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Introduction
Proteins are large biomolecules that perform important func-
tions by interacting with other biomolecules, especially with 
other proteins. These interactions enable proteins to perform 
complex and diverse functions and to form biological pathways 
like metabolism. The interactions of the proteins can be repre-
sented as networks for example, signaling networks of the cells. 
The interactions of a set of proteins of a single species can be 
represented in the form of a network that is known as a PPI 
network. The proteins in the PPI network are represented by 
nodes while the interactions are represented by edges.

With the advancement of high-throughput PPI profiling 
techniques (such as yeast-two-hybrid,1 filamentous fusion 
phage2), a large amount of PPI data has been generated. This 
data is stored in different databases such as BioGRID,3 HINT,4 
MINT,5 etc. The study of the complete network of the proteins 
reveals more information about the biological activities of the 
proteins as compared to the study of the proteins in isolation.6 
The comparative study of the PPI networks helps to identify 
the homologous proteins and their conserved interactions 
across the species. This can also help in studying the healthy/
disease states and in drug design.6,7

The pairwise PPI network alignment (alignment of 2 PPI 
networks) is the mapping of a small network over the portion 

of a large network. There are 2 types of alignment algorithms, 
(i) Local network alignment (LNA) algorithms and (ii) Global 
network alignment (GNA) algorithms. LNA algorithms are 
designed to align the communities (sub-networks) by many-
many mapping between the nodes.8,9 These algorithms find 
the small sub-networks that are highly conserved across the 
species. In contrast, GNA algorithms align the nodes using 
one-one mapping. The goal of such aligners is to align the 
maximum number of nodes with high biological similarity.6-9

All the existing aligners (except SAlign6) use sequence simi-
larity and/or network topology to align the PPI networks. 
SAlign is the first algorithm that uses the 3D structure of the 
proteins along with sequence and topology. Previous studies 
use different types of topological measures to extract the struc-
ture of the PPI network. For example, SAlign6 and HubAlign10 
use a Minimum-Degree-Heuristic algorithm to compute the 
topological scores of the nodes. ModuleAlign11 uses Minimum-
Degree-Heuristic and clustering algorithms to score the nodes. 
IBNAL12 uses the similarity of the cliques (Clique-Degree-
Similarity) extracted from the networks. MONACO measures 
the topology by iterative optimal matching of local neighbor-
hoods around focal nodes.13 All these algorithms combine the 
different scoring matrices (topology, sequence, and structure) 
and then use the combined score to align the PPI network 
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using alignment algorithms. SAlign, HubAlign, and IBNAL 
use a Greedy algorithm for the alignment, while ModuleAlign 
uses the Hungarian algorithm for the alignment. Twadn14 and 
SANA15 align the nodes using a Simulated-Annealing-based 
optimization technique. In contrast to these studies, 
MAGNA++16 and NETAL17 use sequence similarity and 
network topology, respectively. MAGNA++ uses a Genetic-
Algorithm to align the nodes on the basis of sequence similar-
ity. NETAL uses local network topological measures. The 
BEAMS algorithm assigns weights to the network edges based 
on sequence similarity and then uses a clustering-based tech-
nique for alignment.18 The PROPER algorithm7 is the first 
algorithm that does not combine the topological and biological 
scores. It first aligns the nodes on the basis of sequence similar-
ity and then extends the aligned nodes using topology.

Most of the existing aligners are validated using semantic/
biological similarity. The semantic similarity is a measure to 
compute the similarity of the proteins on the basis of their con-
text (similarity in terms of molecular function). The semantic 
similarity in the PPI network domain is the average similarity 
between all the aligned nodes. Existing aligners do not produce 
alignments that have a high semantic similarity. Furthermore, 
some of the existing aligners (BEAMS, IBNAL, NETAL, 
SANA MAGNA++, and PROPER) align a fewer number of 
nodes (incomplete alignment). To complete the alignment, 
aligners align the nodes with low biological and topological 
scores that result in a decrease in semantic similarity. PROPER 
does not align low-scoring nodes and as a result, it produces 
alignments with comparatively high semantic similarity, but 
the completeness of alignment is decreased significantly. 
SAlign is the first algorithm that incorporates structural infor-
mation in addition to sequence and topology that resultantly 
increasing its semantic similarity and completeness. The extra-
biological information (3D structure) helps SAlign outperform 
all existing algorithms with a significant margin. SAlign dem-
onstrates the impact of biological (sequence and structure) and 
topological information and concludes that a large contribu-
tion from topological information decreases the semantic simi-
larity. UAlign19 also supports this argument.

From these insights, we conclude that biological information 
is essential for producing high-quality alignments. To overcome 
the limitations of the existing studies, we develop a novel multi-
stage GNA algorithm (BioAlign) that incorporates different bio-
logical sources of information. In the first stage, the close 
homologs (seeds) are generated on the basis of global sequence 
similarity, 3D structure similarity, and local sequence similarity. In 
the second stage, the remaining nodes are aligned using remote 
homology and predicted secondary structure. In the final stage, 
the remaining nodes are aligned using topology.

BioAlign does not compromise semantic similarity by align-
ing low-scoring nodes. The use of extra-biological information 
(local sequence similarity, remote homology-based similarity, 
and predicted secondary structure) and topological information 
help to complete the alignment with high semantic similarity 

and coverage. The difference between the performance of 
BioAlign and existing aligners is 6-32 and 7-34 in terms of 
semantic similarity and coverage w.r.t biological process and 
molecular function. Furthermore, BioAlign also aligns a larger 
number of nodes that have high semantic similarity as com-
pared to existing studies.

Methods
The PPI network represents the interactions between the pro-
teins, where nodes represent the proteins and edges represent the 
interactions between the proteins. G V E1 1 1( , )  is the first network 
that has V1  nodes and E1  edges. Similarly, G V E2 2 2( , )  is the 
second network that contains V2  nodes and E2  edges. The 
mapping of V1  and V2  is known as alignment. The GNA algo-
rithms align the nodes of network G1  with the nodes of network 
G2  based on some biological and/or topological information.

