
statement S (e.g., person nmasters attribute k) is either true or false. There are two sets of possible
worlds, one set (W1) containing worlds in which S is true, and the other set (W2) containing
worlds in which S is false. Let the probability that our actual world is in W1 and W2 be P1 and
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P2, respectively, and P1 + P2 = 1. Because the truth-value of
S in our actual world is unknown, it is convenient to imagine
that the truth-value of S is the probability that our actual
world is in W1, which is P1 (Nilsson, 1986). In this example,
the statement “person n masters attribute k” is probabilistic
rather than deterministic, and the probability is P1. Probabilistic
logic has been widely used in computer science, artificial
intelligence, andmachine learning (Dietterich et al., 2008; Haenni
et al., 2010). Also in the area of psychological and educational
measurement, the IRT models that using logistic (or normal
ogive) function to describe the probability of a deterministic
result (e.g., a correct or incorrect item response) are good
examples of the probabilistic logic. Similarly, attribute mastery
can be constructed in probabilistic logic rather than deterministic
logic.

Probabilistic logic treats attribute mastery status with
uncertainty. The resulting attribute profile report for each
person, from the probabilistic logic perspective, is a vector of
numbers ranging from 0 to 1 that specify the probability of
mastering each attribute. Although both deterministic logic and
probabilistic logic assume binary attributes, they differ in their
assumptions about attribute status. The status can be known with
absolute certainty in deterministic logic, while it is known with
uncertainty in probabilistic logic. Apparently, probabilistic logic
is less restrictive than deterministic logic and can provide a finer
description of mastery status.

Among the existing CDMs, the deterministic-input, noisy
“and” gate (DINA) model (Macready and Dayton, 1977; Junker
and Sijtsma, 2001) is one of the most popular models. This study
aimed to develop a general DINAmodel, called the probabilistic-
input, noisy conjunctive (PINC) model, in which the probability
of mastering an attribute for a person is a parameter, so the
individual differences in attribute status can be quantified more
precisely than when the mastery status is either 1 or 0 in the
DINA model or other existing CDMs. Furthermore, the higher-
order PINC (HO-PINC) model has been developed to account
for the associations among attributes. The rest of the paper
starts with a review of the conjunctive condensation rule (Maris,
1995) and the DINA model, followed by an introduction to the
PINC and HO-PINC models and parameter estimation with the
Bayesian approach. The parameter recovery of the new models
was assessed with simulations. An empirical example is given to
illustrate the applications and advantages of the new models.

CONJUNCTIVE CONDENSATION RULE
AND THE DINA MODEL

Let Yni be the observed response of person n (n = 1, . . . , N)
to item i (i = 1, . . . , I), xnk be the latent variable for person n
on dimension k (k = 1, . . . , K), and αnk be the binary variable
for person n on attribute k, where αnk = 1 if person n masters
attribute k, and αnk = 0 otherwise. It is because αnk is either
1 or 0 that deterministic logic applies. The variable αn is the
vector of attribute mastery status for person n. The Q-matrix
(Tatsuoka, 1985) is an I × K matrix with element qik indicating
whether attribute k is required to answer item i correctly; qik =

1 if attribute k is required, and it equals 0 otherwise. The Q-
matrix is a confirmatory cognitive design matrix that identifies
the required attributes for each item.

A condensation rule specifies the relationship between latent
variables and latent (ideal) responses (Maris, 1995). Among the
various condensation rules, the conjunctive one is the most
commonly used (Rupp et al., 2010). In principle, not every latent
variable has to be defined for a particular latent response, so a
confirmatory matrix (i.e., the Q-matrix) is needed to specify the
relationships between the items and latent variables measured by
each item. Using C as a generic symbol for a condensation rule,
the conjunctive condensation rule can be expressed as follows:

ηni = C(xn, qi) =
∏K

k = 1
x
qik
nk

(1)

which means that the latent response ηni is correct only if all the
latent variables are 1 (i.e., xnk = 1 for every k).

