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Abstract: In this work, we characterized poly(quinacridone-diphenylquinoxaline) (PQCTQx).
PQCTQx was synthesized by a Suzuki coupling reaction and the synthesized PQCTQx was used as a
polymeric semiconducting material in organic field-effect transistors (OFETs) to research the potential
of using quinacridone derivatives. The measured field-effect mobility of the pristine PQCTQx
film was 6.1 × 10−3 cm2/(V·s). A PQCTQx film heat-treated at 150 ◦C exhibited good field-effect
performances with a hole mobility of 1.2 × 10−2 cm2/(V·s). The improved OFET behaviors resulting
from the mild thermal treatment was attributed to improved packing of the molecules in the film,
as determined using X-ray diffraction, and to decreased channel resistance.

Keywords: organic field-effect transistor (OFET); organic semiconductor; quinacridone; thermal
annealing; channel resistance; polymeric semiconductor

1. Introduction

Research into organic field-effect transistors (OFETs) has been committed to the advancement
of organic semiconducting materials and device engineering technologies in the last decades [1–5].
Current investigations of OFETs are aiming to rapidly meet the rising demand for large-area or flexible
sensors and displays, and driving elements for RF identification tags, as well as many other lower-cost
functional devices [6,7]. While OFETs generally work best in applications that do not typically
need high-performance semiconducting materials, such as single crystalline and polycrystalline
silicon, high field-effect mobility and good device-to-device reproducibility (which rely partially
upon the structural consistency of the OFET film) are nonetheless significant even for inexpensive
electronic circuits now that the numerous transistors in these devices have to function all together [8].
To enhance OFET performance, one of the most important considerations is developing molecular
design strategies aimed at enhancing the packing of the molecules in the OFET. For this purpose,
various organic semiconductors have been synthesized and analyzed. The greatest advantage of using
organic molecules as semiconductors is that it is easy to make planar conjugated structures out of these
molecules, and such structures strongly form π-π interactions and bring about fast charge transport [9].

Polymeric semiconductors, in particular, show superior mechanical flexibility and are amenable
to solution processes for large areas in forming a uniform film morphology, and are hence regarded as
promising candidates for active semiconducting materials in OFETs [10]. Various kinds of polymeric
semiconductors have been developed, but quinacridone (QC)-based polymers have drawn particularly
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significant attention for use in organic electronic devices, because these polymers have a well-ordering
structure and are able to self-assemble [11]. The quinacridone moiety has been widely studied
as electron-withdrawing units and red-violet pigments in donor-acceptor (D-A) copolymers for
organic solar cells and light-emitting diodes [12]. The application of a quinacridone-based polymer in
light-emitting diodes was first reported by the Wang group [13].

Copolymers, including quinacridone units, may be promising candidates for using
semiconducting materials in OFETs now that the quinacridone unit has a planar and simple
molecular structure that can easily participate in π-π interactions, and hence lead to efficient charge
transport. The Fu group reported the OFET performance of quinacridone–benzothiadiazole-based
D-A copolymers and showed their hole mobility values in each case to be 0.3 cm2/(V·s) [12].
Recently, our group also reported the use of poly[quinacridone-alt-quaterthiophene] (PQCQT) and
poly(quinacridone-quinoxaline) (PQCQx) as channel materials in OFETs with hole mobilities of
2.0 × 10−2 and 1.4 × 10−3 cm2/(V·s) when using PQCQT and PQCQx [14,15]. As the field of
developing quinacridone–based D-A copolymer semiconductors have progressed, it is necessary
to investigate thermal stability of the quinacridone-based D-A polymer crystals and the effect of
thermal annealing process on the lateral charge transports that can be evaluated from the field-effect
mobility and channel resistance in the OFETs.