BioAlign is a multi-stage approach that first generates 
highly similar homologs based on 3D structure similarity, 
global sequence similarity, and local sequence similarity. The 
remaining proteins are aligned using remote homology and 
predicted secondary structure motifs. In the final stage, 
BioAlign incorporates topological information (Neighborhood 
Expansion). The flow diagram of BioAlign is given in 
Supplemental Figure 1.

Stage-1

The first stage of BioAlign is based on 3D structure similarity, 
global sequence similarity, and local sequence similarity. The 
matrix M1  of V V1 2×  is generated that contains pairwise 3D 
structure similarities. Similarly, matrix M2  and matrix M3  
contain pairwise global and local sequence similarities of the 
proteins, respectively. The 3D structure similarity is computed 
using the TMAlign tool (parameters: normalization = a (aver-
age length), transform = 1, termination = 0).20 The global 
sequence similarity (in terms of bit-score) is computed using 
the BLAST tool (parameters: gap-open = 11, gap-extension = 1, 
E-value = 10, word-size = 3, matrix = blosum62).21 The local 
sequence similarity is computed using the SWAlign tool 
(parameters: match = 2, mismatch = −1, gap-start = 1, gap-
extension = 1, decay = 0, wrap = none, all the remaining param-
eters that include global-align, summary, user-region, and 
progress are set to False). To normalize the local sequence simi-
larities, we use equation (1).

norm Identity Score
lengthscore =

*  (1)

Where, Score  is the local sequence similarity score of the pro-
tein pair computed by SWAlign tool. length  is the minimum 
sequence length of the protein pair. Identity  represents the 
percentage of identical sequence.

All the matrices are sorted on the basis of similarity scores 
in descending order. These sorted matrices are used to align the 
node pairs. BioAlign first aligns the highly similar (in terms of 
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structure/sequence) nodes, and then aligns the comparatively 
low scoring nodes. All the node pairs that have 3D structure 
similarity > 0 8. , global sequence similarity > 200  (bit-score), 
and local sequence similarity > 4  are added to the top align-
ment list. These nodes are used to study the biologically similar 
group of proteins across the species. To increase the coverage, 

the remaining nodes are aligned using comparatively low struc-
ture/sequence similarity thresholds in the second phase of 
stage-1. All the node pairs that have 3D structure similarity 
> 0 5. , global sequence similarity > 50  (bit-score), and local 
sequence similarity > 2  are added to the alignment list. The 
average length found in local alignments of the protein pairs is 




35 , so we add an extra threshold of local sequence align-
ment’s length. The candidate node pairs ( . )lseqsim > 2 0  must 
have a common sequence of length greater than the average 
length (35).

The global sequence similarity and structure similarity 
thresholds are tuned using a grid search technique 
(Supplemental Section 1). The global sequence similarity and 
structure similarity are directly linked with functional similar-
ity in most cases. In contrast, the local sequence similarity can 
be high for functionally dissimilar protein pairs. For example, 
the similarity between the non-domain regions of the protein 
pair cannot guarantee the similarity of the function. We ana-
lyze the local sequence similarity and set the threshold so that 
functional similarity should not be compromised. Figure 1 
shows the density plot for the local sequence similarity. From 
Figure 1, we can see that less than 5%  of the total protein 
pairs meet the set threshold. Moreover, we eliminate the pro-
tein pairs that have the aligned sequence of length less than 
35  (average length) that resultantly reduce the node pairs to 
less than 2% . The strict similarity and length-based thresh-
olds make sure that the functionally similar proteins are 
aligned. We set these thresholds using the grid search tech-
nique. The details of the parameter settings are provided in 
Supplemental Section 1.

Stage-2

This paper uses remote homology in the first phase of the sec-
ond stage of the BioAlign algorithm. The remote homologous 
proteins play a vital role in the function prediction of the pro-
teins. These proteins usually have less than 25% sequence simi-
larity, but share similar functions and structures. The prediction 
of the remote homologous proteins itself is a challenging task. 
This paper uses a simple but novel approach to detect the 
remote homology between the pair of proteins.

The unaligned proteins are taken out from both networks. 
The homologous proteins for each unaligned protein are 
extracted using the PSI-BLAST tool (parameters: gap-
open = 5, gap-extension = 2, E-value = 10, word-size = 11). For 
every unaligned pair of proteins ( , )u v , we count the common 
proteins from their homologous proteins. The unaligned pairs 
that have no common homologs are eliminated from the selec-
tion pool. The remaining protein pairs are sorted w.r.t the 
number of their common homologs. The unaligned protein 
pairs that have the most common homologs are aligned first. 
Algorithm 2 is used to align the node pairs based on remote 
homology.

Figure 1. The density plot for the local sequence similarity is presented. 

The distribution is highly skewed. Less than 5% of the total protein pairs 

produce a similarity greater than 2.