In practice, latent responses can be considered as necessary
antecedent terms to the observed responses (Whitley, 1980;
Maris, 1995). If the process is non-stochastic, the latent responses
are identical to the observed responses. Since human behaviors
are seldom deterministic (e.g., students may make careless
mistakes or guess wisely on a test, which brings noise to
the observed item responses), latent responses can seldom be
transferred to observed responses directly (Tatsuoka, 1985). In
psychometric models, a commonly used item response function
of the relationship between the latent and observed responses can
be expressed as follows:

pni1 = P(Yni = 1|ωni,�i) = gi + (1− si − gi)ωni, (2)

where pni1 is the probability of a correct response for person n to
item i; ωni is the latent response of person n to item i; �i = (gi,
si)

′ is a vector of the parameters of item i, and si and gi describe,
respectively, the slip and guessing probabilities in a simple signal
detection model for detecting a latent response ωni from noisy
observations Yni. In practice, a monotonicity restriction (gi <

1 – si) can be imposed (Junker and Sijtsma, 2001; Culpepper,
2015). Note that the ηni in Equation 1 is just one of many
possible choices of ωni. With various choices for ωni, Equation
2 can describe many psychometric models, such as the 4-, 3-,
2-, and 1-parameter logistic models (Birnbaum, 1968; Barton
and Lord, 1981), the (non-compensatory)multicomponent latent
trait (MLT) model (Embretson, 1984), the deterministic-input,
noisy “or” gate model (Templin and Henson, 2006), and the
DINA model.

In CDMs, deterministic logic means that attribute mastery
status can be known with certainty (i.e., either mastery or non-
mastery), and the attributes are applied without stochasticity to
produce correct or incorrect latent responses (Rupp et al., 2010),
which means that xnk = αnk ∈{0, 1} and ωni = ηni ∈{0, 1}.
Incorporating the conjunctive condensation rule into Equation
(2) creates the deterministic-input, noisy conjunctive model,
which is commonly known as the DINA model, as follows:

pni1 = gi + (1− si − gi)
∏K

k = 1
α
qik
nk
. (3)
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According to the deterministic nature of ηni, si and gi can be
defined as si = P(Yni = 0|ηni = 1) and gi = P(Yni = 1|ηni = 0).
Moreover, to account for the associations among the attributes
and also to reduce the number of latent structural parameters, a
higher-order latent structural model can be imposed to create the
higher-order deterministic input, noisy “and” gate (HO-DINA)
model (de la Torre and Douglas, 2004). The DINA and HO-
DINA models classify examinees into two categories. If there
is a high degree of uncertainty in the binary classification, the
examinees are forced to be classified as either masters or non-
masters, usually depending on whether the posterior probability
of mastery (given the data) is greater than 0.5 (Karelitz, 2008).
The attribute profile report for each examinee from the DINA or
HO-DINAmodel is a vector of zeros or ones specifying the binary
status of each attribute.

THE PINC MODEL AND ITS
HIGHER-ORDER EXTENSION

The PINC Model for Independent Attributes
In the simplest version, attributes are assumed to be independent
of one another (Chen et al., 2012; Li et al., 2015). Let δnk be the
probability of mastering the attribute k for person n, which is
assumed to follow a beta distribution:

δnk ∼ Beta(aδ, bδ) (4)

where aδ and bδ are the scale parameters. The beta density
function can take very different shapes depending on the values
of aδ and bδ. For example, when aδ = bδ = 1, it follows a
uniform distribution; when aδ > 1 and bδ > 1, it follows a
unimodal distribution; when aδ < 1 and bδ < 1, it follows a U-
shaped distribution; when aδ ≥ 1 and bδ < 1, it follows a J-shaped
distribution with a left tail; when aδ < 1 and bδ ≥ 1, it follows
a J-shaped distribution with a right tail. Let δn = (δn1, δn2, ...,
δnK)

′ be the probabilistic profile across K attributes for person n,
which is used to produce a probabilistic latent response to item i
for person n, denoted as ρni. Using the conjunctive condensation
rule, the relationship between ρni and δnk can be expressed as
follows:

ρni =
∏K

k = 1
δ
qik
nk
, (5)

If one of the δnk values is small, ρni will be small, which means
that the attributes are conjunctive.