In this work, we characterized poly(quinacridone-diphenylquinoxaline) (PQCTQx), whose
structure is shown in Figure 1, for applications in OFETs. Although PQCTQx has been investigated by
the Moon group for employment in organic solar cells [16], it has not, to the best of our knowledge,
been applied to a semiconducting material in OFETs. The PQCTQx OFET device exhibited p-type
performance of hole mobility values of 6.5 × 10−3 cm2/(V·s) and 1.3 × 10−2 cm2/(V·s), resulting
from pristine and thermally heat-treated PQCTQx films, respectively. The different OFET behaviors
resulting from the pristine and heat-treated PQCTQx films we prepared were explained by the results
of X-ray diffraction (XRD) and channel resistance experiments.
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Figure 1. Molecular structure of PQCTQx.

2. Experimental

2.1. Materials, Device Fabrication

The PQCTQx was synthesized by a Suzuki coupling reaction, as reported formerly [16] (shown
as Scheme 1). The synthesized PQCTQx polymer was found to have a number-average molecular
weight (Mn) of 85.0 kg/mol, and a polydispersity index (PDI) of 7.17, by employing gel permeation
chromatography method with tetrahydrofuran at 40 ◦C. The solution-processed PQCTQx film’s
electrical properties were investigated with the film in a top-contact/bottom-gate OFET configuration
by using a 300-nm-thick SiO2 dielectric on an extremely doped n-Si substrate, which functioned as the
gate electrode. The SiO2 dielectric was treated with an octadecyltrichlorosilane (ODTS) monolayer
in the toluene solution for 90 min at room temperature. Solutions of the PQCTQx were made at a
concentration of 0.2 wt % in chloroform and heated at 50 ◦C for 30 min, and then filtered by using a
0.2-µm-pore-sized polytetrafluoroethylene membrane syringe filter. The polymer film was formed by
conducting the spin coating method for 60 s at 2000 rpm. On top of the semiconductor layers (100 nm),
gold source were deposited and electrodes were drained by using a patterned tungsten shadow mask
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over the PQCTQx layer. When measured, the channel length (L) and width (W) were 50 µm and
1000 µm, respectively. The OFET devices were heat-treated at 150 and 200 ◦C for 10 min. At this time,
the heat treatment proceeded under a nitrogen atmosphere.
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Scheme 1. Synthetic route for producing PQCTQx.

2.2. Electrical Characterization of the OFET Devices

Under a nitrogen atmosphere, PQCTQx OFET devices were analyzed by a Keithley 4200 SCS
(Keithley Instruments, Cleveland, USA) at room temperature. Field-effect mobilities were calculated
in the saturation regime from the slope of a line fitting a plot of the square root of the source–drain
current (IDS) versus the gate voltage (VG); the line fitting was obtained from the equation IDS =
(WCi/2L)µ(VG − Vth)2, where Ci is the capacitance per unit area of the dielectric (10 nF/cm2), µ is the
filed-effect mobility, and Vth is the threshold voltage. The total width-normalized channel resistances
(RtotalW) were obtained from the inverse slope of the IDS-VD curves in the linear regime using output
characteristics. We measured RtotalW using the output curves with VG of −80 V applied.

2.3. Morphological Characterization

XRD experiments were conducted by X-rays with an energy level of 11.57 keV at the 5A
beamline of the Pohang Accelerator Laboratory (PAL), Pohang, Korea. For XRD studies, the thin-film
samples were prepared by spin coating method at 2000 rpm with the 0.2% chloroform solution on
an ODTS-treated Si wafer to copy the OFET device making process. To confirm the effect of thermal
annealing, the some of the deposited films were heat treated at 150 and 200 ◦C.