ALgORiTHM-1: SEEDS-gENERATiON ON THE BASiS OF 
BiOLOgiCAL SCORiNg MATRiCES

1: Procedure: Seed generation
2: input: M1, M2, and M3 //Similarity Matrices
3: input: str.t, seq.t and lseq.t //Similarity Thresholds
4: Output: Top-Nodes and Seeds
5: Seeds = []
6: Sort M1, M2, M3 on the basis of scores
7: for all node pairs (a, b) do
8:  if a ∉ Seeds and b ∉ Seeds and M1[a, b] ⩾ 0.8 then
9:   Seeds.append(a, b)
10:  end if
11: end for
12: for all node pairs (a, b) do
13:  if a ∉ Seeds and b ∉ Seeds and M2[a, b] ⩾ 200 then
14:   Seeds.append(a, b)
15:  end if
16: end for
17: for all node pairs (a, b) do
18:  if a ∉ Seeds and b ∉ Seeds and M3[a, b] ⩾ 4.0 then
19:   if AlignmentLength(a, b) > 35 then
20:    Seeds.append(a, b)
21:   end if
22:  end if
23: end for
24: Top-Nodes = Seeds //Top-Nodes are separated
25: for all node pairs (a, b) do
26:  if a ∉ Seeds and b ∉ Seeds and M1[a, b] ⩾ str.t then
27:   Seeds.append(a, b)
28:  end if
29: end for
30: for all node pairs (a, b) do
31:  if a ∉ Seeds and b ∉ Seeds and M2[a, b] ⩾ seq.t then
32:   Seeds.append(a, b)
33:  end if
34: end for
35: for all node pairs (a, b) do
36:  if a ∉ Seeds and b ∉ Seeds and M3[a, b] ⩾ lseq.t 
then
37:   if AlignmentLength(a, b) > 35 then
38:    Seeds.append(a, b)
39:   end if
40:  end if
41: end for
42: end procedure
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In the second phase of the stage-2, the remaining pairs are 
aligned using predicted secondary structure motifs. Structural 
biologists have found different motifs that are important in 
finding the functions of the proteins. Helix-Loop-Helix 
(HLH) and Helix-Turn-Helix (HTH) are the most important 
motifs that are useful in studying the protein’s function. We 
predict the secondary structures of the unaligned proteins 
using an in-house developed deep learning model. From the 
sequence of the predicted secondary structures, we count the 
number of HLH and HTH motifs for all unaligned proteins. 
The protein is represented in the form of a vector (of size 2) 
that contains the count of HLH and HTH. The differences 
between the vectors of all the unaligned protein pairs are calcu-
lated and sorted. The protein pairs that have small differences 
are aligned first. Algorithm 3 is used to align the node pairs on 
the basis of secondary structure motifs.

Stage-3

In the final stage, the remaining nodes are aligned using net-
work interaction information. The neighboring nodes of 
already aligned nodes are considered as the candidate nodes for 
alignment. For example, if 2 neighbors of unaligned node a are 
aligned previously with 2 neighbors of unaligned node b, the 
node pair (a, b) will be considered as the candidate node pair. 
All the candidate node pairs are sorted on the basis of common 
aligned neighbors. The node pair that has maximum aligned 
neighbors will be aligned first. Figure 2 further explains the 
working of the topological stage.

Evaluation metrics

BioAlign is evaluated on the basis of Average Functional 
Similarity (AFS), Normalized GO-term Consistency 
(NGOC) and the percentage of aligned nodes. The AFS can 

be categorized into biological process (BP) and molecular 
function (MF). Two types of methods are used to calculate 
the functional similarity. The first type contains Lin,22 
Resnick23, and Schlicker et  al24 methods that are IC-based. 
These methods are database-dependent and result in differ-
ent functional similarity for different databases. The second 
type is of graph-based methods that are database independ-
ent. GOGO25 and Wang et al26 are the most commonly used 
graph-based methods. A number of tools (GOSemSim,27 
NaviGO,28 and SeSAME,29 etc.) provide the implementation 
for the Wang method. GoSemSim is used by most of the 
recent studies so we use this tool for the implementation of 
Wang method. The AFS is calculated using equation (2).

AFS
a

FS u v u v aC a C( ) ( , ), ,= ∀( )∑1 ε  (2)

Where, AFSC  is the average functional similarity of the com-
plete alignment ( a represents all node pairs) in terms of 
C MF BP( , ). FS u vC ( , )  is the functional similarity of a node 
pair ( , )u v , calculated by Wang et al.26 The node u  belongs to 
first network while node v  belongs to second network.

The ratio to the common and the total GO-terms of a pair 
of proteins is known as GO-term Consistency (GOC) that is 
calculated using equation (3).

GOC u v,( ) = ( ) ( )
( ) ( )
∩
∪

GO u GO v

GO u GO v
 (3)

Where u and v represent the protein pair. GO(u) and GO(v) 
represent the GO-terms of protein u and protein v, 
respectively.

The alignment of 2 networks is represented as the set of 
pairs of proteins. The GOC of all the protein pairs of the final 
alignment is added and divided to the network size to get the 
NGOC of the complete alignment (equation (4)).

NGOC GOC u v
N Na

u v a

=
∈
∑
,

. ( , )
min( , )1 2

 (4)

Where a represents the protein pairs (alignment). u and v are 
the first and second proteins of a pair. N1 and N2 represent 
the number of nodes of network 1 and network 2, respec-
tively. The maximum size of the alignment can be equal to 
the smaller network size.

Datasets

The networks used in this paper are presented in Table 1. The 
first row presents the specie name while the second and third 
rows present the number of nodes and edges in the networks 
respectively. The last row presents the percentage of proteins 
with available 3D structures. All the networks are collected 
from the HINT database4 [Version:2019]. HINT database 
contains the networks of experimentally verified interactions. 
This paper uses all the networks that have more than 1000 
interactions.

ALgORiTHM-2: ALigNMENT USiNg REMOTE HOMOLOgy

1: Procedure: Align_Remote_Homologs
2: input: Seeds //Output of Algorithm 1
3: input: N1, N2 //Unique nodes of both networks
4: input: Files contain homologous proteins for each protein
5: Output: Seeds //Extended List of Seeds
6: for all a in N1 do
7:  L1a = get the list of homologous proteins from File_a
8: end for
9: for all b in N2 do
10:  L2b = get the list of homologous proteins from File_b
11: end for
12: for all a in N1 do
13:  for all b in N2 do
14:   C[a, b] = common(L1a, L2b) //Common Homologs
15:  end for
16: end for
17: sort C on the basis of Common Homologs
18: for all node pairs (a, b) do
19:  if a ∉ Seeds and b ∉ Seeds and C[a, b] ⩾ 1 then
20:   Seeds.append(a, b)
21:  end if
22: end for
23: end procedure
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Results
This section presents a detailed comparison between the results 
of BioAlign and existing aligners. SAlign is a structure-aware 
method that incorporates biological (sequence and structure 
similarity) and topological information for aligning the PPI 
network pairs. Twadn uses 5 different node-level features and 
sequence similarities to align the PPI network pairs. 
MONACO, HubAlign, ModuleAlign, and IBNAL use 
sequence similarity and topological information for alignment. 
BEAMS adds weights to the edges on the basis of sequence 
similarities of the proteins and uses a module-based approach 
for alignment. SANA uses simulated annealing-based optimi-
zation algorithm to optimize the alignments. MAGNA++ 
aligns the nodes using an evolutionary algorithm (based on 