Incorporating Equation (5) into Equation (2) (i.e., ωni = ρni)
creates a PINC model as follows:

pni1 = gi + (1− si − gi)
∏K

k = 1
δ
qik
nk
, (6)

where si = P(Yni = 0| lim(ρni) = 1) is the probability of an
incorrect response to item i if all the required attributes have
high mastery probabilities; gi = P(Yni = 1| lim(ρni) = 0) is
the probability of a correct response to item i when at least one
of the required attributes has a low mastery probability. These
two item-level aberrant response parameters jointly define the
observed responses.

Assuming local independence, the likelihood of the observed
item responses in the PINC model can be expressed as follows:

P(Y|δ,�) =

N
∏

n = 1

I
∏

i = 1

p
Yni
ni1(1− pni1)

1−Yni , (7)

where pni1 is defined in Equation (6).

The HO-PINC Model for Correlated
Attributes
Attributes that are measured by a test are often conceptually
related and statistically correlated (de la Torre andDouglas, 2004;
Rupp et al., 2010), so it would be helpful to formulate a higher-
order structure to link the correlated attributes. de la Torre and
Douglas (2004) posited a higher-order latent structural model to
account for the associations among attributes as follows:

P(αnk = 1|θn,9k) =
exp(λkθn − βk)

1+ exp(λkθn − βk)
, (8)

Where 9k = (λk, βk)
′ is a vector of the attribute slope and

intercept parameters for attribute k; θn is the higher-order latent
trait, and is assumed to follow the standard normal distribution
for model identification. It can be seen that the higher the θ value,
the higher the probability of mastering attribute k (assuming a
positive slope). A combination of Equations (3, 8) creates the
HO-DINA model (de la Torre and Douglas, 2004).
Although Equation (8) was developed for CDMs with
deterministic logic, that is, αnk ∼ Bernoulli(P(αnk = 1)), it
can be easily adapted to CDMs with probabilistic logic as follows:

δnk =
exp(λkθn − βk)

1+ exp(λkθn − βk)
, (9)

Based on the conjunctive condensation rule, the relationship
between ρni and δnk can be expressed as follows:

ρni =
∏K

k = 1
δ
qik
nk

=
∏K

k = 1

[

exp(λkθn − βk)

1+ exp(λkθn − βk)

]qik

(10)

Combining Equations (2) (let ωni = ρni) and (10) creates the
HO-PINC model, which can be presented as follows:

pni1 = gi + (1− si − gi)
∏K

k = 1

[

exp(λkθn − βk)

1+ exp(λkθn − βk)

]qik

(11)

Assuming local independence, the likelihood of the observed
item responses in the HO-PINC model can be expressed as
follows:

P(Y|δ,�) ≡ P(Y|θ,9 ,�) =

N
∏

n = 1

I
∏

i = 1

p
Yni
ni1(1− pni1)

1−Yni , (12)

where pni1 is given in Equation (11).
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Comparison With the DINA and the MLT
Models
The DINA and MLT models have been commonly used for
cognitive diagnoses, so a comparison between the new models
and these two relevant models may help to illuminate the new
models. The PINC and HO-PINC models can be viewed as
fully probabilistic models that simultaneously consider both
randomnesses at the item level (in terms of the slip and guessing
parameters) and the attribute level (in terms of probabilistic
classification). The main difference between the PINC and DINA
models is that the former model adopts δnk to account for the
probability of mastering attribute k for person n, whereas the
latter adopts αnk to indicate whether person nmasters attribute k
(either 1 or 0). The attributes in the PINC and HO-PINC models
are binary in nature, though they follow the probabilistic logic,
whereas the latent traits in the MLT model are continuous in
nature on the logit scale. There is one higher-order latent trait
to link correlated attributes in the HO-PINC model, whereas
there are multiple latent traits but no higher-order structure in
the MLT model. In the PINC and HO-PINC models, different
items have different item-level aberrant parameters (si and gi),
whereas in the MLT model, all the items share the same aberrant
responses (e.g., multiple-choice items with five options have a
lower guessing probability than items with four options), which
may be too stringent.