3. Results and Discussion

The transfer characteristics of the prepared PQCTQx-based OFETs are shown in Figure 2.
The devices exhibited the formal p-channel transfer characteristics and the heat treatments enhanced
the field-effect mobility (Table 1). The saturation field-effect mobility of the pristine PQCTQx film was
extracted from the slope of the matched plot in Figure 2 to be 6.1 × 10−3 cm2/(V·s) with an on/off
ratio of 1.7 × 105. For the heat-treated film at 150 ◦C, the field-effect mobility was greater, with a
value of 1.2 × 10−2 cm2/(V·s), and with an on/off ratio of 3.0 × 105. The mobility value decreased,
however, when the temperature of heat treatment was increasingly raised by 50 ◦C; in the heat-treated
film at 200 ◦C, the field-effect mobility was indicated to be 6.0 × 10−3 cm2/(V·s) with an on/off ratio
of 5.1 × 104. These different OFET behaviors may have been due to structural differences between
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the as-cast and heat-treated films shown by the XRD analysis and channel resistance measurements
described below.Polymers 2018, 10, x FOR PEER REVIEW  4 of 7 
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Figure 2. (a) Transfer characteristics and (b) output characteristics of the OFETs with pristine and
annealed PQCTQx films.

Table 1. Performance measures of various OFETs with different PQCTQx films.

PQCTQx film Mobility (cm2/Vs) On/off Vth (V) RtotalW (MΩcm)

As-cast 6.1 × 10−3 1.7 × 105 −9.2 21.5
Annealed at 150 ◦C 1.2 × 10−2 3.0 × 106 −6.3 16.7
Annealed at 200 ◦C 6.0 × 10−3 5.1 × 104 −6.1 25.6

We investigated the molecular-level structures of the PQCTQx films by using XRD. As shown
in Figure 3a, the pristine PQCTQx film showed a weak (010) peak, in the out-of-plane direction of
the film, and this peak was attributed to molecular stacking of π-π interaction. After heat treating
at 150 ◦C, the intensity of the (010) peak increased, and indicated a π-π distance of 4.0 Å. The XRD
pattern in Figure 3b revealed that the diffraction peaks seemed to appear along the in-plane direction
of the pristine film, though they were not clear. After annealing at 150 ◦C, (100) and (010) peaks were
observed corresponding to a d-spacing of 23.6 Å, showing a face-on interchain ordering. Although
an edge-on structure would be expected to promote faster carrier transport along the π-π stacking
path in the OFET structure than would a face-on structure, a face-on structure is more suitable than an
amorphous structure [17]. Previous work in our group has investigated PQCQT as the active material
in OFET devices [14]. A comparison of the crystalline structures of PQCQT and PQCTQx in film
state revealed that the crystalline structure of PQCTQx was not as good as that of PQCQT for charge
transport in OFET devices [17,18]. Because the diphenylquinoxaline unit in PQCTQx is in bulky groups
and generates steric hindrance, edge-on arrangement may become difficult [19,20]. Increasing the
annealing temperature by an additional 50 ◦C yielded decreased intensities of the observed peaks along
both (100) and (010) directions. The relatively high intensities of the PQCTQx XRD peaks subjected to
thermal annealing at 150 ◦C suggested that this PQCTQx film was highly crystalline. The considerably
crystalline structure of PQCTQx apparently induced, as described above, favorable intermolecular
self-assembled interactions and efficient charge carrier transport in the PQCTQx OFETs.

Channel resistance data were also collected for the various OFET devices. The channel resistances
(RtotalW) were obtained from the inverse slope of the output curves in the linear regime at VG = −80 V.
As shown in Figure 4, the channel resistance value resulting from the as-cast PQCTQx film was
measured to be 21.5 MΩcm, and the values resulting from the films annealed at 150 ◦C and 200 ◦C were
measured to be 16.7 MΩcm and 25.6 MΩcm, respectively. The relatively low channel resistance value
resulting from the film heat treated at 150 ◦C led to the better field-effect mobility in its device [21,22].
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Figure 4. Dependence of the channel resistance on the annealing temperature for the PQCTQx OFET.

4. Conclusions

In this research, a semiconducting PQCTQx polymer based upon a diphenylquinoxaline and
quinacridone unit was applied to OFET devices. A mild thermal annealing treatment improved the
PQCTQx OFET performance. The PQCTQx film annealed at 150 ◦C exhibited a more face-on ordering
structure, enhanced field-effect mobility, with a value of 1.2 × 10−2 cm2/(Vs), and a lower channel
resistance, with a value of 16.7 MΩcm, than did the as-cast film or the film heat treated at 200 ◦C.
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