sequence similarity). NETAL uses only topological informa-
tion for alignment. PROPER is a 2-stage approach that first 
generates the seeds using biological information and then 
extends the seeds based on their neighbors. All the algorithms 
use different sources of information that make the comparison 
interesting and give insights about the sources that are helpful 
in the alignment process. The comparison between all the algo-
rithms has been made on the 5 most commonly used network 
pairs (Mouse-Human, Mouse-Yeast, Yeast-Human, Mouse-
Worm, and Mouse-Fly). We compare the results on the basis 
of NGOC, AFS and the percentage of aligned nodes w.r.t MF 
and BP. All the aligners are used with their default parameters 
to produce the results.

The results of different stages of BioAlign

The BioAlign algorithm aligns the nodes in a multi-stage 
manner. The first stage uses global sequence similarity, 3D 
structure similarity, and local sequence similarity. In the first 
stage, BioAlign first aligns the nodes that have high sequence 
or structure similarities. We name these nodes as Top-Nodes. 
On average, BioAlign generates the alignment of Top-Nodes 
with AFS 0 74.  and 0 58.  w.r.t MF and BP, respectively. The 
percentage of aligned nodes is 48%  and 49%  w.r.t MF and 
BP, respectively (Table 2). The alignments of these nodes can 
be helpful in studying the highly similar (biologically) proteins 
across the species. In the second phase of stage-1, BioAlign 
aligns the nodes that have a relatively small sequence or struc-
ture similarity scores. This results in a decrease in AFS, but an 
increase in coverage. The AFS of the first stage is 0 64.  and 
0 48.  w.r.t MF and BP, respectively. BioAlign aligns 68%  and 
72%  nodes w.r.t MF and BP in the first stage.

In the second stage, BioAlign can choose biological and/or 
topological information. The variant BV1 of BioAlign aligns 

Figure 2. Presents the 2 networks (Network 1 on the left side and 

Network 2 on the right side). Blue nodes are the aligned pairs. green and 

red node pairs are the candidate pairs for alignment as they have aligned 

neighbors. The node pair with green color (u2, v2) has a score of 2 (due to 

2 aligned neighbors) while the node pair with red color has a score of 3. 

According to the Stage-3 algorithm, the red nodes pair will be aligned first 

and then the green nodes pair will be aligned. The nodes u7, u8, and v7 

will not be considered as candidates for alignment as they do not have 

any common aligned neighbor.

ALgORiTHM-3: ALigNMENT USiNg SECONDARy STRUCTURE MOTiFS

1: Procedure: Alignment_using_SS-Motifs
2: input: Seeds //Output of Algorithm 2
3: input: N1, N2 // Unique Nodes of Both Networks
4: input: SS //Predicted Secondary Structure of All Proteins
5: Output: Seeds //Extended List of Seeds
6: for all a in N1 do
7:  L1a = count motifs from SSa // L1a is vector of counts of motifs (HLH, HTH) → L1a = (2,2)
8: end for
9: for all b in N2 do
10:  L2b = count motifs from SSb // L1b is vector of counts of motifs (HLH, HTH) → L1a = (1,2)
11: end for
12: for all a in N1 do
13:  for all b in N2 do
14:   D[a, b] = Calculate Difference(L1a, L2b)
15:   //Proteins of similar counts of Motifs produce small difference
16:  end for
17: end for
18: sort D on the basis of vector differences
19: for all node pairs (a, b) do
20:  if a ∉ Seeds and b ∉ Seeds and L1a > 0 and L2b > 0 then
21:   Seeds.append(a, b)
22:  end if
23: end for
24: end procedure
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Table 1. Data statistics that include the number of nodes, number of edges, and percentage of proteins with the 3D resolved structure are 
presented.

SPECiES NAME MOUSE HUMAN yEAST WORM FLy

Number of nodes 744 10 791 5036 4486 7498

Number of edges 1229 47 427 19 085 11 496 25 679

Nodes with 3D structure (%) 17 43 29 2 3

Source: All these datasets are extracted from HiNT database.

Table 2. The results of the different stages and variants of BioAlign.

SPECiE PAiR MEASURES TOP-NODES STAgE1 STAgE1 + B 
STAgE2 (BV1)

STAgE1 + T 
STAgE3 (BV2)

STAgE2 + 3 (BD) 
STAgE1 + BT

Mouse-Human* AFSMF 0.78 0.78 0.78 0.78 0.78

AFSBP 0.68 0.67 0.67 0.67 0.67

NodesMF 87 88 88 88 88

NodesBP 90 92 92 92 92

Mouse-yeast AFSMF 0.70 0.51 0.47 0.46 0.46

AFSBP 0.53 0.35 0.32 0.31 0.31

NodesMF 20 56 71 69 73

NodesBP 22 65 85 84 88

Mouse-Fly AFSMF 0.76 0.68 0.67 0.66 0.67

AFSBP 0.57 0.50 0.49 0.49 0.49

NodesMF 58 76 78 79 78

NodesBP 59 81 83 83 83

Mouse-Worm AFSMF 0.73 0.63 0.62 0.61 0.62

AFSBP 0.55 0.46 0.45 0.45 0.45

NodesMF 43 69 73 72 73

NodesBP 40 63 67 66 68

yeast-Human AFSMF 0.74 0.60 0.55 0.55 0.55

AFSBP 0.57 0.45 0.42 0.41 0.41

NodesMF 31 52 62 61 63

NodesBP 31 60 73 72 74

Average AFSMF 0.74 0.64 0.62 0.61 0.62

AFSBP 0.58 0.48 0.47 0.47 0.47

NodesMF 48 68 75 74 75

NodesBP 49 72 80 79 81

Abbreviations: B, biology; T, Topology.
BV1 and BV2 use biology and topology (respectively), after stage1, to align the unaligned nodes. BD uses both biology and topology in the second stage. The bold cells 
present the best results of BioAlign variants.
*Alignment of the mouse-human pair is completed in the first stage.
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Table 3. Comparison between the results of BioAlign and existing techniques on 5 network pairs on the basis of AFS and percentage of aligned 
nodes w.r.t MF and BP. BioAlign produced high-quality alignments in terms of AFS and coverage.