BAYESIAN PARAMETER ESTIMATION VIA
JAGS

Parameters in the new models can be estimated via the Bayesian
approach with the Markov chain Monte Carlo (MCMC) method.
In this study, the JAGS (Version 4.2.0; Plummer, 2015) and
R2jags packages (Version 0.5-7; Su and Yajima, 2015) in R
(Version 3.4 64-bit; R Core Team, 2016) were used to estimate
the parameters. JAGS uses a default option of the Gibbs sampler
(Gelfand and Smith, 1990) and offers a user-friendly tool for
constructing Markov chains for parameters, so the derivation of
the joint posterior distribution of the model parameters becomes
attainable.

For the PINC model, let P(δ) be the prior distribution of
the probability of mastery, P(�) the prior distribution of the
item parameters, and P(Y | δ, �) the likelihood of the response
data (see Equation 7). The posterior distribution of the model
parameters is proportional to the prior distribution of the model
parameters and the likelihood of the item responses and can be
expressed as follows:

P(δ,�|Y) ∝ P(Y|δ,�)P(δ)P(�) (13)

A non-informative prior distribution is used: δnk ∼ Beta (1, 1).
For the HO-PINC model, let P(θ) be the prior distribution of

the general latent trait, P(9) the prior distribution of the attribute
slope and intercept parameters, P(�) the prior distribution of the
item parameters, and P(Y | θ,9 ,�) the likelihood of the response
data (see Equation 12). The posterior distribution of the model

parameters is expressed as follows:

P(δ,�|Y) ≡ P(θ,9 ,�|Y) ∝ P(Y|θ,9 ,�)P(θ)P(9)P(�) (14)

Specifically, we set θn ∼ Normal (0, 1), λk ∼ Normal (0, 4), I(λk

> 0), and βk ∼ Normal (0, 4) in the following simulation studies
and real data analysis.

The same prior distributions for the item parameters were
used for the PINC and HO-PINC models. Imposing the
monotonicity restriction that gi < 1 – si for all items, the non-
informative priors of the item parameters (Culpepper, 2015) are
specified as follows: si ∼ Beta(1, 1) and gi ∼ Beta(1, 1) I(gi < 1
– si). The corresponding JAGS code for the PINC and HO-PINC
models is provided in the Appendix.

SIMULATION STUDIES

Design and Date Generation
Simulation studies were conducted to evaluate the parameter
recovery of the PINC and HO-PINC models, in which the
data were simulated from the PINC and HO-PINC models and
analyzed with the corresponding data-generating model. There
were five attributes. In the PINCmodel, δnk was generated from a
uniform distribution: δnk ∼ Beta (1, 1). In the HO-PINCmodel, θ
∼ N(0, 1), λk = 1.5 for all attributes, β1 =−1, β2 =−0.5, β3 = 0,
β4 = 0.5, and β5 = 1. Then, each δnk can be calculated according
to Equation (9).

With reference to previous studies (e.g., de la Torre and
Douglas, 2004; de la Torre, 2009; de la Torre et al., 2010;
Culpepper, 2015; Zhan et al., 2016, 2018a), three independent
variables were manipulated, including (a) sample size (N): 500
and 1000 examinees; (b) test length (I): 15 and 30 items; and (c)
item quality (IQ): high (si = gi = 0.1) and low (si = gi = 0.2)
levels. For high IQ, 1 – si – gi = 0.8, which means that the items
provide more diagnostic information; for low IQ, 1 – si – gi = 0.6,
which means that the items provide less diagnostic information.
Setting the s- and g-parameters equally across the items made
their impact clear. The Q-matrix is given in Figure 1. The Q-
matrix indicates that items 1 to 5 and 16 to 20 measured one
attribute; items 6 to 10 and 21 to 25measured two attributes; item
11 to 15 and 26 to 30 measured three or more attributes. Thirty
replications were implemented in each condition.