SP. PAiRS EVAL. CRiTERiA ALigNMENT ALgORiTHMS

BA TW BE MO SA PR HA MA iB SAN NE MAg

MH AFSMF 0.78 0.73 0.79 0.56 0.58 0.76 0.48 0.42 0.35 0.34 0.33 0.36

AFSBP 0.67 0.63 0.70 0.43 0.43 0.66 0.34 0.30 0.26 0.25 0.24 0.26

NodesMF 88 86 85 82 82 87 78 74 72 75 73 76

NodesBP 92 88 87 87 84 91 82 81 83 82 82 82

My AFSMF 0.46 0.44 0.47 0.43 0.40 0.38 0.36 0.31 0.29 0.30 0.31 0.29

AFSBP 0.32 0.31 0.32 0.31 0.27 0.25 0.25 0.23 0.21 0.22 0.22 0.21

NodesMF 73 69 64 67 72 56 71 71 63 67 64 67

NodesBP 88 79 73 77 91 72 90 88 76 84 83 83

yH AFSMF 0.55 0.50 0.54 0.48 0.48 0.42 0.46 0.26 0.30 0.27 0.26 0.26

AFSBP 0.41 0.36 0.40 0.36 0.35 0.32 0.34 0.22 0.24 0.23 0.22 0.22

NodesMF 63 60 55 59 64 57 63 60 58 61 60 59

NodesBP 74 70 63 70 76 67 74 72 70 73 72 70

MF AFSMF 0.67 0.62 0.67 0.55 0.50 0.55 0.42 0.36 0.33 0.32 0.32 0.37

AFSBP 0.49 0.46 0.49 0.40 0.37 0.41 0.31 0.28 0.24 0.23 0.23 0.28

NodesMF 79 77 74 73 73 69 67 66 58 67 57 63

NodesBP 83 82 79 80 80 77 76 74 58 76 60 62

MW AFSMF 0.62 0.56 0.58 0.49 0.56 0.52 0.49 0.41 0.30 0.32 0.29 0.31

AFSBP 0.45 0.41 0.41 0.34 0.41 0.39 0.37 0.30 0.25 0.25 0.24 0.25

NodesMF 73 68 67 66 75 61 73 71 62 59 62 64

NodesBP 68 64 63 62 69 56 67 66 70 57 72 76

Avg AFSMF 0.62 0.57 0.61 0.50 0.50 0.52 0.44 0.35 0.31 0.31 0.30 0.32

AFSBP 0.47 0.42 0.46 0.37 0.37 0.40 0.32 0.27 0.24 0.24 0.23 0.24

NodesMF 75 72 68 69 73 66 70 68 63 66 63 66

NodesBP 81 77 72 75 80 73 77 76 71 74 74 75

Abbreviations: BA, BioAlign; BE, BEAMS; HA, HubAlign; iB, iBNAL; MA, ModuleAlign; MAg, MAgNA++; NE, NETAL; MO, MONACO; PR, PROPER; SA, SAlign; SAN, 
SANA; TW, Twadn.
The percentage of aligned nodes is calculated with respect to the smaller network. AFS referred to as the average functional similarity of the complete alignment while 
Nodes are referred to as the percentage of nodes aligned. Bold cells represent the best results.

the remaining nodes using biological information (remote 
homology and secondary structure motifs) in stage-2. In con-
trast, the variant BV2 aligns the remaining nodes using topo-
logical information. The percentage of unaligned nodes in 
Mouse-Yeast and Yeast-Human pairs is more than 20%. In 
both cases, variant BV1 outperforms variant BV2 in terms of 
AFS and coverage. In the remaining cases, the percentage of 
unaligned nodes is less than 5%. The difference in the results is 
not notable. The variant BD (default version of BioAlign) is the 
combination of variants BV1 and BV2. On average, the results of 
variant BD are comparable or better than the results of both 
variants in terms of AFS and coverage.

On average, the results of Stage2 are better than the results of 
Stage1 (7% and 9%  in terms of percentage of aligned nodes 
w.r.t MF and BP). The AFS of Stage2 is slightly lower than 
Stage1. The additional information increases the coverage by 
7%-9% by reducing the AFS by 1%-2%. This shows that 
BioAlign completes the alignment with a small decrease in AFS.

Comparison between the results of BioAlign and 
existing algorithms

Table 3 shows the comparison between the results of BioAlign 
and existing algorithms. The results of BioAlign are better or 
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Table 4. Comparison between the results of BioAlign and existing techniques on 5 network pairs on the basis of NgOC w.r.t MF and BP. BioAlign 
produced better or comparable results in terms of NgOC.