Analysis
In each replication, two Markov chains (n.chain = 2) with
random starting points were used, and each chain ran 10,000
iterations (n.iter = 10,000), with the first 5,000 iterations in
each chain as burn-in (n.burn = 5,000). Without thinning
interval (n.thin = 1). Finally, the remaining n.chain ∗ (n.iter –
n.burn) / n.thin = 10,000 iterations for the model parameter
inferences. The potential scale reduction factor (PSRF; Brooks
and Gelman, 1998) was computed to assess the convergence
of each parameter. The values of the PSRF less than 1.1 or
1.2 indicate convergence (Brooks and Gelman, 1998; de la
Torre and Douglas, 2004). Our studies indicated that the PSRF
was generally less than 1.01, suggesting good convergence.
Specifically, when we encounter a non-convergent dataset (with
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the rule of PSRF < 1.2), we will replace this dataset with
a new one. This procedure will continue until all monitored
parameters in all datasets under all conditions achieve the
convergence. The root mean square error (RMSE) and the
correlation between the generated values and estimated values
(Cor) for the parameters were computed to evaluate the
parameter recovery.

RESULTS

Recovery of Model Parameters in the PINC
Model
The plot in Figure 2 shows the RMSE for the item parameters.
As in prior studies (de la Torre, 2009; Culpepper, 2015), the
sampling variability for the si and gi parameters was associated

FIGURE 1 | Q’-matrix for 30 items and 5 attributes in the simulation study. Blank means 0 and gray means 1; the first 15 items are used when I = 15.

FIGURE 2 | RMSE for the item parameters in the PINC model. ◦ represents si and • represents gi ; IQ, item quality; N, sample size; I, test length.
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with the number of required attributes. For example, according
to the Q-matrix, there is one required attribute in the first five
items and two required attributes in the next four items (i.e.,
items 6 to 9), respectively. For the si parameters, the RMSEs of
the first five items were smaller than those of the next four items;
In contrast, for the gi parameters, the RMSEs of the first five items
were a little bit larger than those of the next four items. Overall,
the larger the number of attributes required by an item, the larger
the RMSE for si, but the smaller the RMSE for gi. Such results
were expected because the number of persons who mastered all
the required attributes with a high probability decreased as the
number of required attributes increased, so the variability of si
increased. In contrast, the number of persons who mastered any
of the required attributes with a low probability increased as the
number of the required attributes increased, so the variability of
gi decreased. Furthermore, the larger the sample size, the smaller
the RMSE. The item quality and test lengths had trivial effects on
the recovery of the item parameters.

The recovery of the probability of mastery is summarized in
Table 1. In general, all the RMSE values were around 0.22, and
almost all the Cor values were higher than 0.9 across all the
conditions. The longer test length is, the larger sample size is, and
the higher item quality would lead to smaller RMSE and larger
Cor.

Recovery of Model Parameters in the
HO-PINC Model
Figure 3 presents the RMSE for the item parameters in the HO-
PINC model. In general, the recovery of the item parameters was
satisfactory and better than that in the PINCmodel. For example,
the sampling variability of si for the HO-PINC model was nearly
half that for the PINCmodel, when the items required more than
two attributes.

TABLE 1 | Recovery of the attribute parameters in the PINC model.

IQ N I Index δ1 δ2 δ3 δ4 δ5

High 500 15 RMSE 0.232 0.230 0.224 0.228 0.227

Cor 0.923 0.938 0.916 0.925 0.920

30 RMSE 0.210 0.210 0.203 0.201 0.207

Cor 0.962 0.966 0.950 0.955 0.953

1,000 15 RMSE 0.229 0.228 0.225 0.229 0.231

Cor 0.928 0.938 0.932 0.933 0.928

30 RMSE 0.210 0.204 0.202 0.205 0.209

Cor 0.956 0.961 0.962 0.958 0.957

Low 500 15 RMSE 0.245 0.245 0.237 0.240 0.240

Cor 0.898 0.890 0.873 0.909 0.882

30 RMSE 0.235 0.233 0.226 0.229 0.230

Cor 0.923 0.941 0.932 0.934 0.932

1,000 15 RMSE 0.241 0.243 0.239 0.245 0.244

Cor 0.888 0.896 0.897 0.901 0.893

30 RMSE 0.231 0.230 0.226 0.231 0.234

Cor 0.934 0.943 0.936 0.938 0.931

IQ, item quality; N, sample size; I, test length.