SP. PAiRS EVAL. CRiTERiA ALigNMENT ALgORiTHMS

BA TW BE MO SA PR HA MA iB SAN NE MAg

MH NgOCMF 0.54 0.49 0.57 0.28 0.28 0.29 0.17 0.12 0.06 0.08 0.07 0.08

NgOCBP 0.48 0.43 0.52 0.19 0.17 0.18 0.08 0.04 0.01 0.01 0.01 0.01

My NgOCMF 0.15 0.14 0.14 0.12 0.12 0.07 0.10 0.07 0.05 0.04 0.05 0.05

NgOCBP 0.07 0.06 0.06 0.05 0.04 0.02 0.03 0.02 0.01 0.01 0.01 0.01

yH NgOCMF 0.22 0.18 0.19 0.17 0.19 0.15 0.18 0.07 0.06 0.07 0.07 0.07

NgOCBP 0.11 0.08 0.09 0.08 0.08 0.05 0.08 0.01 0.01 0.01 0.01 0.01

MF NgOCMF 0.27 0.24 0.26 0.17 0.13 0.15 0.08 0.05 0.02 0.02 0.02 0.03

NgOCBP 0.14 0.12 0.13 0.08 0.07 0.08 0.04 0.02 0.01 0.01 0.01 0.01

MW NgOCMF 0.21 0.18 0.18 0.12 0.16 0.12 0.13 0.08 0.03 0.03 0.03 0.05

NgOCBP 0.11 0.08 0.09 0.05 0.08 0.06 0.06 0.03 0.02 0.01 0.01 0.02

Avg NgOCMF 0.28 0.25 0.27 0.17 0.18 0.16 0.13 0.08 0.04 0.05 0.05 0.06

NgOCBP 0.18 0.15 0.18 0.09 0.09 0.08 0.06 0.02 0.01 0.01 0.01 0.01

Bold cells represent the best results.

comparable to all algorithms for all network pairs on the basis of 
AFS w.r.t MF and BP. On average, the results of BEAMS are 
slightly lower than BioAlign in terms of AFS. The average per-
formance of BioAlign is 8%  and 11%  better than Twadn in 
terms of AFS w.r.t MF and BP, respectively. The performance 
of BioAlign is 15%-19% and 16%-21% better in terms of AFS 
w.r.t MF and BP, respectively as compared to SAlign, 
MONACO, and PROPER. When we compare BioAlign with 
HubAlign, ModuleAlign, IBNAL, NETAL, SANA, and 
MAGNA++, it performs 29%-52% and 32%-51% better than 
these algorithms in terms of AFS w.r.t MF and BP, respectively. 
BEAMS, Twadn, PROPER, MONACO, and SAlign produce 
better results as compared to other existing aligners in terms of 
AFS. Comparison between the results of BioAlign and Existing 
Aligners. The average results of BioAlign in terms of coverage 
are better than all existing algorithms. BioAlign outperforms 
SAlign in terms of coverage by a small margin. When we com-
pare the coverage of BioAlign with other existing algorithms, it 
performs 3%-11% and 4%-16% better w.r.t BP and MF, respec-
tively. The results of SAlign, HubAlign, and Twadn are better 
than other existing aligners in terms of coverage.

Although the coverage achieved by SAlign is similar to 
BioAlign, the AFS of SAlign is lower than BioAlign (19%-
21%). In contrast, the AFS achieved by BEAMS is similar to 
BioAlign, the coverage of BEAMS is notably lower than 
BioAlign (9%-11%). The coverage achieved by HubAlign and 
ModuleAlign is reasonable, but the AFS produced by these 
algorithms is notably low as compared to BioAlign and some 
of the existing algorithms (Twadn, BEAMS, MONACO, 
PROPER, and SAlign). Although the results of PROPER in 
terms of AFS are reasonable, its coverage is notably low among 

all existing algorithms. The performance of IBNAL, NETAL, 
MAGNA++ is notably low in terms of both AFS and cover-
age. In contrast, BioAlign achieves better performance in terms 
of coverage as well as AFS.

A similar trend is found between the results of BioAign and 
existing aligners when we compare results in terms of NGOC 
(Table 4). Comparison between the results of BioAlign and 
Existing Aligners. The results of BioAlign are better than 
BEAMS in all cases except for Mouse-Human. The results of 
Twadn are inferior as compared to BioAlign and BEAMS but 
it outperforms all other existing algorithms. The results of 
SAlign, MONACO and PROPER are better than rest of the 
existing aligners (HubAlign, ModuleAlign, IBNAL, SANA, 
NETAL, and MAGNA++).

The global PPI network alignment is a multi-objective 
problem that aims to align the maximum possible number of 
nodes with high AFS. The solutions/alignments that produce 
high AFS with large coverage are considered as better align-
ments as compared to alignments with low AFS and/or cover-
age. The alignments produced by BioAlign are better than the 
alignments produced by existing aligners as it satisfies both 
objectives (coverage and AFS).

The solutions of the multi-objective problems need Pareto-
Front (PF) based evaluation. PF is a line that contains the best/
non-dominant solutions (better in all objectives, or better in at 
least one objective and comparable in the other objectives). In 
case of maximizing both objectives, the PF will always be pro-
duced in the right-upward direction.

The results of all the aligners in terms of AFS and coverage 
are plotted in 2D space (Figure 3) to better understand the 
positions of the aligners. Some of existing aligners do not 
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Table 5. The average execution time of the aligners on 5 datasets.

ALgORiTHM ExECUTiON TiME

PROPER 3 s

Twadn 5 s

MONACO 30 s

BioAlign 48 s

BEAMS 54 s

HubAlign 74 s

SAlign 88 s

SANA 06 min

ModuleAlign 26 min

MAgNA++ 58 min

Figure 3. The 2D-positions of the aligners on the basis of average AFS 

and the percentage of aligned nodes are represented. The solutions of 

different aligners are represented by the lines with different colors. The 

best-line (light-blue) represents the Pareto-Front. The dotted lines show 

the difference of BioAlign with Twadn, BEAMS, and SAlign that is notably 

high. BioAlign outperforms all the existing aligners in terms of positions 

that is validated by the Pareto-Front technique.

produce optimal alignments in terms of semantic similarity 
while some of the algorithms failed to complete alignment. To 
analyze the performance in terms of both objectives, we com-
pute the difference (Euclidean) between the points (AFS, 
Coverage) of aligners. The results points of BioAlign, BEAMS, 
Twadn, and SAlign are joined by plotting lines in different 
colors. The light-blue line (BioAlign) contains the solutions 
that perform better than other solutions, so we can say that the 
light-blue line is the PF. When we compare the positions of 
BioAlign with Twadn, the difference between the points of 
both aligners is 6  and 7  in terms of MF and BP, respectively. 
The distance between the points of BioAlign and BEAMS is 
7  and 9  in terms of MF and BP. The difference between the 
points of BioAlign and SAlign is 10  and 12  in terms of BP 
and MF, respectively. The difference between the points of 
BioAlign and rest of the algorithms is 12-32 and 14-34 w.r.t 

BP and MF, respectively. From this analysis we can say that 
BioAlign is rank-1 algorithm for global PPI network align-
ment. The ranks of Twadn, BEAMS, and SAlign are 2, 3, and 
4 respectively in terms of distance.

Supplemental Table 2 shows the comparison between the 
results of all the existing aligners in terms of topological 
measures (ICS, EC, and SSS). The results of BioAlign are 
better than or comparable to SANA, Twadn, BEAMS, and 
MONACO. The remaining algorithms outperform BioAlign 
in terms of topological measures. Topological metrics can be 
misleading as the PPI network data is incomplete and noisy 
(high false positive rate due to inferred interactions).

Enrichment analysis

As discussed earlier, the best global aligners tend to produce 
alignments that have high AFS and coverage. To analyze the 
quality of the alignments, we show the results in terms of the 
percentage of aligned nodes that have high AFS (greater than 
0 50.  and 0 75. ). Figure 4 shows the number of aligned nodes 
that produce AFS greater than 0 50.  and 0 75. .

From Figure 4, we can see that BioAlign aligns more nodes 
that have AFS greater than 0 50.  and 0 75.  as compared to 
existing aligners, which indicates that BioAlign aligns the pro-
tein pairs accurately. For Mouse-Human pair, the results of the 
BEAMS, PROPER, and BioAlign algorithms are similar. For 
Mouse-Yeast pair, the results of BioAlign are slightly higher 
than the results of BEAMS and Twadn. For all remaining pairs, 
the proposed aligner outperforms all the existing aligners with a 
high margin. On average, BioAlign aligns 4%  more nodes that 
have AFS > 0 50.  than BEAMS. BioAlign aligns 16%-31% 
more nodes than Twadn, SAlign, MONACO, and PROPER. 
When we compare BioAlign with other existing aligners, it 
outperforms with a margin of 53%-80% in terms of aligned 
nodes (Figure 4A). BioAlign aligns 3%  more nodes with AFS 
> 0 75.  as compared to BEAMS. BioAlign aligns 13%-37% 
more nodes as compared to Twadn, SAlign, MONACO, and 
PROPER. When we compare BioAlign with other algorithms, 
it aligns 62%-91% more nodes that have AFS > 0 75.  (Figure 
4B). A similar trend is shown by all the algorithms when we 
compare the percentage of aligned nodes that have AFS greater 
than 0 90. . BioAlign aligns 8%-89% more nodes that have AFS 
> 0 90.  as compared to the existing aligners.

These analyses show that BioAlign aligns a much larger 
number of nodes that have high AFS as compared to existing 
techniques. Thus, BioAlign can help in studying the highly 
similar groups of proteins of the different networks. This study 
also helps in finding the functionally similar proteins among 
different species.

AFS of top 10% to 100% nodes

This section presents the results (AFS) of top 
n n%( , , , , )= …10 20 30 100  nodes. These nodes are in the order 
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in which they are being aligned. Figure 5 presents the AFS of 
all the aligners for different percentages of aligned nodes. 
From Figure 5, we can see that BioAlign aligns the nodes 
with the highest AFS among all aligners.

The lines of all the existing algorithms are inferior as 
compared to BioAlign in terms of AFS and/or completeness 
level. For the Mouse-Human pair, the performance of 
BioAlign is closed to PROPER and BEAMS. For all remain-
ing pairs, the gap between the AFS of BioAlign and existing 
aligners is greater than 5% . Although, the performance of 
BEAMS is closed to BioAlign for Mouse-Yeast and Mouse-
Fly pairs, its completeness level is much poor. PROPER and 
BEAMS show incompleteness in 4 out of 5 cases. The lines 
of all the algorithms (except PROPER and BioAlign) are 
consistent (straight) w.r.t number of aligned nodes. All the 
aligners (except PROPER and BioAlign) use the biological 
and/or topological information simultaneously, so these algo-
rithms generate consistent lines. BioAlign and PROPER 
align the nodes in a multi-stage manner. These aligners first 
align the highly similar nodes (using biological information 
only), and then extend the alignments using different sources 
of information (PROPER uses graph-percolation based 
method, while BioAlign uses predicted secondary structure, 
remote homology, and topology).

In the start (for n < 40% ), the AFS of the PROPER and 
BEAMS aligners is similar to BioAlign, but as the number of 
nodes increases, the AFS decreases. Furthermore, the curves of 
the BEAMS and PROPER algorithm (green and pink lines in 
Figure 5) do not reach 100% , which is the indication that 
PROPER and BEAMS generate incomplete alignments. In 
contrast, the proposed aligner shows relatively high consistency 
and its lines show completeness in all cases. In general, the short 
alignments (a small number of aligned nodes) produce high AFS 
as the mapping of a small region of a network is comparatively 
easier than the mapping of a large portion of a network.6 
BEAMS and PROPER generates incomplete alignments, but 
still achieves lower AFS than BioAlign in most of the cases. 
Furthermore, the decrease in the lines of BEAMS and PROPER 
algorithms is higher than BioAlign. This analysis shows the ben-
eficial effect of biological sources that are used by BioAlign.