Table 2 summarizes the recovery of the probability of mastery
in the HO-PINC model. Overall, the recovery patterns of the
person parameters in the HO-PINC model were similar to those
for the PINC model. Compared with the PINC model, the
RMSE and Cor for the HO-PINC model were closer to 0 and 1,
respectively.

Table 3 presents the RMSE and Cor for the higher-order latent
trait in the HO-PINC model. The RMSE ranged from 0.391 to
0.618 across conditions, which was acceptable because the latent
trait was measured by only five binary attributes. The results were
similar to those found in the literature of the HO-DINA model
(de la Torre and Douglas, 2004; Huang and Wang, 2014; Zhan
et al., 2018a,b). The longer the test length and the higher the item
quality, the smaller the RMSE and the larger the Cor, indicating
a better recovery. In addition, in previous studies about the HO-
DINA model (e.g., de la Torre and Douglas, 2004; Zhan et al.,
2018a,b), the correlation coefficient of the true and estimated
higher-order ability is approximately ranged from 0.6 to 0.8;
However, in the HO-PINC model, the correlation coefficient is
generally higher than 0.95, indicating that the higher-order ability
can be better recovered in the HO-PINC model than in the
HO-DINA model.

Overall, the parameter recovery of both the PINC and HO-
PINC models was satisfactory. The recovery was better in the
HO-PINC model than in the PINC model, which might be
because the incorporation of a higher-order structure allowed the
information about one attribute to be used in estimating the other
attributes. This phenomenon is analogous to the joint estimation
of multiple unidimensional tests in which the correlation among
latent traits is taken into consideration to improve the parameter
estimation of individual dimensions (Wang et al., 2004).

AN EMPIRICAL EXAMPLE

Material and Data Description
A real dataset from the Examination for the Certificate of
Proficiency in English (ECPE) was analyzed to demonstrate
the applications of the new models. The ECPE measures the
advanced English skills of examinees whose primary language
is not English (Templin and Hoffman, 2013). A total of
2,922 examinees answered 28 multiple-choice items with three
required attributes: α1, or morphosyntactic rules; α2, or cohesive
rules; and α3, or lexical rules. The Q-matrix can be found in
Templin and Hoffman (2013). According to the description of
each attribute, these three attributes appeared to be conceptually
related to a general English proficiency, which might justify the
use of a higher-order structure.

Analysis
Four models were fitted and compared: the PINC, HO-PINC,
DINA, and HO-DINA models. The number of chains, burn-
in iterations, and post-burn-in iterations was consistent with
those in the simulation study. Convergence was well achieved
(see Figure A1 in Appendix). The deviance information criterion
(DIC; Spiegelhalter et al., 2002) and the log conditional predictive
ordinate (LCPO; Kim and Bolt, 2007) multiplied by −2
(−2LCPO) were computed for model selection. In the DIC,
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FIGURE 3 | RMSE for the item parameters in the HO-PINC model. ◦ represents si and • represents gi ; IQ, item quality; N, sample size; I, test length.

the effective number of parameters was computed as var(D)/2
(Gelman et al., 2003), where D̄ is the posterior mean of deviance
in the MCMC samples and measures how well the data fit
the model using the likelihood function (−2 log-likelihood,
−2LL). A smaller value of the DIC and −2LCPO indicates a
better fit.

Results
Among the four models, the HO-PINC model was identified
as the best-fitting model based on the DIC and the test-level
−2LCPO, as shown in Table 4. The item-level −2LCPO can be
used to further examine whether the finding is consistent across
items. TheHO-PINCmodel had the smallest item-level−2LCPO
value for each item (not presented). In general, the higher-order
models (i.e., the HO-DINA and HO-PINC models) had a better
fit than their corresponding non-structured counterparts (i.e., the
DINA and PINCmodels), which means that the incorporation of
a general English proficiency was justified.