Overall, the curves of IBNAL, NETAL, MAGNA++, 
and ModuleAlign show the lowest results. HubAlign gener-
ates better alignments as compared to these aligners, but its 
AFS is lower than Twadn, MONACO, SAlign. MONACO 
performs better than existing aligners except for Twadn and 
SAlign. The results of SAlign are better than all existing algo-
rithms except for Twadn. For Mouse-Yeast, Mouse-Worm, 

Figure 4. The number of aligned nodes that have: (A) AFS > 0.50 and (B) AFS > 0.75 are presented. BioAlign aligns a much larger number of nodes in 

both cases (AFS > 0.50 and AFS > 0.75). The margin between the results of BioAlign and existing aligners is notably high.
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Figure 5. The results in terms of AFS for different percentages of aligned nodes (10, 20 . . . 100) are presented. BioAlign outperforms all existing 

techniques in all cases (blue color). PROPER and BEAMS lines (green and pink colors) show incompleteness in 4 out of 5 cases. Twadn and MONACO 

show incompleteness in the Mouse-yeast case. The remaining algorithms are failed to produce high AFS.

and Yeast-Human cases, the results of SAlign and Twadn are 
similar. For the remaining 2 cases, the results of Twadn are 
better than SAlign. Twadn is better among all existing align-
ers, but its difference with BioAlign is large. The complete-
ness (coverage) and high AFS of BioAlign is validated by 
Figure 5.

Execution time

The average execution time of all algorithms on 5 PPI network 
pairs are reported in Table 5. The use of different level of infor-
mation slightly increased the execution time of the proposed 
algorithm as compared to PROPER. Twadn and MONACO. 
In contrast, Bioalign takes less execution time as compared to 
BEAMS, HubAlign, SAlign, SANA, ModuleAlign, and 
MAGNA++.

Discussion
This paper presents a novel approach that incorporates differ-
ent sources of biological information (global sequence similar-
ity, 3D structure similarity, local sequence similarity, remote 
homology, and predicted secondary structure motifs). All the 
existing aligners incorporate sequence similarity and/or net-
work topology except SAlign that includes structure similarity 
along with sequence similarity and network topology. From the 
results of the 5 network pairs, we show that BioAlign performs 
8%-52% and 11%-51% better than all existing aligners (except 
BEAMS) in terms of AFS w.r.t MF and BP, respectively. The 
coverage of BioAlign is also comparable to or better than exist-
ing techniques.

The hypothesis (use of topology results in a decrease in 
AFS) claimed by UAlign is proved by SAlign. This paper 
finds a similar trend in the results of the existing aligners. 
SANA, IBNAL, NETAL, HubAlign, and ModuleAlign use 
different types of topological measures, but their AFS is not 
comparable to the state-of-art algorithm. MAGNA++ uses 
topology as a pseudo-measure to align the networks, but it 
generates the alignments that have low AFS. PROPER and 
SAlign mainly use sequence and/or structure due to which 
their performance is notably higher than other existing algo-
rithms in terms of AFS. BioAlign does not incorporate topo-
logical information and achieves more accurate results than 
existing algorithms. All the existing aligners (except 
PROPER) use the scoring matrices (sequence, structure, and 
topology) simultaneously to align the PPI networks. The 
curves of these algorithms are almost consistent (Figure 5). 
PROPER aligns the PPI networks in 2 stages. It first aligns 
the nodes on the basis of sequence similarity, and then 
extends the aligned nodes using topology. From Figure 5, we 
can see that the AFS of the PROPER algorithm decreases, 
as the number of nodes increases (green lines of Figure 5). 
This indicates that the use of topological information results 
in a decrease in AFS. In contrast, all the biological informa-
tion used by BioAlign show consistency in terms of AFS. 
The AFS remains high for all percentages of aligned nodes 
(blue lines of Figure 5). This analysis indicates that all the 
information sources help BioAlign in aligning the biologi-
cally similar proteins.

After stage-1, BioAlign incorporates remote homology, 
predicted secondary structure, and topology. In order to 
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compare the effect of topology and biology (remote homology 
and predicted secondary structure), we add these metrics after 
stage-1 (Table 2). From the results, we conclude that the inclu-
sion of remote homology and predicted secondary structure is 
beneficial as compared to the inclusion of topology. This analy-
sis is consistent with the analysis of SAlign and UAlign. We 
also note that the order of the input metrics given to the 
BioAlign is important. Therefore, a comparison of the results 
of BioAlign with different orders of input metrics is given in 
Supplemental Table 1 (columns 4-8). From the results, we 
show that order of the input metrics used by BioAlign (3D 
structure + global sequence + local sequence + remote homol-
ogy + predicted secondary structure + Topology) best maxi-
mizes the results in terms of semantic similarity as well as 
percentage of aligned nodes.

The AFS w.r.t MF is higher than BP in all cases. The MF 
of the proteins are specific and have well-defined GO-terms 
(annotations). In contrast, the biological processes are generic 
and have vague GO-terms. We also note that the percentage of 
aligned nodes in terms of BP is higher than MF. The generic 
functions of the proteins and pathways involving these proteins 
are commonly known, but sometimes the specific functions of 
the proteins are unknown.

Conclusion
This paper presents a novel multi-stage method to align the PPI 
networks. In contrast to existing aligners, it uses structural and 
sequential information (local and global) to generate the seeds. In 
contrast to existing aligners, it does not compromise on AFS by 
aligning the nodes that have low similarity (sequence or structure-
wise). This results in incomplete alignment that is tackled by 
aligning the remaining nodes on the basis of remote homology, 
predicted secondary structure motifs, and topological information. 
All the information sources help BioAlign to align the PPI net-
works with high AFS and coverage. The performance of BioAlign 
is notably high as compared to existing aligners in terms of AFS 
and coverage w.r.t MF and BP. The difference between the perfor-
mance of BioAlign and existing aligners is 6-32 and 7-34 w.r.t BP 
and MF. Moreover, BioAlign aligns a much larger number of 
nodes that have high AFS (> >50 75and ) that is, it aligns the 
biologically relevant proteins.
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