Figure 4 shows the item parameter estimates obtained from
the HO-PINC andHO-DINAmodels. Similar to previous studies
(e.g., Templin and Hoffman, 2013), many of the estimated gi
values were large, which means that the examinees might utilize
some other attributes or skills that were not included in the Q-
matrix. In general, the item parameter estimates from the HO-
PINCmodel were smaller than those from the HO-DINAmodel.
A possible explanation is that standard CDMs dichotomize the
attribute mastery probabilities to mastery or non-mastery, so
examinees with an intermediate status would be forced to be
classified, and the uncertainty associated with this classification
might contribute to the inflation of the item parameter estimates
in the HO-DINAmodel. In other words, the inherent uncertainty
at the attribute level was absorbed into the item level when binary
classification was adopted.

Table 5 shows the attribute parameter estimates for four
examinees. The variable δ̂nk can distinguish examinees in a finer
manner than α̂nk. A probability of mastery between 0.4 and 0.6
(Hartz, 2002) is shown in bold. For Person 1, the estimated
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probabilities of the three attributes in the HO-PINC model were
all very close to 1, so the binary classifications in the HO-
DINA model seemed appropriate. For Person 14, the estimated
probabilities in the HO-PINC model were 0.255, 0.455, and
0.593, respectively, and the binary classifications in the HO-
DINA model were 0, 0, and 1, respectively. There was a great
amount of uncertainty in attributes 2 and 3, but it was ignored
by the HO-DINA model.

It should be noted that the HO-DINA model can also provide
a mastery probability for each attribute, denoted as P(α̂nk =

1). Essentially, δ̂nk in the HO-PINC model and P(α̂nk = 1)
in the HO-DINA model are almost the same in mathematical
expressions, see Equations (8, 9). The main difference between

TABLE 2 | Recovery of the attribute parameters in the HO-PINC model.

IQ N I Index δ1 δ2 δ3 δ4 δ5

High 500 15 RMSE 0.158 0.152 0.144 0.141 0.125

Cor 0.956 0.972 0.984 0.990 0.993

30 RMSE 0.121 0.112 0.108 0.100 0.094

Cor 0.976 0.988 0.992 0.995 0.996

1,000 15 RMSE 0.152 0.142 0.140 0.134 0.123

Cor 0.952 0.973 0.983 0.991 0.994

30 RMSE 0.108 0.106 0.104 0.098 0.090

Cor 0.976 0.987 0.992 0.995 0.997

Low 500 15 RMSE 0.198 0.188 0.190 0.198 0.179

Cor 0.929 0.956 0.975 0.987 0.990

30 RMSE 0.153 0.153 0.150 0.140 0.132

Cor 0.960 0.972 0.981 0.990 0.994

1,000 15 RMSE 0.184 0.177 0.180 0.172 0.169

Cor 0.925 0.957 0.973 0.985 0.990

30 RMSE 0.145 0.142 0.142 0.136 0.126

Cor 0.954 0.970 0.985 0.989 0.994

IQ, item quality; N, sample size; L, test length.

them is that the P(α̂nk = 1) needed a Bernoulli transition (i.e.,
α̂nk ∼ Bernoulli(P(α̂nk = 1))) before imposing into the item

response function, while the δ̂nk can be directly inputted into the

item response function. Even though the correlations between δ̂nk
and P(α̂nk = 1) for the three attributes were very high (0.97, 0.96,
and 0.94, respectively), there were subtle differences between
them, as shown in Figure 5 for the 2,922 examinees. In general,
P(α̂nk = 1) clustered more around the two extremes of 0 and 1,
whereas δ̂nk was more uniformly distributed. The variances of δ̂nk
for the three attributes were 0.077, 0.048, and 0.051, whereas the

TABLE 3 | Recovery of the higher-order latent trait in the HO-PINC model.

IQ N I RMSE Cor

High 500 15 0.494 0.968

30 0.391 0.979

1,000 15 0.506 0.967

30 0.400 0.980

Low 500 15 0.618 0.959

30 0.495 0.969

1,000 15 0.617 0.957

30 0.506 0.968

IQ, item quality; N, sample size; I, test length.

TABLE 4 | −2LL, DIC and −2LCPO indices for the ECPE data.

Model −2LL DIC −2LCPO (test-level)

PINC 80233.58 89829.31 84539.30

HO-PINC 80880.11 84043.92 83233.54

DINA 81246.47 87608.53 84191.80

HO-DINA 81143.27 86752.73 84167.54

−2LL, −2 log likelihood; DIC, deviance information criterion; −2LCPO, −2 log conditional

predictive ordinate. Bold values are indicated as significance mark.

FIGURE 4 | Item parameter estimates for the ECPE data.
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variances of P(α̂nk = 1) for the three attributes were 0.112, 0.108
and 0.106. That is, the variance of δ̂nk was approximately half that
ofP(α̂nk = 1) .

CONCLUSION AND DISCUSSION

In contrast to deterministic logic, in which a statement such as “a
person masters an attribute” can be verified without uncertainty,

TABLE 5 | Attribute estimates for the ECPE data under the HO-PINC and

HO-DINA models.

Person HO-PINC HO-DINA

(δ̂ n1, δ̂ n2, δ̂ n3) (α̂n1, α̂n2, α̂n3)

1 (0.909, 0.916, 0.978) (1, 1, 1)

889 (0.429, 0.605, 0.768) (0, 1, 1)

14 (0.255, 0.455, 0.593) (0, 0, 1)

1071 (0.084, 0.246, 0.301) (0, 0, 0)

Bold values are indicated as significance mark.

probabilistic logic acknowledges uncertainty in such a statement
using a probabilistic expression. This study developed the PINC
model, in which the probability of mastering an attribute for
a person is treated as a parameter, and the HO-PINC model,
in which a latent trait is further added to account for the
associations among the attributes. The results of the simulation
study indicated that (a) the parameters for two proposed models
can be well recovered by using the proposed Bayesian MCMC
method, and (b) imposing a higher-order latent structure among
probabilistic attributes can further improve the model parameter
recovery. Furthermore, an empirical example was provided to
demonstrate the applications of the proposed models. And the
results of the empirical example supported the utility of the
HO-PINC model, mainly because, in reality, attributes that are
measured by a test are often conceptually related and statistically
correlated. Overall, according to the results of the simulation
study and the empirical example, we recommend using the HO-
PINC model in the future. In practice, it is still useful to fit
both the new models and the standard CDMs and compare
their fit. Probabilistic logic is empirically supported if it has a

FIGURE 5 | Attribute mastery probability estimates under the HO-PINC and HO-DINA models. ◦ represents the mastery probability of attributes, δ̂nk in the HO-PINC

model, and • represents the mastery probability of attributes, P(α̂nk = 1) in the HO-DINA model.
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better fit, and many examinees have a probability of mastery
around 0.5.

The work presented in this article is an attempt to apply
probabilistic logic to CDMs. Despite promising results, further
exploration is needed. First, only the conjunctive condensation
rule was employed in this study. Future studies can develop other
probabilistic-input models based on other condensation rules
(e.g., disjunctive or compensatory), or create a general framework
to include general probabilistic-input CDMs, such as those
performed by von Davier (2008), Henson et al. (2009), and de la
Torre (2011). Second, the new models focused on dichotomous
items. It is important and practical to adapt the models to
polytomous items (von Davier, 2008; Ma and de la Torre,
2016) and mixed-format tests. Third, throughout this study,
it was assumed that there were only two categories (mastery
or non-mastery) in each attribute. It would be interesting
in future work to develop CDMs for polytomous attributes
Karelitz (2004) with probabilistic logic. Fourth, it is possible
that some attributes are prerequisites to the mastery of other
attributes; that is, attributes can have a hierarchical structure
(Leighton et al., 2004). Future studies should take attribute
hierarchies into account in the proposed models. Finally, recent
developments in the assessment of differential item functioning
(Li and Wang, 2015) or local item dependence (Zhan et al.,

2015) in CDMs could be conducted on the PINC or HO-PINC
models.
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